首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Progesterone receptors (PR) play critical roles in eukaryotic gene regulation, yet the mechanisms by which they assemble at multisite promoters are poorly understood. Here we present a thermodynamic analysis of the interactions of the PR B-isoform (PR-B) with promoters containing either one or two progesterone response elements (PREs). Utilizing quantitative footprinting, we have resolved the microscopic energetics of PR-B binding, including cooperativity terms. The results of this analysis challenge a number of assumptions found in traditional models of receptor function. First, PR-B interactions at a single PRE can be equally well described by mechanisms invoking either the receptor monomer or the dimer as the active DNA binding species. If, as is commonly accepted, PR-B interacts with response elements only as a preformed dimer, then its intrinsic binding affinity is not the typically observed nanomolar but is rather picomolar. This high affinity binding is opposed, however, by a large energetic penalty. The penalty presumably pays for costly structural rearrangements of the receptor dimer and/or response element that are needed to form the protein-DNA complex. If PR-B assembles at a single response element via successive monomer binding reactions, then this penalty minimizes cooperative interactions between adjacent monomers. When binding to two response elements, the receptor exhibits strong intersite cooperativity. Although this phenomenon has been observed before, the present work demonstrates that the energetics reach levels seen in highly cooperative systems such as lambda cI repressor. This first quantitative dissection of cooperative receptor-promoter interactions suggests that PR-B function is more complex than traditionally envisioned.  相似文献   

6.
The bacteriophage lambda relies on interactions of the cI and cro repressors which self assemble and bind the two operators (O(R) and O(L)) of the phage genome to control the lysogenic to lytic switch. While the self assembly and O(R) binding of cI have been investigated in detail, a more complete understanding of gene regulation by phage lambda also requires detailed knowledge of the role of cro repressor as it dimerizes and binds at O(R) sites. Since dimerization and operator binding are coupled processes, a full elucidation of the regulatory energetics in this system requires that the equilibrium constants for dimerization and cooperative binding be determined. The dimerization constant for cro has been measured as a prelude to these binding studies. Here, the energetics of cro binding to O(R) are evaluated using quantitative DNaseI footprint titration techniques. Binding data for wild-type and modified O(R) site combinations have been simultaneously analyzed in concert with the dimerization energetics to obtain both the intrinsic and cooperative DNA binding energies for cro with the three O(R) sites. Binding of cro dimers is strongest to O(R)3, then O(R)1 and lastly, O(R)2. Adjacently bound repressors exhibit positive cooperativity ranging from -0.6 to -1.0 kcal/mol. Implications of these, newly resolved, energetics are discussed in the framework of a dynamic model for gene regulation. This characterization of the DNA-binding properties of cro repressor establishes the foundation on which the system can be explored for other, more complex, regulatory elements such as cI-cro cooperativity.  相似文献   

7.
8.
9.
The DNA binding domain (DBD) of nuclear hormone receptors contains a highly conserved globular domain and a less conserved carboxyl-terminal extension (CTE). Despite previous observations that the CTEs of some classes of nuclear receptors are structured and interact with DNA outside of the hexanucleotide hormone response element (HRE), there has been no evidence for such a CTE among the steroid receptors. We have determined the structure of the progesterone receptor (PR)-DBD-CTE DNA complex at a resolution of 2.5 A, which revealed binding of the CTE to the minor groove flanking the HREs. Alanine substitutions of the interacting CTE residues reduced affinity for inverted repeat HREs separated by three nucleotides, and essentially abrogated binding to a single HRE. A highly compressed minor groove of the trinucleotide spacer and a novel dimerization interface were also observed. A PR binding site selection experiment revealed sequence preferences in the trinucleotide spacer and flanking DNA. These results, taken together, support the notion that sequences outside of the HREs influence the DNA binding affinity and specificity of steroid receptors.  相似文献   

10.
11.
12.
DNA binding properties of the vitamin D3 receptor zinc finger region.   总被引:8,自引:0,他引:8  
The DNA binding domains of the nuclear receptor superfamily are highly conserved and consist of residues that fold into two zinc finger-like motifs, suggesting that the structures of this region among the members of the superfamily are likely to be very similar. Furthermore, the response elements that these receptors bind to are similar in sequence and organization. Nevertheless, these receptors selectively recognize target response elements and differentially regulate linked genes. In order to study the details of receptor:DNA binding, we have overexpressed and purified the vitamin D3 receptor DNA binding domain (VDRF) and have begun characterizing its DNA binding properties. We find that the VDRF protein binds strongly and specifically to direct repeats constituting a vitamin D response element from the mouse osteopontin (Spp-1) promoter region but weakly to the human osteocalcin vitamin D response element. Unlike receptors that recognize hormone response elements oriented as inverted repeats, such as the glucocorticoid receptor (GR) and estrogen receptor, VDRF appears to bind half-sites noncooperatively, without the free energy contribution of dimerization seen when the glucocorticoid receptor DNA binding domain associates with a glucocorticoid response element. By comparing and contrasting the DNA binding properties of the vitamin D and glucocorticoid receptors, we suggest a model for how receptors that prefer direct repeats differ in their binding strategy from those that recognize inverted repeats.  相似文献   

13.
14.
15.
We previously reported, using a coimmunoprecipitation assay, that the B form (PR-B) of the human progesterone receptor from T47D human breast cancer cells dimerizes in solution with the A receptor (PR-A) and that the extent of dimerization correlates with receptor binding activity for specific DNA sequences [DeMarzo, A.M., Beck, C.A., O?ate, S.A., & Edwards, D.P. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 72-76]. This suggested that solution dimerization is an intermediate step in the receptor activation process. The present study has tested the effects of the progesterone antagonist RU486 on solution dimerization of progesterone receptors (PR). As determined by the coimmunoprecipitation assay, RU486 binding did not impair dimerization of receptors; rather, the antagonist promoted more efficient solution dimerization than the progestin agonist R5020. This enhanced receptor dimerization correlated with a higher DNA binding activity for transformed receptors bound with RU486. RU486 has been shown previously to produce two other alterations in the human PR when compared with R5020. PR-RU486 complexes in solution exhibit a faster sedimentation rate (6 S) on salt-containing sucrose density gradients than PR-R5020 complexes (4 S), and PR-DNA complexes have a faster electrophoretic mobility on gel-shift assays in the presence of RU486. We presently show that the 6 S PR-RU486 complex is a receptor monomer, not a dimer. The increased sedimentation rate and increased mobility on gel-shift assays promoted by RU486 were also observed with recombinant PR-A and PR-B separately expressed in insect cells from baculovirus vectors. These results suggest that RU486 induces a distinct conformational change both in PR monomers in solution and in dimers bound to DNA. We also examined whether conformational changes in PR induced by RU486 would prevent a PR polypeptide bound to RU486 from heterodimerization with another PR polypeptide bound to R5020. To evaluate this, PR-A and PR-B that were separately bound to R5020 or RU486 in whole cells were mixed in vitro. PR-A-RU486 was capable of dimerization with PR-B-R5020, and this was demonstrated for heterodimers both formed in solution and bound to specific DNA. The capability to form heterodimers in vitro raises the possibility that the antagonist action of RU486 in vivo could in part be imposed in a dominant negative fashion through heterodimerization between one receptor subunit bound to an agonist and another bound to RU486.  相似文献   

16.
Abstract

Partial agonists such as estriol and estrone have been reported to diminish or even eliminate the upward convexity of the Scatchard plot of the binding of labeled estradiol to estrogen receptor. This has been interpreted as agonist interference with the receptor dimerization induced by estradiol. In order to investigate how a partial agonist or antagonist might interfere with dimerization we have developed a theoretical mass-action law model, where soluble receptors can dimerize and bind to two different ligands. Special attention was devoted to manifestations of positive cooperativity to determine whether they could be modified by competition with a second ligand. This was done using a computer program that evaluated a large set of combinations of affinity constants in an effort to explore all possible situations. The model could reproduce the effect of a second ligand on the cooperative binding of estradiol to the estrogen receptor but only if the second ligand was anticooperative, which is not the case of estriol, estrone and tamoxifen. Furthermore, even when the Scatchard plot was linear, the model still required dimerization of the receptor in most of the cases, showing that the addition of an antagonist may eliminate the upward curvature of the Scatchard without truly eliminating dimerization or cooperativity. We conclude that the effect of a second ligand on the binding of labeled estradiol to estrogen receptor is not necessarily due to interference with dimerization and/or cooperativity. The inability of this model to fully explain the published data for estriol, estrone, clomiphene, and tamoxifen suggests that a more complex mechanism is involved.  相似文献   

17.
WW domain binding protein-2 (WBP-2) was cloned as an E6-associated protein interacting protein, and its role in steroid hormone receptors functions was investigated. We show that WBP-2 specifically enhanced the transactivation functions of progesterone receptor (PR) and estrogen receptor (ER), whereas it did not have any significant effect on the androgen receptor, glucocorticoid receptor, or the activation functions of p53 and VP-16. Depletion of endogenous WBP-2 with small interfering RNAs indicated that WBP-2 was required for the proper functioning of PR and ER. We also demonstrated that WBP-2 contains an intrinsic activation domain. Moreover, chromatin immunoprecipitation assays demonstrate the hormone-dependent recruitment of WBP-2 onto an estrogen-responsive promoter. Mutational analysis suggests that one of three polyproline (PY) motifs of WBP-2 is essential for its coactivation and intrinsic activation functions. We show that WBP-2 and E6-associated protein each enhance PR function, and their effect on PR action are additive when coexpressed, suggesting a common signaling pathway. In this study, we also demonstrate that the WBP-2 binding protein, Yes kinase-associated protein (YAP) enhances PR transactivation, but YAP's coactivation function is absolutely dependent on WBP-2. Taken together, our data establish the role of WBP-2 and YAP as coactivators for ER and PR transactivation pathways.  相似文献   

18.
The exact nature of the curvilinearity of Scatchard plots derived from hormonal and nonhormonal binding systems has not been definitively resolved. Such plots are compatible with heterogeneous receptors with different but fixed affinities and with negatively interacting binding sites resulting in occupancy-dependent affinity. In the current study we examined in detail the effect of receptor occupancy by the ligand on receptor affinity under a variety of experimental conditions. We chose the human lymphocyte-leukoagglutinin (LPHA) system, which closely mimics the IM9-insulin model. Reliable estimates of total binding capacity (728 ng/10(6) cells) essential to our report were calculated from a wide database by the least-squares model. At occupancies greater than or equal to 0.085, receptors are associated with low and fixed affinity (1.5 X 10(6) M-1), whereas at occupancies less than or equal to 0.085, affinity is high and fixed (1.8 X 10(8) M-1) or high but variable (1 X 10(7) M-1 to 1.5 X 10(6) M-1) depending on whether the binding is assumed to be noncooperative or cooperative, respectively. Calculation of receptor-ligand complex dissociation velocity over a wide range of occupancies (0.01-0.40) suggested that occupancy exerts an inversely proportional effect on affinity that is rapid and sustained. Cell activation (DNA synthesis) is initiated at receptor occupancy of approximately equal to 0.004 and is magnified as ligand binding to high affinity receptors increases up to approximately equal to 0.07 occupancy (functional sites), beyond which point further binding (to low affinity sites) becomes increasingly ineffective and cytotoxic (redundant sites). These findings suggest that occupancy influences affinity as postulated by the hypothesis of negative cooperativity. Through this effect occupancy may play a significant role in regulating ligand-induced cell responses.  相似文献   

19.
S E Fawell  J A Lees  R White  M G Parker 《Cell》1990,60(6):953-962
We have identified a region within the steroid binding domain of the mouse estrogen receptor that is required for both receptor dimerization and high affinity DNA binding. Analysis of sequences in this region revealed that a heptad repeat of hydrophobic residues was conserved in all members of the nuclear receptor superfamily. Single amino acid substitutions of residues in the N-terminal half, but not the C-terminal half, of the repeat prevented receptor dimerization. Steroid binding was abolished by point mutations in the center of the conserved region, implying that the steroid binding and dimerization domains overlap. The role of this region in steroid receptor function is discussed in relation to other models of protein dimerization and DNA binding.  相似文献   

20.
Free energies of oxygen-linked subunit assembly and cooperative interaction have been determined for 34 molecular species of human hemoglobin, which differ by amino acid alterations as a result of mutation or chemical modification at specific sites. These studies required the development of extensions to our earlier methodology. In combination with previous results they comprise a data base of 60 hemoglobin species, characterized under the same conditions. The data base was analyzed in terms of the five following issues. (1) Range and sensitivity to site modifications. Deoxy tetramers showed greater average energetic response to structural modifications than the oxy species, but the ranges are similar for the two ligation forms. (2) Structural localization of cooperative free energy. Difference free energies of dimer-tetramer assembly (oxy minus deoxy) yielded delta Gc for each hemoglobin, i.e., the free energy used for modulation of oxygen affinity over all four binding steps. A structure-energy map constructed from these results shows that the alpha 1 beta 2 interface is a unique structural location of the noncovalent bonding interactions that are energetically coupled to cooperativity. (3) Relationship of cooperativity to intrinsic binding. Oxygen binding energetics for dissociated dimers of mutants strongly indicates that cooperativity and intrinsic binding are completely decoupled by tetramer to dimer dissociation. (4) Additivity, site-site coupling and adventitious perturbations. All these are exhibited by individual-site modifications of this study. Large nonadditivity may be correlated with global (quaternary) structure change. (5) Residue position vs. chemical nature. Functional response is solely dictated by structural location for a subset of the sites, but varies with side-chain type at other sites. The current data base provides a unique framework for further analyses and modeling of fundamental issues in the structural chemistry of proteins and allosteric mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号