首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Effectors for increasing the efficiency of DNA modification with the alkylating methylphosphonate analogues of oligodeoxyribonucleotides (MFAO) were suggested. Oligodeoxyribonucleotide d(pC5A8ACAATG) used as a target DNA treated with alkylating derivatives of octathymidylate having alternating methylphosphonate and phosphodiester internucleotide bonds (both Rp- and Sp-individual diastereoisomers of MFAO were used) and bearing alkylating 4-(N-methyl-N-2-chloroethylamino)benzyl phosphoramide residue at the 3'-end. The reactions were carried out in the presence of an effector, hexadeoxyribonucleotide derivative PhnNH(CH2)2NHpCATTGTpNH(CH2)2NHPhn bearing two N-(2-hydroxyethyl)phenazinium (Phn) residues at the 3'- and 5'-ends and being complementary to the part of the target DNA neighbouring with octaadenylate. It was shown that Tm of the duplex formed by the target DNA, octathymidylate and effector is by 7-13 degrees C higher than in the absence of the effector, thus considerably increasing the efficiency of the intracomplex alkylation of the target (e.g., at 40 degrees C, the increase for the reagent based on the Rp-isomer is sixfold). Specificity of the target DNA modification by the MFAO alkylating derivatives in the presence of effector is same as with reagents based on oligodeoxyribonucleotides with natural internucleotide bonds.  相似文献   

2.
Alkylation at the N7 position of guanine in DNA renders the C8-hydrogen acidic. This serves as the basis for an assay of guanine N7 alkylation using [8-3H]-guanine-labeled DNA. I modified the assay by preparing a high specific activity substrate in vitro and by replacing the distillation step with charcoal adsorption of substrate. Using the appearance of noncharcoal-adsorbable label as a measure of guanine-N7 alkylation I examined the reaction of DNA with dimethyl sulfate and mechlorethamine. The rate of reaction of dimethyl sulfate with the N7 position of guanine in DNA was constant over time, i.e., loss of label from DNA proceeded linearly with time. On the other hand, the rate of reaction of mechlorethamine with DNA increased with time, consistent with the initial formation of the reactive aziridinium ion. The assay can also be used to compare the reaction rates of various alkylating agents with DNA. Thus, the acridine mustards ICR-170 and quinacrine mustard were far more potent alkylating agents than mechlorethamine. Furthermore the assay may be used to determine the alkylating potency and stability of various alkylating agent preparations: while frozen solutions of acridine mustards in organic solvents retained alkylating activity for several months, different commercial preparations of quinacrine mustard had little or no alkylating activity.  相似文献   

3.
Zang H  Gates KS 《Biochemistry》2000,39(48):14968-14975
Azinomycin B (also known as carzinophilin A) contains two electrophilic functional groups-an epoxide and an aziridine residue-that react with nucleophilic sites in duplex DNA to form cross-links at 5'-dGNT and 5'-dGNC sequences. Although the aziridine residue of azinomycin is undoubtedly required for cross-link formation, analogues containing an intact epoxide group but no aziridine residue retain significant biological activity. Azinomycin epoxide analogues (e.g., 5 and 6) are of interest due to their potent biological activity and because there is evidence that azinomycin may decompose in vivo to yield such compounds. To investigate the chemical events underlying the toxicity of azinomycin epoxides, DNA binding and alkylation by synthetic analogues of azinomycin B (6, 8, and 9) that comprise the naphthalene-containing "left half" of the antibiotic have been investigated. The epoxide-containing analogue of azinomycin (6) efficiently alkylates guanosine residues in duplex DNA. DNA alkylation by 6 is facilitated by noncovalent binding of the compound to the double helix. The results of UV-vis absorbance, fluorescence spectroscopy, DNA winding, viscometry, and equilibrium dialysis experiments indicate that the naphthalene group of azinomycin binds to DNA via intercalation. Equilibrium dialysis experiments provide an estimated binding constant of (1.3 +/- 0.3) x 10(3) M(-)(1) for the association of a nonalkylating azinomycin analogue (9) with duplex DNA. The DNA-binding and alkylating properties of the azinomycin epoxide 6 provide a basis for understanding the cytotoxicity of azinomycin analogues which contain an epoxide residue but no aziridine group and may provide insight into the mechanisms by which azinomycin forms interstrand DNA cross-links.  相似文献   

4.
Previous studies have reported conflicting results regarding the effect of ethanol on hepatic regeneration. The purpose of the present study was to determine whether long-term, voluntary consumption of ethanol, within the range reported in humans, has an effect on hepatic regenerative activity in rats following partial hepatectomy. Ninety-four adult male Sprague-Dawley rats (n = 3-9/group) were studied. Based on the amount of 9% ethanol consumed over a 50-day period, low ethanol intake (0.1-1.9 g.kg-1.d-1) and high ethanol intake (2.0-4.0 g.kg-1.d-1) groups were identified. Control groups consisted of rats provided with propylene glycol in equivalent caloric amounts to the ethanol consumed by high ethanol intake rats (isocaloric group) and rats served water only (ad libitum group). An additional two groups from which ethanol was removed 5 days prior to surgery were also studied (low ethanol grace and high ethanol grace). Hepatic regeneration was determined by restitution of liver weight, [3H]thymidine incorporation into DNA, and [14C]leucine incorporation into protein 24, 48, and 72 h following partial (70%) hepatectomy. The results of the study revealed no significant differences in the rate of hepatic regeneration between low and high ethanol consuming rats or between either of these groups and isocaloric or ad-libitum fed control groups. Regeneration in low ethanol grace and high ethanol grace groups were also similar to each other and controls. Moreover, there was no correlation between mean ethanol consumption per rat and restitution of liver weight, [3H]thymidine incorporation into DNA, or [14C]leucine incorporation into protein by the regenerating liver (r = 0.0716, -0.1637, and 0.1395, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A new method for the measurement of DNA damage in individual cells treated with alkylating agents is described. The method is based on the binding of anti-DNA monoclonal antibody to DNA in situ. Monoclonal antibody F7-26 was obtained by fusion of mouse myeloma cells with spleen cells isolated from a mouse immunized with DNA treated by nitrogen mustard (HN2). Binding of antibody was evaluated by flow cytometry with indirect immunofluorescence. No binding of antibody to DNA in non-treated HeLa S3 cells was detected. Treatment of cells with HN2 or L-phenylalanine mustard induced binding of antibody to DNA in situ. Binding of antibody was observed after treating cells with doses of drugs which reduced the surviving fraction below 20%. Intensity of binding increased in proportion to the drug dose. Two-parameter analysis for the antibody binding and DNA content showed no binding of antibody to replicating DNA in control cells. In HN2-treated cells a cell subset with the lowest antibody binding was observed among cells in G1 phase. Binding of antibody to DNA in HN2-treated cells was eliminated by single-strand (ss) specific S1 nuclease. In competition assay, antibody was inhibited by thermally denatured DNA, but not by native double-stranded (ds) DNA, RNA, nucleosides and deoxyribohomopolymers. Binding of monoclonal antibody specific for the determinants expressed on ssDNA to the cells treated with alkylating agents may be attributed to local DNA denaturation. Potentiation of L-phenylalanine mustard cytotoxicity by buthionine sulfoximine or hyperthermia was accompanied by increased antibody binding to cellular DNA. Immunoreactivity of cells with the monoclonal antibody F7-26 may be a useful probe for the assessment of cell damage induced by alkylating agents, especially in heterogeneous cell populations.  相似文献   

6.
Radioactive alkylating 5'-[32P]-[4-(N-2-chlorethyl)N-methylaminobenzyl]-5'-phospham ide decadeoxyribothymidilate derivatives containing either free hydroxyl group (reagent I), hydrophobic cholesterol residue (reagent II) or polyaromatic phenazinium residue (reagent III) at 3'-termini were synthesized. The products were purified by HPLC and used for oligonucleotide-directed alkylating of DNA in isolated rat liver nuclei, Krebs-2 ascite carcinoma cells and L-929 murine fibroblasts. The uptake of reagent II by the cells was two orders of magnitude higher than that of reagent I and III. Intracellular alkylation of DNA by reagent II both in isolated nuclei and in living cells was about one order of magnitude higher than in the case of reagent I. The presence of phenazinium at 3'-termini of the reagent III leads to a sufficient increase of the alkylation extent compared to reagent I despite a quite low extent of its uptake by the cells.  相似文献   

7.
Monofunctional alkylating agents react with DNA by S(N)1 or S(N)2 mechanisms resulting in formation of a wide spectrum of cytotoxic base adducts. DNA polymerase beta (beta-pol) is required for efficient base excision repair of N-alkyl adducts, and we make use of the hypersensitivity of beta-pol null mouse fibroblasts to investigate such alkylating agents with a view towards understanding the DNA lesions responsible for the cellular phenotype. The inability of O(6)-benzylguanine to sensitize wild-type or beta-pol null cells to S(N)1-type methylating agents indicates that the observed hypersensitivity is not due to differential repair of cytotoxic O-alkyl adducts. Using a 3-methyladenine-specific agent and an inhibitor of such methylation, we find that inefficient repair of 3-methyladenine is not the reason for the hypersensitivity of beta-pol null cells to methylating agents, and further that 3-methyladenine is not the adduct primarily responsible for methyl methanesulfonate (MMS)- and methyl nitrosourea-induced cytotoxicity in wild-type cells. Relating the expected spectrum of DNA adducts and the relative sensitivity of cells to monofunctional alkylating agents, we propose that the hypersensitivity of beta-pol null cells reflects accumulation of cytotoxic repair intermediates, such as the 5'-deoxyribose phosphate group, following removal of 7-alkylguanine from DNA. In support of this conclusion, beta-pol null cells are also hypersensitive to the thymidine analog 5-hydroxymethyl-2'-deoxyuridine (hmdUrd). This agent is incorporated into cellular DNA and elicits cytotoxicity only when removed by glycosylase-initiated base excision repair. Consistent with the hypothesis that there is a common repair intermediate resulting in cytotoxicity following treatment with both types of agents, both MMS and hmdUrd-initiated cell death are preceded by a similar rapid concentration-dependent suppression of DNA synthesis and a later cell cycle arrest in G(0)/G(1) and G(2)M phases.  相似文献   

8.
C5-desoxy analogs of tetrahydroisoquinoline (THIQ) alkaloids were designed and synthesized as hitherto unexplored structural variants for evaluation of their DNA alkylating activities. While chemical synthesis of the C5-desoxy analogs bearing a phenolic hydroxyl group in the A-ring of the saframycins was assumed to be laborious based on semi-synthetic modifications, a chemo-enzymatic approach allowed for concise access to the analogs. The C5-desoxy analog 7 exhibited greater DNA alkylating ability with a wider tolerance for the sequence variations compared to cyanosafracin B. The C5-desoxy A-ring having a C8 phenolic hydroxyl group, and a C1 substituent in the vicinity of the C21 aminonitrile responsible for DNA alkylation, were demonstrated to play pivotal roles in the interaction between the THIQ alkaloids and DNA.  相似文献   

9.
3-Aminobenzamide (3-AB), an inhibitor of poly(ADP-ribosylation), is lethal to human fibroblasts with damaged DNA. Its cytotoxicity was determined relative to a number of factors including the types of lesions, the kinetics of repair, and the availability of alternative repair systems. A variety of alkylating agents, UV or gamma irradiation, or antimetabolites were used to create DNA lesions. 3-AB enhanced lethality with monofunctional alkylating agents only. Within this class of compounds, methylmethanesulfonate (MMS) treatments made cells more sensitive to 3-AB than did treatment with methylnitrosourea (MNU) or methylnitronitrosoguanidine (MNNG). 3-AB interfered with a dynamic repair process lasting several days, since human fibroblasts remained sensitive to 3-AB for 36-48 hours following MMS treatment. During this same interval, 3-AB caused these cells to arrest in G2 phase. Alkaline elution analysis also revealed that this slow repair was delayed further by 3-AB. Human mutant cells defective in DNA repair differed in their responses to 3-AB. Among mutants sensitive to monofunctional alkylating agents, ataxia telangiectasia cells were slightly more sensitive to 3-AB than control cells, while Huntington's disease cells had a near-normal response. Among UV-sensitive strains, xeroderma pigmentosum variant (XPV) cells were more sensitive to 3-AB after MMS than were XP complementation group A (A) cells, which responded normally. Greater lethality with 3-AB could be dependent on inability of the mutant cells to repair damage by other processes.  相似文献   

10.
The binding of the 14C-labelled-ethylene and -pyrimidine moieties of 3-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-1-(2-chloroethyl)-1-nitrosourea hydrochloride (ACNU) to the biological macromolecules was studied with the AH-130 hepatoma-bearing rats, suspension of AH-130 cells, and isolated nucleic acids and proteins. In all systems examined, a significant level of the binding of the [14C]ethylene of ACNU to nucleic acids, probably due to alkylation, was observed. In contrast, the extent of the binding of the [14C]-pyrimidine was negligible. When a compound lacking the 4-amino group of ACNU (deamino-ACNU) was used for the binding study, relatively higher binding of this compound than that of ACNU to [14C]lysine was observed. It was revealed, therefore, that the low binding of ACNU to proteins could be due to instantaneous depletion of an isocyanate-intermediate, according to the formation of an intramolecularly carbamoylated product with the amino-group on the pyrimidine ring of ACNU molecule during incubation. This could be the molecular basis for the low carbamoylating activity of ACNU in vivo and in vitro, and the antitumor action of ACNU would be dependent on its alkylating activity only.  相似文献   

11.
Dose fractionation of a direct-acting chemical carcinogen, the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), was studied for its concurrent effects on survival, DNA damage and repair, ouabain resistance (Ouar) mutations and neoplastic transformation, in the mouse embryo cell line BALB/3T3 C1A31-1-1. MNNG doses of 0.5, 1 and 2 micrograms/ml were added to the cells either as a single exposure or in two equal fractions separated by 1, 3 or 5 h intervals. No significant difference in cytotoxicity was found when single and split-dose treatments were compared. No recovery from sublethal damage was therefore found in this cell line by split-dose administration of MNNG, although such an effect was found when the same cell line was treated with single and split doses of X-rays. Repair of DNA damage as measured by alkaline elution was studied up to 24 h after a single MNNG exposure (0.5 micrograms/ml). DNA repair was rapid during the first 5 h after treatment and slow thereafter. DNA damage detected after split doses of MNNG at 1 and 5 h intervals was significantly lower than after a corresponding single dose. With both single and split doses, rejoining of single-strand breaks (ssb) was nearly complete after 24 h of repair time. Ouar mutation and neoplastic transformation frequencies were determined for single and split doses of MNNG with the second treatment being given during (1 h) or after (5 h) the period of rapid DNA repair. No significant differences in either effect were detected for dose splitting at any tested dose.  相似文献   

12.
DNA damage was induced by either 2 mM ethylmethanesulfonate or 1 Gy of gamma-irradiation in Allium cepa L. root meristems. The percentage of DNA that migrated towards the anode during microelectrophoresis after alkali denaturation (pH approximately 13.5) of the isolated nuclei (comet assay) reflects the amount of single strand breaks present in them. There was some DNA migration (12.8+/-2.4%) in untreated roots. This percentage doubled at the end of 1.5 h treatment with the mono-functional alkylating agent 2 mM ethylmethanesulfonate, and trebled after a single exposure to 1 Gy of gamma-rays. A proportion of the DNA migration caused by these two treatments was reversed (repaired) by a 2 h long period of in vivo recovery. However, when 5 mM caffeine was applied after removal of the alkylating agent, the amount of DNA migrating to the comet tail over the same 2 h period was almost double that at the onset of recovery. In both control and irradiated nuclei, caffeine also increased the initial level of DNA migration in the comet assay, but to a lesser extent. These results indicate that caffeine increases the DNA damage that accumulates during the processing of alkylated bases and, to a lesser extent, of the DNA bases damaged by gamma-irradiation. Thus, the potentiation effect of caffeine on induced chromosomal damage may not just be due to caffeine-induced cancellation of the G2 checkpoint, but also to a direct effect this methylxantine has on the processing of DNA damage.  相似文献   

13.
In a colorimetric assay using 4-(p-nitrobenzyl)pyridine (NBP) as a nucleophilic scavenger of alkylating agents, the nitrosation and alkylation reactions were investigated for a number of amino acids and derivatives. The alkylating activity increased with the square of the nitrite concentration. The nitrosation rate constants for aspartic acid, aspartame, and glycine ethylester (= precursors C) were 0.08, 1.4 and less than or equal to 0.2, respectively, expressed in terms of the pH-dependent k2 rate constant of the equation dNOC/dt = k2.[C].[nitrite]2. The rates correlated inversely with the basicity of the amino group. The stability of the alkylating activity was astonishingly high, both in acid and at neutral pH. Half-lives of 500, 200, and 30 min were determined for aspartic acid (pH 3.5), aspartame (pH 2.5), and glycine ethylester (pH 2.5). Values of 60, 15, and 2 min, respectively, were found at pH 7. It is concluded that rearrangement of the primary N-nitroso product to the ultimate alkylating agent could be rate-limiting. The potential of nitrosated alpha-amino acids to bind to DNA in vivo was investigated by oral gavage of radiolabelled glycine ethylester to rats, followed immediately by sodium nitrite. DNA was isolated from stomach and liver and analysed for radioactivity and modified nucleotides. No indication of DNA adduct formation was obtained. Based on an estimation of the dose fraction converted from glycine ethylester to the nitroso product under the given experimental conditions, the maximum possible DNA-binding potency of nitroso glycine ethylester is about one order of magnitude below the methylating potency of N-nitrosomethylurea in rat stomach. The apparent discrepancy to the in vitro data could be due to efficient detoxification processes in mammalian cells.  相似文献   

14.
Base-excision (BER) and nucleotide-excision (NER) repair play pivotal roles in protecting the genomes of dividing cells from damage by endogenous and exogenous agents (i.e. environmental genotoxins). However, their role in protecting the genome of post-mitotic neuronal cells from genotoxin-induced damage is less clear. The present study examines the role of the BER enzyme 3-alkyladenine DNA glycosylase (AAG) and the NER protein xeroderma pigmentosum group A (XPA) in protecting cerebellar neurons and astrocytes from chloroacetaldehyde (CAA) or the alkylating agent 3-methyllexitropsin (Me-Lex), which produce ethenobases or 3-methyladenine (3-MeA), respectively. Neuronal and astrocyte cell cultures prepared from the cerebellum of wild type (C57BL/6) mice or Aag(-/-) or Xpa(-/-) mice were treated with 0.1-50 microM CAA for 24h to 7 days and examined for cell viability, DNA fragmentation (TUNEL labeling), nuclear changes, and glutathione levels. Aag(-/-) neurons were more sensitive to the acute (>20 microM) and long-term (>5 microM) effects of CAA than comparably treated wild type neurons and this sensitivity correlated with the extent of DNA fragmentation and nuclear changes. Aag(-/-) neurons were also sensitive to Me-Lex at comparable concentrations of CAA. In contrast, Xpa(-/-) neurons were more sensitive than either wild type or Aag(-/-) neurons to CAA (>10 microM), but less sensitive than Aag(-/-) neurons to Me-Lex. Astrocytes from the cerebellum of wild type, Aag(-/-) or Xpa(-/-) mice were essentially insensitive to CAA at the concentrations tested. These studies demonstrate that BER and NER are required to protect neurons from genotoxin-induced cell death.  相似文献   

15.
A single stranded DNA fragment was modified with alkylating derivatives of oligonucleotides complementary to a certain nucleotide sequences in the fragment. The derivatives carried aromatic 2-chloroethylamino groups at their 3'- or 5'-terminal nucleotide residues. Some of the derivatives carried both alkylating group and intercalating phenazine group which stabilized complementary complexes. It was found that these oligonucleotide derivatives modify the DNA fragment in a specific way near the target complementary nucleotide sequences, and the DNA fragment can be cleaved at the alkylated nucleotides positions. Alkylating derivatives carrying phenazine groups were found to be the most efficient in reaction with the DNA fragment.  相似文献   

16.
5'-[32P]-labelled alkylating decathymidylate [4-(N-2-chloroethyl)N-methylaminobenzyl]-5'-phosphamide derivatives containing cholesterol or phenazinium residues at their 3'-termini were synthesized and used for alkylation of DNA within mammalian cells. The uptake of the cholesterol derivative by the cells and the extent of DNA alkylation are about two orders of magnitude higher than those of a similar alkylating derivative lacking the groups at the 3'-termini. The presence of the phenazinium residue at the 3'-terminus of the oligonucleotide reagent does not improve the reagent uptake by the cells but drastically increases the DNA modification efficiency.  相似文献   

17.
The alkylating thiovinyl fragment released from S-(1,2-dichlorovinyl)-l-[35S]-cysteine by a lyase reacted with about 12% of the amino acid residues in poly-l-lysine and about 6% in poly-l-arginine. The reaction of alkylating fragment with DNA was considerably reduced through complex formation of DNA with these polypeptides. When (alkylating fragment)-treated DNA interacted with either normal or (alkylating fragment)-treated polypeptides, the products had an abnormal biphasic melting profile. The first (lower) Tm is apparently due to (alkylating fragment)-substituted regions of DNA which are not complexed with polypeptide and have, like (alkylating fragment)-substituted DNA, a higher Tm than free, native DNA. A second, much higher Tm is due to (alkylating fragment)-substituted regions of DNA which are complexed with polypeptide. These complexes were, however, less stable and had lower Tm values than those prepared from normal, native DNA. The implications of complex formation with respect to susceptibility of tissues and species to toxic agents are discussed.  相似文献   

18.
The uptake, metabolism and alkylating properties of the diastereomeric cholesterol epoxides were studied using Chinese hamster lung fibroblasts (V79 cells). Specific emphasis is given to the comparative cyto- and geno-toxic effects of cholesterol 5 beta,6 beta-epoxide (beta CE) and cholesterol 5 alpha,6 alpha-epoxide (alpha CE) and data are provided for the first time indicating that beta CE can induce more 6-thioguanine-resistant cells than alpha CE. Cholesterol 5 beta,6 beta-epoxide induced colonies of cells resistant to 6-thioguanine at 2-3-fold the frequencies observed with the alpha-isomer, but neither compound produced ouabain-resistant colonies. The cytotoxicity (LD50) of alpha CE was estimated to be 45-50 microM whereas beta CE displayed an LD50 of 25-29 microM. Inhibition of DNA synthesis (IC50) was observed over the same dose ranges as the LD50 for each epoxide isomer. The epoxides were assimilated by cells to an equal extent, however, beta CE was metabolized to cholestane 3 beta,5 alpha-6 beta-triol twice as rapidly as the alpha-isomer. Both epoxides reacted with 4-(4'-nitrobenzyl)-pyridine to a similar extent, and with identical nucleophilic selectivity at pH 7.4, but their alkylating activity was estimated on this basis to be two orders of magnitude less than methyl methanesulfonate. Binding experiments with the DNA or cultured V79 cells or with calf-thymus DNA indicated that interactions were noncovalent and DNA binding did not correlate with the potency of the epoxides to induce the 6-thioguanine-resistant phenotype. Our results could be interpreted as indicating that both cholesterol epoxide isomers are weak mutagens or that they might induce some epigenetic event repressing the hypoxanthine guanine-phosphoribosyltransferase gene. The similarity of the epoxides' alkylating activity and their DNA-binding properties are inconsistent with their different potencies in inducing the 6-thioguanine-resistant phenotype, suggesting that the mechanism leading to this phenotype is not necessarily the result of DNA alkylation.  相似文献   

19.
Several bifunctional alkylating agents of the aziridinylbenzoquinone class have been evaluated as potential antitumor agents. 3,6-Bis[(2-hydroxyethyl)amino]-2,5- diaziridinyl-1,4-benzoquinone (BZQ), 2,5-diaziridinyl-1,4-benzoquinone (DZQ), 3,6-bis(carboxyamino)-2,5-diaziridinyl- 1,4-benzoquinone (AZQ), and six analogues of AZQ have been studied for their ability to induce DNA interstrand cross-linking, as measured by an agarose gel technique, and to determine whether they react with DNA in a sequence-selective manner, as determined by a modified DNA sequencing technique. At an equimolar concentration (10 microM), only DZQ and BZQ showed any detectable cross-linking at pH 7 without reduction. Cross-linking was enhanced in both cases at low pH (4). Reduction by ascorbic acid at both pH's increased the cross-linking, which was particularly striking in the case of DZQ. In contrast, AZQ and its analogues only produced a significant level of cross-linking under both low-pH and reducing conditions, the extent of cross-linking decreasing as the size of the alkyl end group increased. The compounds reacted with all guanine-N7 positions in DNA with a sequence selectivity similar to other chemotherapeutic alkylating agents, such as the nitrogen mustards, although some small differences were observed with BZQ. Nonreduced DZQ showed a qualitatively similar pattern of reactivity to the other compounds, but on reduction (at pH 4 or 7) was found to react almost exclusively with 5'-GC-3' sequences, and in particular, at 5'-TGC-3' sites. A model to explain this unique reaction is proposed.  相似文献   

20.
Experiments were performed to investigate the relationship between the rate of oxidative metabolism of dimethylnitrosamine (DMN) by rat liver microsomes (i.e., DMN demethylase activity, DMNd) and its genotoxicity in liver, as assessed by the in vitro and in vivo/in vitro rat hepatocyte primary culture/DNA repair (HPC/DR) assays. Pretreatment of rats with pyrazole (PYR) resulted in a 4-fold increase in DMNd and a 3-fold greater DNA repair response to in vivo administration of 5 mg DMN/kg body weight. Pretreatment with phenobarbital (PB), dichlorodiphenyltrichloroethane (DDT), 3-methylcholanthrene (3-MC), beta-naphthoflavone (beta-NF) or Aroclor 1254 (ARO) produced a variable degree of inhibition of DMNd and had no significant effects on the response to DMN in the in vivo/in vitro HPC/DR assay. DNA repair elicited by DMN in vitro was decreased in hepatocytes from rats pretreated with 3-MC, while PB, DDT, beta-NF and ARO pretreatments had little effect on the response. In contrast, PYR pretreatment produced a 4.5-6.7-fold increase in the in vitro DNA repair response to DMN, and extended detection of positive responses to lower concentrations. Most of the inducers had no effect on DNA repair elicited by the direct acting alkylator, methyl methanesulfonate (MMS). Thus, the pretreatment-related changes in DMN-induced DNA repair were probably due to alterations in DMNd rather than to effects on the DNA repair capacity of the hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号