首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Despite the existence of certain differences between yeast and higher eukaryotic cells a considerable part of our knowledge on chromatin structure and function has been obtained by experimenting on Saccharomyces cerevisiae. One of the peculiarities of S. cerevisiae cells is the unusual and less abundant linker histone, Hho1p. Sparse is the information about Hho1p involvement in yeast higher-order chromatin organization. In an attempt to search for possible effects of Hho1p on the global organization of chromatin, we have applied Chromatin Comet Assay (ChCA) on HHO1 knock-out yeast cells. The results showed that the mutant cells exhibited highly distorted higher-order chromatin organization. Characteristically, linker histone depleted chromatin generally exhibited longer chromatin loops than the wild-type. According to the Atomic force microscopy data the wild-type chromatin appeared well organized in structures resembling quite a lot the “30-nm” fiber in contrast to HHO1 knock-out yeast.  相似文献   

2.
3.
Biochemical studies to date have not been able to identify the linker histone H1 protein in the budding yeast Saccharomyces cerevisiae. Database homology searching against the complete yeast genome has identified a gene, HHO1, (or YPL127C, formerly LPI17) which encodes a protein that has two regions that show similarity to the pea histone H1 globular domain. To determine whether Hho1p can assume the shape of an H1 protein, homology model building experiments were performed using the structure of chicken histone H5 globular domain as the basis for comparison. A statistically significant match between each of the two globular domains of Hho1p and the chicken histone H5 structure was obtained, and probability values indicate that there is a less than 1 in 100 chance that such a match would be the result of a random event. These findings support the proposal that Hho1p acts as an "H1 dimer" and could be responsible for the decreased linker DNA length observed between nucleosomal core particles.  相似文献   

4.
5.
The basic unit of chromatin in eukaryotes is the nucleosome, comprising 146 bp of DNA wound around two copies of each of four core histones. Chromatin is further condensed by association with linker histones. Saccharomyces cerevisiae Hho1p has sequence homology to other known linker histones and interacts with nucleosomes in vitro. However, disruption of HHO1 results in no significant changes in the phenotypes examined thus far. Here, we show that Hho1p is inhibitory to DNA repair by homologous recombination (HR). We find Hho1p is abundant and associated with the genome, consistent with a global role in DNA repair. Furthermore, we establish that Hho1p is required for a full life span and propose that this is mechanistically linked to its role in HR. Finally, we show that Hho1p is inhibitory to the recombination-dependent mechanism of telomere maintenance. The role of linker histones in genome stability, aging, and tumorigenesis is discussed.  相似文献   

6.
7.
8.
9.
Schäfer G  Smith EM  Patterton HG 《Biochemistry》2005,44(50):16766-16775
Saccharomyces cerevisiae encodes a single linker histone, Hho1p, with two globular domains. This raised the possibility that Hho1p could bind to two nucleosome cores simultaneously. To evaluate this idea, we studied the ability of a four-way junction, immobilized on the surface of a magnetic bead, to pull down a radiolabeled four-way junction in the presence of different Hho1 proteins. Four-way junctions are known to bind to H1, presumably due to structure similarities to the DNA at the nucleosomal entry/exit point. We found a significant increase in the ability of full-length Hho1p to pull down radiolabeled four-way junction DNA under ionic conditions where both globular domains could bind. The binding was structure specific, since the use of double-stranded DNA, or a mutant Hho1p in which the second DNA binding site of globular domain 1 was abolished, resulted in a significant decrease in bridged binding. Additionally, bridged binding required a covalent attachment between the two globular domains, since factor Xa protease treatment of the complex formed by a modified Hho1p that contained a factor Xa cleavage site between the two globular domains resulted in a significant release of radiolabeled four-way junction. These findings demonstrated that the two globular domains independently associated with two different four-way junction molecules in a manner that required amino acid residues implicated in structure-specific binding in the nucleosome. We discuss the implication of these findings on the chromatin structure of yeast and propose a model where a single Hho1 protein binds to two serially adjacent nucleosomes.  相似文献   

10.
The putative linker histone in Saccharomyces cerevisiae, Hho1p, has two regions of sequence (GI and GII) that are homologous to the single globular domains of linker histones H1 and H5 in higher eukaryotes. However, the two Hho1p "domains" differ with respect to the conservation of basic residues corresponding to the two putative DNA-binding sites (sites I and II) on opposite faces of the H5 globular domain. We find that GI can protect chromatosome-length DNA, like the globular domains of H1 and H5 (GH1 and GH5), but GII does not protect. However, GII, like GH1 and GH5, binds preferentially (and with higher affinity than GI) to four-way DNA junctions in the presence of excess linear DNA competitor, and binds more tightly than GI to linker-histone-depleted chromatin. Surprisingly, in 10 mM sodium phosphate (pH 7.0), GII is largely unfolded, whereas GI, like GH1 and GH5, is structured, with a high alpha-helical content. However, in the presence of high concentrations of large tetrahedral anions (phosphate, sulphate, perchlorate) GII is also folded; the anions presumably mimic DNA in screening the positive charge. This raises the possibility that chromatin-bound Hho1p may be bifunctional, with two folded nucleosome-binding domains.  相似文献   

11.
Until recently, it was believed that the budding yeast Saccharomyces cerevisiae has no histone H1 gene. However, a search of the yeast genome database revealed a possible H1 homologue of 258 amino acids, termed yeast histone H1 (HHO1). The protein shows 36% identity to the human H1 core domain over a stretch of 93 amino acids. Unlike other H1 proteins, Hho1p has a second possible core domain which shows 43% identity to the first core domain. Since vertebrate H1 histone had been implied in gene repression as well as gene activation at a distance, we tested the effect of deleting the yeast H1-like gene on remote activation of a modified GAL1 promoter, which contains a synthetic GAL4 binding site close to the TATA box, and the natural UASG, consisting of four GAL4 binding sites. Different spacing up to 1.8 kb between the proximal binding site and the distal UASG enhancer revealed no differences in gene activation between wild-type and knockout strains. Overexpression of a heterologous histone H1 from sea urchin showed an overall inhibition of gene activation by the GAL1 promoter, whereas overexpression of the yeast histone H1 had no effect. Also, the expression of A1, ALPHA2 or SUC2 genes, all of which are known to be responsive to an altered chromatin structure, was unchanged in HHO1 knockout or HHO1-overexpressing strains when compared to wild-type cells. We also considered the possibility that HHO1 was involved in forming the heterochromatin at telomeres. On testing for telomeric silencing of a URA reporter gene introduced 1.3 kb away from the chromosomal end, we again observed no differences between wild-type and knockout strains. Thus, the yeast histone H1-like gene appears to have no role in gene activation at a distance or in silencing under the conditions tested. It remains to be seen whether the yeast H1 histone is a gene-specific regulator rather than a general chromatin-associated protein. Received: 16 April 1997 / Accepted: 4 July 1997  相似文献   

12.
Chromatin is composed of genomic DNA and histones, forming a hierarchical architecture in the nucleus. The chromatin hierarchy is common among eukaryotes despite different intrinsic properties of the genome. To investigate an effect of the differences in genome organization, chromatin unfolding processes were comparatively analyzed using Schizosaccaromyces pombe, Saccharomyces cerevisiae, and chicken erythrocyte. NaCl titration showed dynamic changes of the chromatin. 400-1000 mM NaCl facilitated beads with approximately 115 nm in diameter in S. pombe chromatin. A similar transition was also observed in S. cerevisiae chromatin. This process did not involve core histone dissociation from the chromatin, and the persistence length after the transition was approximately 26 nm for S. pombe and approximately 28 nm for S. cerevisiae, indicating a salt-induced unfolding to "beads-on-a-string" fibers. Reduced salt concentration recovered the original structure, suggesting that electrostatic interaction would regulate this discrete folding-unfolding process. On the other hand, the linker histone was extracted from chicken chromatin at 400 mM NaCl, and AFM observed the "beads-on-a-string" fibers around a nucleus. Unlike yeast chromatin, therefore, this unfolding was irreversible because of linker histone dissociation. These results indicate that the chromatin unfolding and refolding depend on the presence and absence of the linker histone, and the length of the linker DNA.  相似文献   

13.
The Saccharomyces cerevisiae homologue of the linker histone H1, Hho1p, has two domains that are similar in sequence to the globular domain of H1 (and variants such as H5). It is an open question whether both domains are functional and whether they play similar structural roles. Preliminary structural studies showed that the two isolated domains, GI and GII, differ significantly in stability. In 10 mM sodium phosphate (pH 7), the GI domain, like the globular domains of H1 and H5, GH1 and GH5, was stably folded, whereas GII was largely unstructured. However, at high concentrations of large tetrahedral anions (phosphate, sulphate, perchlorate), which might mimic the charge-screening effects of DNA phosphate groups, GII was folded. In view of the potential significance of these observations in relation to the role of Hho1p, we have now determined the structures of its GI and GII domains by NMR spectroscopy under conditions in which GII (like GI) is folded. The backbone r.m.s.d. over the ordered residues is 0.43 A for GI and 0.97 A for GII. Both structures show the "winged-helix" fold typical of GH1 and GH5 and are very similar to each other, with an r.m.s.d. over the structured regions of 1.3 A, although there are distinct differences. The potential for GII to adopt a structure similar to that of GI when Hho1p is bound to chromatin in vivo suggests that both globular domains might be functional. Whether Hho1p performs a structural role by bridging two nucleosomes remains to be determined.  相似文献   

14.
Linker histone H1 plays an essential role in chromatin organization. Proper deposition of linker histone H1 as well as its removal is essential for chromatin dynamics and function. Linker histone chaperones perform this important task during chromatin assembly and other DNA-templated phenomena in the cell. Our in vitro data show that the multifunctional histone chaperone NPM1 interacts with linker histone H1 through its first acidic stretch (residues 120-132). Association of NPM1 with linker histone H1 was also observed in cells in culture. NPM1 exhibited remarkable linker histone H1 chaperone activity, as it was able to efficiently deposit histone H1 onto dinucleosomal templates. Overexpression of NPM1 reduced the histone H1 occupancy on the chromatinized template of HIV-1 LTR in TZM-bl cells, which led to enhanced Tat-mediated transactivation. These data identify NPM1 as an important member of the linker histone chaperone family in humans.  相似文献   

15.
Chicken erythrocyte chromatins containing a single species of linker histone, H1 or H5, have been prepared, using reassembly techniques developed previously. The reconstituted complexes possess the conformation of native chicken erythrocyte chromatin, as judged by chemical and structural criteria; saturation is reached when two molecules of linker histone are bound per nucleosome, as in native erythrocyte chromatin, which the resulting material resembles in its appearance in the electron microscope and quantitatively in its linear condensation factor relative to free DNA. The periodicity of micrococcal nuclease-sensitive sites in the linker regions associated with histone H1 or H5 is 10.4 base pairs, suggesting that the spatial organization of the linker region in the higher-order structure of chromatin is similar to that in isolated nucleosomes. The susceptible sites are cut at differing frequencies, as previously found for the nucleosome cores, leading to a characteristic distribution of intensities in the digests. The scission frequency of sites in the linker DNA depends additionally on the identity of the linker histone, suggesting that the higher-order structure is subject to secondary modulation by the associated histones.  相似文献   

16.
Chromatin structure promotes important epigenetic mechanisms that regulate cellular fate by organizing, preserving and controlling the way by which the genetic information works. Our understanding of chromatin and its functions is sparse and not yet well defined. The uncertainty comes from the complexity of chromatin and is induced by the existence of a large number of nuclear proteins that influence it. The intricate interaction among all these structural and functional nuclear proteins has been under extensive study in the recent years. Here, we show that Saccharomyces cerevisiae linker histone physically interacts with Arp4p (actin-related protein 4) which is a key subunit of three chromatin modifying complexes – INO80, SWR1 and NuA4. A single – point mutation in the actin – fold domain of Arp4p together with the knock-out of the gene for the linker histone in S. cerevisiae severely abrogates cellular and nuclear morphology and leads to complete disorganizing of the higher levels of chromatin organization.  相似文献   

17.
Hho1p is assumed to serve as a linker histone in Saccharomyces cerevisiae and, notably, it possesses two putative globular domains, designated HD1 (residues 41–118) and HD2 (residues 171–252), that are homologous to histone H5 from chicken erythrocytes. We have determined the three-dimensional structure of globular domain HD1 with high precision by heteronuclear magnetic resonance spectroscopy. The structure had a winged helix–turn–helix motif composed of an αβααββ fold and closely resembled the structure of the globular domain of histone H5. Interestingly, the second globular domain, HD2, in Hho1p was unstructured under physiological conditions. Gel mobility assay demonstrated that Hho1p preferentially binds to supercoiled DNA over linearized DNA. Furthermore, NMR analysis of the complex of a deletion mutant protein (residues 1–118) of Hho1p with a linear DNA duplex revealed that four regions within the globular domain HD1 are involved in the DNA binding. The above results suggested that Hho1p possesses properties similar to those of linker histones in higher eukaryotes in terms of the structure and binding preference towards supercoiled DNA.  相似文献   

18.
19.
20.
Histone H1 variant, H1R is involved in DNA damage response   总被引:2,自引:0,他引:2  
In Saccharomyces cerevisiae, the linker histone HHO1 is involved in DNA repair. In higher eukaryotes, multiple variants of linker histone H1 exist but their involvement in the DNA damage response is unknown. To address this issue, we examined sensitivity to genotoxic agents in chicken DT40 cells lacking specific H1 variants. Among the six H1 variant mutants, only H1R(-/-) DT40 cells exhibited increased sensitivity to the alkylating agent methyl-methanesulfonate (MMS). The MMS sensitivity of H1R(-/-) cells was not enhanced by inactivation of Rad54. H1R(-/-) DT40 cells also exhibited: (i) a reduction in gene targeting efficiencies, (ii) impaired sister chromatid exchange, and (iii) an accumulation of IR-induced chromosomal aberrations at the G2 phase, all of which indicate the involvement of H1R in the Rad54-mediated homologous recombination (HR) pathway. The mobility of H1R but not H1L in the nucleus decreased after MMS treatment and the repair of double-stranded breaks generated by I-SceI was unaffected in H1R(-/-) cells, suggesting that H1R integrates into HR-mediated repair pathways at the chromosome structure level. Together, these findings provide the first genetic evidence that a specific H1 variant plays a unique and important role in the DNA damage response in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号