首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Classical strategies for gene microarrays require labeling of probes or target nucleic acids with signaling molecules, a process that is expensive, time consuming and not always reliable. Bazan and colleagues showed that a nucleic acid-binding cationic conjugated polyelectrolyte can be used in label-free DNA microarrays based on surfaces modified with neutral peptide nucleic acid (PNA) probes. This technique provides a simple and sensitive method for DNA detection without the need for covalent labeling of target DNA.  相似文献   

2.
Liu B  Bazan GC 《Nature protocols》2006,1(4):1698-1702
We describe the synthesis of poly[9,9'-bis(6'-N,N,N-trimethylammonium)hexyl)fluorene-co-alt-4,7-(2,1,3-benzothiadiazole) dibromide] (PFBT), a cationic, water-soluble conjugated polymer used in label-free DNA microarrays. This polymer was designed to have a maximum absorbance of close to 488 nm, which meets the excitation wavelength of most commercial microarray readers, and to have efficient emission in the solid state. Starting from commercially available chemicals, five steps are required to synthesize PFBT. The first step involves treatment of 2,7-dibromofluorene in 50% potassium hydroxide solution with excess 1,6-dibromohexene at 75 degrees C for 25 min to afford 2,7-dibromo-9,9-bis(6'-bromohexyl)fluorene (A). In the second step, a mixture of A, bis(pinacolato)diborane and potassium acetate in dioxane is stirred at 85 degrees C for 12 h to afford bis[9,9'-bis(6'-bromohexyl)-fluorenyl]-4,4,5,5-[1.3.2]dioxaborolane (B). The third step involves bromination of 2,1,3-benzothiadiazole using bromine in the presence of hydrogen bromide to afford 4,7-dibromo-2,1,3-benzothiadiazole (C). Suzuki cross-coupling copolymerization of B and C affords the charge-neutral precursor of PFBT. In the final step, quaternization of pendant groups using trimethylamine yields PFBT. Each step takes up to 3 days, including the time required for product purification. The overall protocol requires approximately 3 weeks.  相似文献   

3.
Xi B  Yu N  Wang X  Xu X  Abassi YA 《Biotechnology journal》2008,3(4):484-495
Cell-based assays are an important part of the drug discovery process allowing for interrogation of targets and pathways in a more physiological setting compared to biochemical assays. One of the main hurdles in the cell-based assay field is to design sufficiently robust assays with adequate signal to noise parameters while maintaining the inherent physiology of the pathway or target being investigated. Conventional label and reporter-based cell assays may be more prone to artifacts due to considerable manipulation of the cell either by the label or over-expression of targets or reporter proteins. Cell-based label-free technologies preclude the need for cellular labeling or over-expression of reporter proteins, utilizing the inherent morphological and adhesive characteristics of the cell as a physiologically relevant and quantitative readout for various cellular assays. Furthermore, these technologies utilize non-invasive measurements allowing for time resolution and kinetics in the assay. In this article, we have reviewed the various label-free technologies that are being used in drug discovery settings and have focused our discussion on impedance-based label-free technologies and its main applications in drug discovery.  相似文献   

4.
The availability of extensive genomic information and content has spawned an era of high-throughput screening that is generating large sets of functional genomic data. In particular, the need to understand the biochemical wiring within a cell has introduced novel approaches to map the intricate networks of biological interactions arising from the interactions of proteins. The current technologies for assaying protein interactions--yeast two-hybrid and immunoprecipitation with mass spectrometric detection--have met with considerable success. However, the parallel use of these approaches has identified only a small fraction of physiologically relevant interactions among proteins, neglecting all nonprotein interactions, such as with metabolites, lipids, DNA and small molecules. This highlights the need for further development of proteome scale technologies that enable the study of protein function. Here we discuss recent advances in high-throughput technologies for displaying proteins on functional protein microarrays and the real-time label-free detection of interactions using probes of the local index of refraction, carbon nanotubes and nanowires, or microelectromechanical systems cantilevers. The combination of these technologies will facilitate the large-scale study of protein interactions with proteins as well as with other biomolecules.  相似文献   

5.
Antibody microarrays have enormous potential for becoming a tool that will allow, at the protein level, the type of global characterization of molecular mixtures that DNA microarrays already make possible at the RNA and DNA level. However, the much higher complexity of proteins both in terms of their sheer number and their structural and biochemical diversity necessitates an even more sophisticated analysis process. Its eventual realization will be demanding to achieve and requires further developments on many technical aspects, not in the least because the understanding of proteins is still comparatively less comprehensive than that of nucleic acids prior to the emergence of array technologies.  相似文献   

6.
Detecting protein-protein interactions other than those of antibody-antigen pairs still represents a demanding and tedious task. In the present work, a novel method as an alternative to current molecular biology-based detection procedures is established. It solely relies on the change of fluorescence decay times of the protein's intrinsic fluorophores tryptophan and tyrosine due to protein-protein interaction. Unlike previously utilized related methods, no labelling of the binding partners is required. This opens the possibility to detect proteins and their natural interactions without perturbation due to chemical alteration. The technique uses immobilization of one of the protein partners onto solid supports, which allows performance of protein binding studies in the microarray format. Fluorescence lifetime experiments of proteins in their different binding states have been applied to protease/protease-substrate pairs, as well as to the tubulin/kinesin system. Different binding behavior of proteins in solution towards protein partners immobilized on protein microarrays was detected with regard to binding specificity and protein amount. This label-free method for analyzing protein microarrays offers broad applicability ranging from principal investigations of protein interactions to applications in molecular biology and medicine.  相似文献   

7.
Sun C  Gaylord BS  Hong JW  Liu B  Bazan GC 《Nature protocols》2007,2(9):2148-2151
A fluorescence-based microarray technique that does not require target DNA labeling is detailed. This 'label-free' approach utilizes a cationic, water-soluble conjugated polymer PFBT (poly[9,9'-bis(6'-(N,N,N-trimethylammonium)hexyl)fluorene-co-alt-4,7-(2,1,3-benzothiadiazole) dibromide]), and neutral PNA (peptide nucleic acid) hybridization probes. DNA hybridization to immobilized PNA spots results in a change in the net charge at that particular surface. Electrostatic interactions between the cationic polymer and negatively charged DNA bind the polymer to the hybrid DNA/PNA complex. By exciting the conjugated polymer at 488 nm on a commercial microarray scanner, the presence of the target is directly indicated by the fluorescence emission of the polymer. This feature eliminates the necessity of target labeling required in traditional microarray protocols. There are five steps involved in the procedure before scanning or imaging the array: (i) slide hydration, (ii) target hybridization, (iii) post-hybridization washing, (iv) polymer application and (v) polymer washing. Each step takes 20 min to 1 h. The overall protocol requires approximately 2-3 h.  相似文献   

8.
Cell microarrays are a recent addition to the set of tools available for functional genomic studies. Each cell microarray is a slide with thousands of cell clusters that are each transfected with a defined DNA, which directs either the overproduction or the inhibition of a particular gene product. By using a range of detection assays, the phenotypic consequences of perturbing each gene in mammalian cells can be probed in a systematic, high-throughput fashion. Combining well-established methods for cellular investigation with the miniaturization and multiplexing capabilities of microarrays, cell arrays are a versatile tool that can be useful in many cell-biological applications.  相似文献   

9.
In recent years, the importance of proteomic works, such as protein expression, detection and identification, has grown in the fields of proteomic and diagnostic research. This is because complete genome sequences of humans, and other organisms, progress as cellular processing and controlling are performed by proteins as well as DNA or RNA. However, conventional protein analyses are time-consuming; therefore, high throughput protein analysis methods, which allow fast, direct and quantitative detection, are needed. These are so-called protein microarrays or protein chips, which have been developed to fulfill the need for high-throughput protein analyses. Although protein arrays are still in their infancy, technical development in immobilizing proteins in their native conformation on arrays, and the development of more sensitive detection methods, will facilitate the rapid deployment of protein arrays as high-throughput protein assay tools in proteomics and diagnostics. This review summarizes the basic technologies that are needed in the fabrication of protein arrays and their recent applications.  相似文献   

10.
11.
We have developed a portable biosensing device based on genetically engineered bioluminescent (BL) cells. Cells were immobilized on a 4 × 3 multiwell cartridge using a new biocompatible matrix that preserved their vitality. Using a fiber optic taper, the cartridge was placed in direct contact with a cooled CCD sensor to image and quantify the BL signals. Yeast and bacterial cells were engineered to express recognition elements, whose interaction with the analyte led to luciferase expression, via reporter gene technology. Three different biosensors were developed. The first detects androgenic compounds using yeast cells carrying a green-emitting P. pyralis luciferase regulated by the human androgen receptor and a red mutant of the same species as internal vitality control. The second biosensor detects two classes of compounds (androgens and estrogens) using yeast strains engineered to express green-or red-emitting mutant firefly luciferases in response to androgens or estrogens, respectively. The third biosensor detects lactose analogue isopropyl β-d-1-thiogalactopyranoside using two E. coli strains. One strain exploits the lac operon as recognition element for the expression of P. pyralis luciferase. The other strain serves as a vitality control expressing Gaussia princeps luciferase, which requires a different luciferin substrate. The immobilized cells were stable for up to 1 month. The analytes could be detected at nanomolar levels with good precision and accuracy when the specific signal was corrected using the internal vitality control. This portable device can be used for on-site multiplexed bioassays for different compound classes.  相似文献   

12.
Approximately one quarter of all human genes encode proteins that function in the extracellular space or serve to bridge the extracellular and intracellular environments. Physical associations between these secretome proteins serve to regulate a wide range of biological activities and consequently represent important therapeutic targets. Moreover, some extracellular proteins are targeted by pathogens to allow host access or immune evasion. Despite the importance of extracellular protein-protein interactions, our knowledge in this area has remained sparse. Weak affinities and low abundance have often hindered efforts to identify these interactions using traditional methods such as biochemical purification and cDNA library expression cloning. Moreover, current large-scale protein-protein interaction mapping techniques largely under represent extracellular protein-protein interactions. This review highlights emerging biosensor and protein microarray technology, along with more traditional cell-based techniques, that are compatible with secretome-wide screens for extracellular protein-protein interaction discovery. A combination of these approaches will serve to rapidly expand our knowledge of the extracellular protein-protein interactome.  相似文献   

13.
Plant lectin recognition of glycans was evaluated by SPR imaging using a model array of N-biotinylated aminoethyl glycosides of β-d-glucose (negative control), α-d-mannose (conA-responsive), β-d-galactose (RCA120-responsive) and N-acetyl-β-d-glucosamine (WGA-responsive) printed onto neutravidin-coated gold chips. Selective recognition of the cognate ligand was observed when RCA120 was passed over the array surface. Limited or no binding was observed for the non-cognate ligands. SPR imaging of an array of 40 sialylated and unsialylated glycans established the binding preference of hSiglec7 for α2-8-linked disialic acid structures over α2-6-sialyl-LacNAcs, which in turn were recognized and bound with greater affinity than α2-3-sialyl-LacNAcs. Affinity binding data could be obtained with as little as 10–20 μg of lectin per experiment. The SPR imaging technique was also able to establish selective binding to the preferred glycan ligand when analyzing crude culture supernatant containing 10–20 μg of recombinant hSiglec7-Fc. Our results show that SPR imaging provides results that are in agreement with those obtained from fluorescence based carbohydrate arrays but with the added advantage of label-free analysis.  相似文献   

14.
Antibody microarrays could have an enormous impact on the functional analysis of cellular activity and regulation, especially at the level of protein expression and protein-protein interaction, and might become an invaluable tool in disease diagnostics. The array surface is bound to have a tremendous influence on the findings from such studies. Apart from the basic issue of how to attach antibodies optimally without affecting their function, it is also important that the cognate antigens, applied within a complex protein mixture, all bind to the arrayed antibodies irrespective of their enormous variety in structure. In this study, various factors in the production of antibody microarrays on glass support were analysed: the modification of the glass surface; kind and length of cross-linkers; composition and pH of the spotting buffer; blocking reagents; antibody concentration and storage procedures, in order to evaluate their effect on array performance. Altogether, data from more than 700 individual array experiments were taken into account. In addition to home-made slides, commercially available systems were also included in the analysis.  相似文献   

15.
16.
17.
Antibody-based microarrays are among the novel classes of rapidly evolving proteomic technologies that holds great promise in biomedicine. Miniaturized microarrays (< 1 cm2) can be printed with thousands of individual antibodies carrying the desired specificities, and with biological sample (e.g., an entire proteome) added, virtually any specifically bound analytes can be detected. While consuming only minute amounts (< microL scale) of reagents, ultra- sensitive assays (zeptomol range) can readily be performed in a highly multiplexed manner. The microarray patterns generated can then be transformed into proteomic maps, or detailed molecular fingerprints, revealing the composition of the proteome. Thus, protein expression profiling and global proteome analysis using this tool will offer new opportunities for drug target and biomarker discovery, disease diagnostics, and insights into disease biology. Adopting the antibody microarray technology platform, several biomedical applications, ranging from focused assays to proteome-scale analysis will be rapidly emerging in the coming years. This review will discuss the current status of the antibody microarray technology focusing on recent technological advances and key issues in the process of evolving the methodology into a high-performing proteomic research tool.  相似文献   

18.
19.
DNA microarrays have changed the field of biomedical sciences over the past 10 years. For several reasons, antibody and other protein microarrays have not developed at the same rate. However, protein and antibody arrays have emerged as a powerful tool to complement DNA microarrays during the past 5 years. A genome-scale protein microarray has been demonstrated for identifying protein–protein interactions as well as for rapid identification of protein binding to a particular drug. Furthermore, protein microarrays have been shown as an efficient tool in cancer profiling, detection of bacteria and toxins, identification of allergen reactivity and autoantibodies. They have also demonstrated the ability to measure the absolute concentration of small molecules. Besides their capacity for parallel diagnostics, microarrays can be more sensitive than traditional methods such as enzyme-linked immunosorbent assay, mass spectrometry or high-performance liquid chromatography-based assays. However, for protein and antibody arrays to be successfully introduced into diagnostics, the biochemistry of immunomicroarrays must be better characterized and simplified, they must be validated in a clinical setting and be amenable to automation or integrated into easy-to-use systems, such as micrototal analysis systems or point-of-care devices.  相似文献   

20.
DNA microarrays have changed the field of biomedical sciences over the past 10 years. For several reasons, antibody and other protein microarrays have not developed at the same rate. However, protein and antibody arrays have emerged as a powerful tool to complement DNA microarrays during the past 5 years. A genome-scale protein microarray has been demonstrated for identifying protein-protein interactions as well as for rapid identification of protein binding to a particular drug. Furthermore, protein microarrays have been shown as an efficient tool in cancer profiling, detection of bacteria and toxins, identification of allergen reactivity and autoantibodies. They have also demonstrated the ability to measure the absolute concentration of small molecules. Besides their capacity for parallel diagnostics, microarrays can be more sensitive than traditional methods such as enzyme-linked immunosorbent assay, mass spectrometry or high-performance liquid chromatography-based assays. However, for protein and antibody arrays to be successfully introduced into diagnostics, the biochemistry of immunomicroarrays must be better characterized and simplified, they must be validated in a clinical setting and be amenable to automation or integrated into easy-to-use systems, such as micrototal analysis systems or point-of-care devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号