首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosomal inversions are common in natural populations and are believed to be involved in many important evolutionary phenomena, including speciation, the evolution of sex chromosomes and local adaptation. While recent advances in sequencing and genotyping methods are leading to rapidly increasing amounts of genome-wide sequence data that reveal interesting patterns of genetic variation within inverted regions, efficient simulation methods to study these patterns are largely missing. In this work, we extend the sequential Markovian coalescent, an approximation to the coalescent with recombination, to include the effects of polymorphic inversions on patterns of recombination. Results show that our algorithm is fast, memory-efficient and accurate, making it feasible to simulate large inversions in large populations for the first time. The SMC algorithm enables studies of patterns of genetic variation (for example, linkage disequilibria) and tests of hypotheses (using simulation-based approaches) that were previously intractable.  相似文献   

2.
Chromosomal inversions can facilitate local adaptation in the presence of gene flow by suppressing recombination between well‐adapted native haplotypes and poorly adapted migrant haplotypes. East African mountain populations of the honeybee Apis mellifera are highly divergent from neighbouring lowland populations at two extended regions in the genome, despite high similarity in the rest of the genome, suggesting that these genomic regions harbour inversions governing local adaptation. Here, we utilize a new highly contiguous assembly of the honeybee genome to characterize these regions. Using whole‐genome sequencing data from 55 highland and lowland bees, we find that the highland haplotypes at both regions are present at high frequencies in three independent highland populations but extremely rare elsewhere. The boundaries of both divergent regions are characterized by regions of high homology with each other positioned in opposite orientations and contain highly repetitive, long inverted repeats with homology to transposable elements. These regions are likely to represent inversion breakpoints that participate in nonallelic homologous recombination. Using long‐read data, we confirm that the lowland samples are contiguous across breakpoint regions. We do not find evidence for disruption of functional sequence by these breakpoints, which suggests that the inversions are likely maintained due to their allelic content conferring local adaptation in highland environments. Finally, we identify a third divergent genomic region, which contains highly divergent segregating haplotypes that also may contain inversion variants under selection. The results add to a growing body of evidence indicating the importance of chromosomal inversions in local adaptation.  相似文献   

3.
Inversion polymorphisms are responsible for many ecologically important phenotypes and are often found under balancing selection. However, the same features that ensure their large role in local adaptation—especially reduced recombination between alternate arrangements—mean that uncovering the precise loci within inversions that control these phenotypes is unachievable using standard mapping approaches. Here, we take advantage of long‐term balancing selection on a pair of inversions in the mosquito Anopheles gambiae to map desiccation tolerance via pool‐GWAS. Two polymorphic inversions on chromosome 2 of this species (denoted 2La and 2Rb) are associated with arid and hot conditions in Africa and are maintained in spatially and temporally heterogeneous environments. After measuring thousands of wild‐caught individuals for survival under desiccation stress, we used phenotypically extreme individuals homozygous for alternative arrangements at the 2La inversion to construct pools for whole‐genome sequencing. Genomewide association mapping using these pools revealed dozens of significant SNPs within both 2La and 2Rb, many of which neighboured genes controlling ion channels or related functions. Our results point to the promise of similar approaches in systems with inversions maintained by balancing selection and provide a list of candidate genes underlying the specific phenotypes controlled by the two inversions studied here.  相似文献   

4.
Adaptation to novel environments arises either from new beneficial mutations or by utilizing pre‐existing genetic variation. When standing variation is used as the source of new adaptation, fitness effects of alleles may be altered through an environmental change. Alternatively, changes in epistatic genetic backgrounds may convert formerly neutral mutations into beneficial alleles in the new genetic background. By extending the coalescent theory to describe the genealogical histories of two interacting loci, I here investigated the hitchhiking effect of epistatic selection on the amount and pattern of sequence diversity at the linked neutral regions. Assuming a specific form of epistasis between two new mutations that are independently neutral, but together form a coadapted haplotype, I demonstrate that the footprints of epistatic selection differ markedly between the interacting loci depending on the order and relative timing of the two mutational events, even though both mutations are equally essential for the formation of an adaptive gene combination. Our results imply that even when neutrality tests could detect just a single instance of adaptive substitution, there may, in fact, be numerous other hidden mutations that are left undetected, but still play indispensable roles in the evolution of a new adaptation. We expect that the integration of the coalescent framework into the general theory of polygenic inheritance would clarify the connection between factors driving phenotypic evolution and their consequences on underlying DNA sequence changes, which should further illuminate the evolutionary foundation of coadapted systems.  相似文献   

5.
In fewer than two decades after invading the Americas, the fly Drosophila subobscura evolved latitudinal clines for chromosomal inversion frequencies and wing size that are parallel to the long‐standing ones in native Palearctic populations. By sharp contrast, wing shape clines also evolved in the New World, but the relationship with latitude was opposite to that in the Old World. Previous work has suggested that wing trait differences among individuals are partially due to the association between chromosomal inversions and particular alleles which influence the trait under consideration. Furthermore, it is well documented that a few number of effective individuals founded the New World populations, which might have modified the biometrical effect of inversions on quantitative traits. Here we evaluate the relative contribution of chromosomal inversion clines in shaping the parallel clines in wing size and contrasting clines in wing shape in native and colonizing populations of the species. Our results reveal that inversion‐size and inversion‐shape associations in native and colonizing (South America) populations are generally different, probably due to the bottleneck effect. Contingent, unpredictable evolution was suggested as an explanation for the different details involved in the otherwise parallel wing size clines between Old and New World populations of D. subobscura. We challenge this assertion and conclude that contrasting wing shape clines came out as a correlated response of inversion clines that might have been predicted considering the genetic background of colonizers.  相似文献   

6.
Chromosomal inversions facilitate local adaptation of beneficial mutations and modulate genetic polymorphism, but the extent of their effects within the genome is still insufficiently understood. The genome of Anopheles funestus, a malaria mosquito endemic to sub‐Saharan Africa, contains an impressive number of paracentric polymorphic inversions, which are unevenly distributed among chromosomes and provide an excellent framework for investigating the genomic impacts of chromosomal rearrangements. Here, we present results of a fine‐scale analysis of genetic variation within the genome of two weakly differentiated populations of Anopheles funestus inhabiting contrasting moisture conditions in Cameroon. Using population genomic analyses, we found that genetic divergence between the two populations is centred on regions of the genome corresponding to three inversions, which are characterized by high values of FST, absolute sequence divergence and fixed differences. Importantly, in contrast to the 2L chromosome arm, which is collinear, nucleotide diversity is significantly reduced along the entire length of three autosome arms bearing multiple overlapping chromosomal rearrangements. These findings support the idea that interactions between reduced recombination and natural selection within inversions contribute to sculpt nucleotide polymorphism across chromosomes in An. funestus.  相似文献   

7.
Atlantic cod is composed of multiple migratory and stationary populations widely distributed in the North Atlantic Ocean. The Northeast Arctic cod (NEAC) population in the Barents Sea undertakes annual spawning migrations to the northern Norwegian coast. Although spawning occurs sympatrically with the stationary Norwegian coastal cod (NCC), phenotypic and genetic differences between NEAC and NCC are maintained. In this study, we resolve the enigma by revealing the mechanisms underlying these differences. Extended linkage disequilibrium (LD) and population divergence were demonstrated in a 17.4‐Mb region on linkage group 1 (LG1) based on genotypes of 494 SNPs from 192 parents of farmed families of NEAC, NCC or NEACxNCC crosses. Linkage analyses revealed two adjacent inversions within this region that repress meiotic recombination in NEACxNCC crosses. We identified a NEAC‐specific haplotype consisting of 186 SNPs that was fixed in NEAC sampled from the Barents Sea, but segregating under Hardy–Weinberg equilibrium in eight NCC stocks. Comparative genomic analyses determine the NEAC configuration of the inversions to be the derived state and date it to ~1.6–2.0 Mya. The haplotype block harbours 763 genes, including candidates regulating swim bladder pressure, haem synthesis and skeletal muscle organization conferring adaptation to long‐distance migrations and vertical movements down to large depths. Our results suggest that the migratory ecotype experiences strong directional selection for the two adjacent inversions on LG1. Despite interbreeding between NEAC and NCC, the inversions are maintaining genetic differentiation, and we hypothesize the co‐occurrence of multiple adaptive alleles forming a ‘supergene’ in the NEAC population.  相似文献   

8.
Chromosomal inversions are frequently implicated in isolating species. Models have shown how inversions can evolve in the context of postmating isolation. Inversions are also frequently associated with mating preferences, a topic that has not been studied theoretically. Here, we show how inversions can spread by capturing a mating preference locus and one or more loci involved with epistatic incompatibilities. Inversions can be established under broad conditions ranging from near panmixis to nearly complete speciation. These results provide a hypothesis to explain the growing number of examples of inversions associated with premating isolating mechanisms.  相似文献   

9.
Jeremy J. Berg  Graham Coop 《Genetics》2015,201(2):707-725
The use of genetic polymorphism data to understand the dynamics of adaptation and identify the loci that are involved has become a major pursuit of modern evolutionary genetics. In addition to the classical “hard sweep” hitchhiking model, recent research has drawn attention to the fact that the dynamics of adaptation can play out in a variety of different ways and that the specific signatures left behind in population genetic data may depend somewhat strongly on these dynamics. One particular model for which a large number of empirical examples are already known is that in which a single derived mutation arises and drifts to some low frequency before an environmental change causes the allele to become beneficial and sweeps to fixation. Here, we pursue an analytical investigation of this model, bolstered and extended via simulation study. We use coalescent theory to develop an analytical approximation for the effect of a sweep from standing variation on the genealogy at the locus of the selected allele and sites tightly linked to it. We show that the distribution of haplotypes that the selected allele is present on at the time of the environmental change can be approximated by considering recombinant haplotypes as alleles in the infinite-alleles model. We show that this approximation can be leveraged to make accurate predictions regarding patterns of genetic polymorphism following such a sweep. We then use simulations to highlight which sources of haplotypic information are likely to be most useful in distinguishing this model from neutrality, as well as from other sweep models, such as the classic hard sweep and multiple-mutation soft sweeps. We find that in general, adaptation from a unique standing variant will likely be difficult to detect on the basis of genetic polymorphism data from a single population time point alone, and when it can be detected, it will be difficult to distinguish from other varieties of selective sweeps. Samples from multiple populations and/or time points have the potential to ease this difficulty.  相似文献   

10.
Chromosome inversions have fascinated the scientific community, mainly because of their role in the rapid adaption of different taxa to changing environments. However, the ecological traits linked to chromosome inversions have been poorly studied. Here, we investigated the roles played by 23 chromosome inversions in the adaptation of the four major African malaria mosquitoes to local environments in Africa. We studied their distribution patterns by using spatially explicit modeling and characterized the ecogeographical determinants of each inversion range. We then performed hierarchical clustering and constrained ordination analyses to assess the spatial and ecological similarities among inversions. Our results show that most inversions are environmentally structured, suggesting that they are actively involved in processes of local adaptation. Some inversions exhibited similar geographical patterns and ecological requirements among the four mosquito species, providing evidence for parallel evolution. Conversely, common inversion polymorphisms between sibling species displayed divergent ecological patterns, suggesting that they might have a different adaptive role in each species. These results are in agreement with the finding that chromosomal inversions play a role in Anopheles ecotypic adaptation. This study establishes a strong ecological basis for future genome‐based analyses to elucidate the genetic mechanisms of local adaptation in these four mosquitoes.  相似文献   

11.
The evolution of complex traits in heterogeneous environments may shape the order of genes within chromosomes. Drosophila pseudoobscura has a rich gene arrangement polymorphism that allows one to test evolutionary genetic hypotheses about how chromosomal inversions are established in populations. D. pseudoobscura has >30 gene arrangements on a single chromosome that were generated through a series of overlapping inversion mutations with >10 inversions with appreciable frequencies and wide geographic distributions. This study analyses the genomic sequences of 54 strains of Drosophila pseudoobscura that carry one of six different chromosomal arrangements to test whether (i) genetic drift, (ii) hitchhiking with an adaptive allele, (iii) direct effects of inversions to create gene disruptions caused by breakpoints, or (iv) indirect effects of inversions in limiting the formation of recombinant gametes are responsible for the establishment of new gene arrangements. We found that the inversion events do not disrupt the structure of protein coding genes at the breakpoints. Population genetic analyses of 2,669 protein coding genes identified 277 outlier loci harbouring elevated frequencies of arrangement‐specific derived alleles. Significant linkage disequilibrium occurs among distant loci interspersed between regions with low levels of association indicating that distant allelic combinations are held together despite shared polymorphism among arrangements. Outlier genes showing evidence of genetic differentiation between arrangements are enriched for sensory perception and detoxification genes. The data presented here support the indirect effect of inversion hypothesis where chromosomal inversions are favoured because they maintain linked associations among multilocus allelic combinations among different arrangements.  相似文献   

12.
Both models and case studies suggest that chromosomal inversions can facilitate adaptation and speciation in the presence of gene flow by suppressing recombination between locally adapted alleles. Until recently, however, it has been laborious and time‐consuming to identify and genotype inversions in natural populations. Here we apply RAD sequencing data and newly developed population genomic approaches to identify putative inversions that differentiate a sand dune ecotype of the prairie sunflower (Helianthus petiolaris) from populations found on the adjacent sand sheet. We detected seven large genomic regions that exhibit a different population structure than the rest of the genome and that vary in frequency between dune and nondune populations. These regions also show high linkage disequilibrium and high heterozygosity between, but not within, arrangements, consistent with the behaviour of large inversions, an inference subsequently validated in part by comparative genetic mapping. Genome–environment association analyses show that key environmental variables, including vegetation cover and soil nitrogen, are significantly associated with inversions. The inversions colocate with previously described “islands of differentiation,” and appear to play an important role in adaptive divergence and incipient speciation within H. petiolaris.  相似文献   

13.
Gene flow between ecologically divergent populations can prevent local adaptation, resulting in lower mean fitness and directional selection within a population. Such maladaptation should tend to be stronger in populations receiving a relatively larger fraction of immigrants. We test this expectation by comparing the strength of selection in a pair of three-spine stickleback populations in adjoining but unequal-sized lake basins in British Columbia. A larger deeper basin is connected to a smaller shallower basin by a short channel that allows extensive migration between populations. The two basins contain distinct habitats and prey communities, and stickleback stomach contents and isotope ratios differ accordingly. Trophic morphology is correlated with diet, so we would expect these ecological differences to be accompanied by morphological divergence. However, high gene flow appears to constrain adaptive divergence: microsatellites indicate that the two basins represent a single panmictic gene pool, and phenotypic divergence is very subtle. As a result, fish in the smaller lake basin are subject to persistent directional selection towards a more benthic phenotype, whereas the larger population exhibits no significant selection. The results illustrate the potentially asymmetrical effect of migration-selection balance, and its effect on fitness within populations.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 273–287.  相似文献   

14.
Chromosomal inversions are the most common type of genome rearrangement in the genus Drosophila. Although the potential of transposable elements (TEs) for generating inversions has been repeatedly demonstrated in the laboratory, little is known on their role in the generation of natural inversions, which are those effectively contributing to the adaptation and/or evolution of species. We have cloned and sequenced the two breakpoints of the polymorphic inversion 2q7 of D. buzzatii. The sequence analysis of the breakpoint regions revealed the presence in the inverted chromosomes of large insertions, formed by complex assemblies of transposons, that are absent from the chromosomes without the inversion. Among the transposons inserted, the Foldback-like element Galileo, that was previously found responsible of the generation of the widespread inversion 2j of D. buzzatii, is present at both 2q7 breakpoints and is the most likely inducer of the inversion. A detailed study of the nucleotide and structural variation in the breakpoint regions of six chromosomal lines with the 2q7 inversion detected no nucleotide differences between them, which suggests a monophyletic and recent origin. In contrast, a remarkable degree of structural variation was observed in the same six chromosomal lines. It thus appears that the two breakpoints of the inverted chromosomes have become genetically unstable hotspots, as was previously found for the 2j inversion breakpoints. The possibility that this instability is caused by structural properties of Foldback elements is discussed.  相似文献   

15.
The geography of adaptive genetic variation is crucial to species conservation yet poorly understood in marine systems. We analyse the spatial scale of genetic variation in traits that broadly display adaptation throughout the range of a highly dispersive marine species. We conducted common garden experiments on the Atlantic silverside, Menidia menidia, from 39 locations along its 3000 km range thereby mapping genetic variation for growth rate, vertebral number and sex determination. Each trait displayed unique clinal patterns, with significant differences (adaptive or not) occurring over very small distances. Breakpoints in the cline differed among traits, corresponding only partially with presumed eco-geographical boundaries. Because clinal patterns are unique to each selected character, neutral genes or those coding for a single character cannot serve as proxies for the genetic structure as a whole. Conservation plans designed to protect essential genetic subunits of a species will need to account for such complex spatial structures.  相似文献   

16.
Chromosomal inversions are ubiquitous in nature and of great significance for understanding adaptation and speciation. Inversions were the first markers used to investigate the genetic structure of natural populations, leading to the concept of coadapted gene complexes and theories concerning founder effects and genetic drift in small populations. However, we still lack elements of a general theory accounting for the origins and distribution of inversions in nature. Here, we use computer simulations to show that a "mixed geographic mode" of evolution involving allopatric separation of populations followed by secondary contact and gene flow generates chromosomal divergence by natural selection under wider conditions than previous hypotheses. This occurs because inversions arising in allopatry contain a full complement of locally adapted genes. Once gene flow ensues, reduced recombination within inversions keeps these favorable genotypic combinations intact, resulting in inverted genomic regions being favored over collinear regions. This process allows inversions to establish to high frequencies. Our model can account for several classic patterns in the geographic distribution of inversions and highlights how selection on standing genetic variation allows rapid chromosomal evolution without the waiting time for new mutations. As inversion differences often separate closely related taxa, mixed modes of divergence could be common.  相似文献   

17.
Chromosomal inversions shape recombination landscapes, and species differing by inversions may exhibit reduced gene flow in these regions of the genome. Though single crossovers within inversions are not usually recovered from inversion heterozygotes, the recombination barrier imposed by inversions is nuanced by noncrossover gene conversion. Here, we provide a genomewide empirical analysis of gene conversion rates both within species and in species hybrids. We estimate that gene conversion occurs at a rate of 1 × 10–5 to 2.5 × 10–5 converted sites per bp per generation in experimental crosses within Drosophila pseudoobscura and between D. pseudoobscura and its naturally hybridizing sister species D. persimilis. This analysis is the first direct empirical assessment of gene conversion rates within inversions of a species hybrid. Our data show that gene conversion rates in interspecies hybrids are at least as high as within‐species estimates of gene conversion rates, and gene conversion occurs regularly within and around inverted regions of species hybrids, even near inversion breakpoints. We also found that several gene conversion events appeared to be mitotic rather than meiotic in origin. Finally, we observed that gene conversion rates are higher in regions of lower local sequence divergence, yet our observed gene conversion rates in more divergent inverted regions were at least as high as in less divergent collinear regions. Given our observed high rates of gene conversion despite the sequence differentiation between species, especially in inverted regions, gene conversion has the potential to reduce the efficacy of inversions as barriers to recombination over evolutionary time.  相似文献   

18.
Chromosomal inversions, structural mutations that reverse a segment of a chromosome, cause suppression of recombination in the heterozygous state. Several studies have shown that inversion polymorphisms can form clines or fluctuate predictably in frequency over seasonal time spans. These observations prompted the hypothesis that chromosomal rearrangements might be subject to spatially and/or temporally varying selection. Here, we review what has been learned about the adaptive significance of inversion polymorphisms in the vinegar fly Drosophila melanogaster, the species in which they were first discovered by Sturtevant in 1917. A large body of work provides compelling evidence that several inversions in this system are adaptive; however, the precise selective mechanisms that maintain them polymorphic in natural populations remain poorly understood. Recent advances in population genomics, modelling and functional genetics promise to greatly improve our understanding of this long‐standing and fundamental problem in the near future.  相似文献   

19.
Selective sweeps reduce neutral genetic diversity. In sexual populations, this “hitchhiking” effect is thought to be limited to the local genomic region of the sweeping allele. While this is true in panmictic populations, we find that in spatially extended populations the combined effects of many unlinked sweeps can affect patterns of ancestry (and therefore neutral genetic diversity) across the whole genome. Even low rates of sweeps can be enough to skew the spatial locations of ancestors such that neutral mutations that occur in an individual living outside a small region in the center of the range have virtually no chance of fixing in the population. The fact that nearly all ancestry rapidly traces back to a small spatial region also means that relatedness between individuals falls off very slowly as a function of the spatial distance between them.  相似文献   

20.
《Fly》2013,7(2):71-74
Chromosomal inversions can originate from breakage and repair by non-homologous end-joining. Nevertheless, they can also originate from ectopic recombination between transposable elements located on the same chromosome inserted in opposite orientations. Here, we show that a MITE element (DAIBAM), previously involved in the origin of one Drosophila americana polymorphic inversion, is also involved in the origin of one fixed inversion between D. virilis and D. americana and another D. americana polymorphic inversion. Therefore, DAIBAM is responsible for at least 20% of the chromosomal rearrangements that are observed within and between species of the virilis phylad (D. virilis, D. lummei, D. novamexicana and D. americana), having thus played a significant role in the chromosomal evolution of this group of closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号