首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human brain function is mediated by biochemical processes, many of which can be visualized and quantified by positron emission tomography (PET). PET brain imaging of monoamine oxidase A (MAOA)—an enzyme metabolizing neurotransmitters—revealed that MAOA levels vary widely between healthy men and this variability was not explained by the common MAOA genotype (VNTR genotype), suggesting that environmental factors, through epigenetic modifications, may mediate it. Here, we analyzed MAOA methylation in white blood cells (by bisulphite conversion of genomic DNA and subsequent sequencing of cloned DNA products) and measured brain MAOA levels (using PET and [11C]clorgyline, a radiotracer with specificity for MAOA) in 34 healthy non-smoking male volunteers. We found significant interindividual differences in methylation status and methylation patterns of the core MAOA promoter. The VNTR genotype did not influence the methylation status of the gene or brain MAOA activity. In contrast, we found a robust association of the regional and CpG site-specific methylation of the core MAOA promoter with brain MAOA levels. These results suggest that the methylation status of the MAOA promoter (detected in white blood cells) can reliably predict the brain endophenotype. Therefore, the status of MAOA methylation observed in healthy males merits consideration as a variable contributing to interindividual differences in behavior.  相似文献   

2.
In fish species with temperature-dependent sex determination (TSD) or genotypic sex determination plus temperature effects (GSD + TE), temperature can either affect sex differentiation or determine the sex. However, it is unknown if epigenetic control of cyp19a1a expression is critical for high temperature induced masculinization in the freshwater fish Nile tilapia. We analyzed the cyp19a1a DNA methylation levels in three age groups and found that they were lower in females than in males. At 8 months of age, males had DNA methylation levels of the cyp19a1a promoter that were almost twice as high as those of females. Exposure to high temperatures increased the cyp19a1a promoter DNA methylation levels from 30.87 ± 4.56% to 48.34 ± 0.92% (P = 0.035) in females and from 50.33 ± 7.38% to 51.66 ± 4.75% in males (P = 0.867). The increases in the cyp19a1a promoter DNA methylation levels were associated with the mRNA expression levels and might play a role in promoting gonadal differentiation in high temperature induced group females toward the male pathway. Western blot analysis revealed that the cyp19a1a protein expression levels in females significantly declined after high temperature treatment; only a slight decline was recorded in male fish. These results reveal that epigenetic control of cyp19a1a mRNA and protein expression is related to the environmental temperature and sex ratios in fish with TSD or GSD + TE.  相似文献   

3.
The μ-opioid receptor (OPRM1) plays an important role in opiate addiction. The OPRM1 gene promoter showed hypermethylation in lymphocytes of opiate addicts as well as opioid medications users, while the methylation status displayed ethnic diversity. The purpose of the study was to investigate the methylation pattern of OPRM1 promoter in the Han Chinese population. We analyzed 22 CpG sites located in OPRM1 promoter in 186 former opiate addicts (94 males and 92 females) and 184 healthy controls (102 males and 82 females). The +?126 CpG site was significantly hypermethylated in the former heroin addicts compared with controls (13.67% versus 8.39%, \(P = 3.78 \times 10^{ - 9}\), corrected for 36 tests). Six CpG sites were significantly associated with opioid exposure, including the most significant +126 CpG site (opiate addicts 13.57%, control 8.39%, \(P = 9.19 \times 10^{ - 12}\), corrected for 36 tests), while the +23 GpG site was the only hypomethylated one in former opiate addicts compared with controls (P?=?0.0023 after Bonferroni correction). Our results supported that opioid exposure was associated with methylation status of OPRM1 promoter and showed ethnic dependence.  相似文献   

4.
5.
Dysfunction of prefrontal cortex in schizophrenia includes changes in GABAergic mRNAs, including decreased expression of GAD1, encoding the 67 kDa glutamate decarboxylase (GAD67) GABA synthesis enzyme. The underlying molecular mechanisms remain unclear. Alterations in DNA methylation as an epigenetic regulator of gene expression are thought to play a role but this hypothesis is difficult to test because no techniques are available to extract DNA from GAD1 expressing neurons efficiently from human postmortem brain. Here, we present an alternative approach that is based on immunoprecipitation of mononucleosomes with anti-methyl-histone antibodies differentiating between sites of potential gene expression as opposed to repressive or silenced chromatin. Methylation patterns of CpG dinucleotides at the GAD1 proximal promoter and intron 2 were determined for each of the two chromatin fractions separately, using a case-control design for 14 schizophrenia subjects affected by a decrease in prefrontal GAD1 mRNA levels. In controls, the methylation frequencies at CpG dinucleotides, while overall higher in repressive as compared to open chromatin, did not exceed 5% at the proximal GAD1 promoter and 30% within intron 2. Subjects with schizophrenia showed a significant, on average 8-fold deficit in repressive chromatin-associated DNA methylation at the promoter. These results suggest that chromatin remodeling mechanisms are involved in dysregulated GABAergic gene expression in schizophrenia.  相似文献   

6.
We have previously reported that expression of the G6PD locus is correlated with the methylation status of two islands of CpG dinucleotides which are 3' to the locus and in the 5' region of two adjacent genes of unknown function, P3 and GdX. We have now examined the methylation of a third CpG island in the promoter region of the G6PD gene itself in DNA from males, females and reactivants that express G6PD on the inactive X chromosome. Our results show that expression of the G6PD gene is associated with concordant demethylation of all three CpG islands in this 100-kb region of DNA.  相似文献   

7.
8.
Concentrations of cell-free DNA (cfDNA) circulating in blood and its epigenetic variation, such as DNA methylation, may provide useful diagnostic or prognostic information. Long interspersed nuclear element-1 (LINE-1) constitutes approximately 20% of the human genome and its 5’UTR region is CpG rich. Due to its wide distribution, the methylation level of the 5’UTR of LINE-1 can serve as a surrogate marker of global genomic DNA methylation. The aim of the current study was to investigate whether the methylation status of LINE-1 elements in serum cell-free DNA differs between relapsing remitting multiple sclerosis (RRMS) patients and healthy control subjects (CTR). Serum DNA samples of 6 patients and 6 controls were subjected to bisulfite sequencing. The results showed that the methylation level varies among distinct CpG sites in the 5’UTR of LINE-1 repeats and revealed differences in the methylation state of specific sites in this element between patients and controls. The latter differences were largely due to CpG sites in the L1PA2 subfamily, which were more frequently methylated in the RRMS patients than in the CTR group, whereas such differences were not observed in the L1HS subfamily. These data were verified by quantitative PCR using material from 18 patients and 18 control subjects. The results confirmed that the methylation level of a subset of the CpG sites within the LINE-1 promoter is elevated in DNA from RRMS patients in comparison with CTR. The present data suggest that the methylation status of CpG sites of LINE repeats could be a basis for development of diagnostic or prognostic tests.  相似文献   

9.
10.
11.

Background

Differential expression of perforin (PRF1), a gene with a pivotal role in immune surveillance, can be attributed to differential methylation of CpG sites in its promoter region. A reproducible method for quantitative and CpG site-specific determination of perforin methylation is required for molecular epidemiologic studies of chronic diseases with immune dysfunction.

Findings

We developed a pyrosequencing based method to quantify site-specific methylation levels in 32 out of 34 CpG sites in the PRF1 promoter, and also compared methylation pattern in DNAs extracted from whole blood drawn into PAXgene blood DNA tubes (whole blood DNA) or DNA extracted from peripheral blood mononuclear cells (PBMC DNA) from the same normal subjects. Sodium bisulfite treatment of DNA and touchdown PCR were highly reproducible (coefficient of variation 1.63 to 2.18%) to preserve methylation information. Application of optimized pyrosequencing protocol to whole blood DNA revealed that methylation level varied along the promoter in normal subjects with extremely high methylation (mean 86%; range 82–92%) in the distal enhancer region (CpG sites 1–10), a variable methylation (range 49%–83%) in the methylation sensitive region (CpG sites 11–17), and a progressively declining methylation level (range 12%–80%) in the proximal promoter region (CpG sites 18–32) of PRF1. This pattern of methylation remained the same between whole blood and PBMC DNAs, but the absolute values of methylation in 30 out of 32 CpG sites differed significantly, with higher values for all CpG sites in the whole blood DNA.

Conclusion

This reproducible, site-specific and quantitative method for methylation determination of PRF1 based on pyrosequencing without cloning is well suited for large-scale molecular epidemiologic studies of diseases with immune dysfunction. PBMC DNA may be better suited than whole blood DNA for examining methylation levels in genes associated with immune function.  相似文献   

12.
Calcium flux into and out of the sarco(endo)plasmic reticulum is vitally important to cardiac function because the cycle of calcium entry and exit controls contraction and relaxation. Putative estrogen and androgen consensus binding sites near to a CpG island are present in the cardiac calsequestrin 2 (CSQ2) promoter. Cardiomyocytes express sex hormone receptors and respond to sex hormones. We hypothesized that sex hormones control CSQ2 expression in cardiomyocytes and so affect cardiac structure/function. Echocardiographic analysis of male and female C57bl6n mice identified thinner walled and lighter hearts in females and significant concentric remodeling after long-term gonadectomy. CSQ2 and sodium-calcium exchanger-1 (NCX1) expression was significantly increased in female compared with male hearts and decreased postovariectomy. NCX1, but not CSQ2, expression was increased postcastration. CSQ2 expression was reduced when H9c2 cells were cultured in hormone-deficient media; increased when estrogen receptor-α (ERα), estrogen receptor-β (ERβ), or androgen agonists were added; and increased in hearts from ERβ-deficient mice. CSQ2 expression was reduced in mice fed a diet low in the methyl donor folic acid and in cells treated with 5-azadeoxycytidine suggesting an involvement of DNA methylation. DNA methylation in CpG in the CSQ2 CpG island was significantly different in males and females and was additionally changed postgonadectomy. Expression of DNA methyltransferases 1, 3a, and 3b was unchanged. These studies strongly link sex hormone-directed changes in CSQ2 expression to DNA methylation with changed expression correlated with altered left ventricular structure and function.  相似文献   

13.
14.
15.
Regulatory sequences can influence the expression of flanking genes over long distances, and X chromosome inactivation is a classic example of cis-acting epigenetic gene regulation. Knock-ins directed to the Mus musculus Hprt locus offer a unique opportunity to analyze the spread of silencing into different human DNA sequences in the identical genomic environment. X chromosome inactivation of four knock-in constructs, including bacterial artificial chromosome (BAC) integrations of over 195 kb, was demonstrated by both the lack of expression from the inactive X chromosome in females with nonrandom X chromosome inactivation and promoter DNA methylation of the human transgene in females. We further utilized promoter DNA methylation to assess the inactivation status of 74 human reporter constructs comprising >1.5 Mb of DNA. Of the 47 genes examined, only the PHB gene showed female DNA hypomethylation approaching the level seen in males, and escape from X chromosome inactivation was verified by demonstration of expression from the inactive X chromosome. Integration of PHB resulted in lower DNA methylation of the flanking HPRT promoter in females, suggesting the action of a dominant cis-acting escape element. Female-specific DNA hypermethylation of CpG islands not associated with promoters implies a widespread imposition of DNA methylation during X chromosome inactivation; yet transgenes demonstrated differential capacities to accumulate DNA methylation when integrated into the identical location on the inactive X chromosome, suggesting additional cis-acting sequence effects. As only one of the human transgenes analyzed escaped X chromosome inactivation, we conclude that elements permitting ongoing expression from the inactive X are rare in the human genome.  相似文献   

16.
17.
18.
Previous studies demonstrated that maternal cocaine administration caused a significant decrease in protein kinase C epsilon (PRKCE) abundance in the left ventricle and an increase in susceptibility of the heart to ischemic injury in adult male offspring. The present study tested the hypothesis that epigenetic modification has a key role in cocaine-mediated programming of cardiac Prkce gene repression. Pregnant Sprague-Dawley rats were administered saline or cocaine (30 mg/kg/day i.p.) from Days 15 to 21 of gestational age, and hearts of 3-mo-old adult offspring were studied. Cocaine exposure significantly decreased Prkce mRNA levels in the left ventricle of male but not female offspring. CpG dinucleotides identified in Bhlhb2, Pparg, E2f, and Egr1 binding sites at the Prkce gene promoter were densely methylated in males and females and were unaffected by cocaine exposure. In contrast, methylation of CpGs in the two Sp1 binding sites (-346 and -268) was low and was significantly increased by cocaine exposure in male offspring. In females, methylation of the Sp1 binding site at -268 but not -346 was increased. Reporter gene assays showed that both Sp1 binding sites had a strong stimulatory role in Prkce gene activity. Methylation of the Sp1 binding sites significantly decreased SP1 binding to the Prkce promoter. Cocaine exposure did not affect nuclear SP1 protein levels but decreased the SP1 binding affinity to its binding site at -268. The results demonstrate an epigenetic mechanism of DNA methylation in programming of cardiac Prkce gene repression, linking fetal cocaine exposure and pathophysiological consequences in the heart of adult male offspring in a gender-dependent manner.  相似文献   

19.
Tensin3 is a cytoskeletal regulatory protein that inhibits cell motility. Downregulation of the gene encoding Tensin3 (TNS3) in human renal cell carcinoma (RCC) may contribute to cancer cell metastatic behavior. We speculated that epigenetic mechanisms, e.g., gene promoter hypermethylation, might account for TNS3 downregulation. In this study, we identified and validated a TNS3 gene promoter containing a CpG island, and quantified the methylation level within this region in RCC. Using a luciferase reporter assay we demonstrated a functional minimal promoter activity for a 500-bp sequence within the TNS3 CpG island. Pyrosequencing enabled quantitative determination of DNA methylation of each CpG dinucleotide (a total of 43) in the TNS3 gene promoter. Across the entire analyzed CpG stretch, RCC DNA showed a higher methylation level than both non-tumor kidney DNA and normal control DNA. Out of all the CpGs analyzed, two CpG dinucleotides, specifically position 2 and 8, showed the most pronounced increases in methylation levels in tumor samples. Furthermore, CpG-specific higher methylation levels were correlated with lower TNS3 gene expression levels in RCC samples. In addition, pharmacological demethylation treatment of cultured kidney cells caused a 3-fold upregulation of Tensin3 expression. In conclusion, these results reveal a differential methylation pattern in the TNS3 promoter occurring in human RCC, suggesting an epigenetic mechanism for aberrant Tensin downregulation in human kidney cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号