首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA polymerase α/primase (Polα) is the key replication enzyme in eukaryotic cells. This enzyme synthesizes and elongates short RNA primers at an unwound origin of replication. Polα was used as an affinity ligand to identify cellular replication factors interacting with it. Protein complexes between Polα and cellular factors were analyzed by co-immunoprecipitations with monoclonal antibodies directed against Polα and by protein affinity chromatography of cell extracts derived from pure G1-and S-phase cell populations on Polα affinity columns. Co-immunoprecipitations resulted in the identification of a polypeptide with a molecular weight of 46 kDa. For Polα affinity chromatography, the ligand was purified from insect cells infected with a recombinant baculovirus encoding the catalytic subunit (p180) of Polα (Copeland and Wang, 1991). With 5×108 infected Sf9 cells, a rapid one step purification protocol was used which yielded in five hours 0.6 mg pure enzyme with a specific activity of 140,000 units/mg. The G1-and S-phase cell populations were generated by block, release and counterflow centrifugal elutriation of exponentially growing human MANCA cells. Starting with 2×109 non synchronous cells, 5×108 G1-phase cells were isolated. Chromatography of cell extracts derived from G1-or S-phase cells on Polα affinity columns resulted in identifying several polypeptides in the range of 40–70 kDa. Some of these polypeptides are more abundant in eluates derived from S-phase extracts than from G1-phase extracts.  相似文献   

2.
DNA polymerase α/primase (Polα) is the key replication enzyme in eukaryotic cells. This enzyme synthesizes and elongates short RNA primers at an unwound origin of replication. Polα was used as an affinity ligand to identify cellular replication factors interacting with it. Protein complexes between Polα and cellular factors were analyzed by co-immunoprecipitations with monoclonal antibodies directed against Polα and by protein affinity chromatography of cell extracts derived from pure G1-and S-phase cell populations on Polα affinity columns. Co-immunoprecipitations resulted in the identification of a polypeptide with a molecular weight of 46 kDa. For Polα affinity chromatography, the ligand was purified from insect cells infected with a recombinant baculovirus encoding the catalytic subunit (p180) of Polα (Copeland and Wang, 1991). With 5×108 infected Sf9 cells, a rapid one step purification protocol was used which yielded in five hours 0.6 mg pure enzyme with a specific activity of 140,000 units/mg. The G1-and S-phase cell populations were generated by block, release and counterflow centrifugal elutriation of exponentially growing human MANCA cells. Starting with 2×109 non synchronous cells, 5×108 G1-phase cells were isolated. Chromatography of cell extracts derived from G1-or S-phase cells on Polα affinity columns resulted in identifying several polypeptides in the range of 40–70 kDa. Some of these polypeptides are more abundant in eluates derived from S-phase extracts than from G1-phase extracts.  相似文献   

3.
Cultured human epidermal cells were studied by cell sorting and autoradiography after different 3H-thymidine (3H-dThd)-labelling procedures and after labelling with DNA precursors that are incorporated via salvage or de novo pathways. It was shown that 3H-dThd incorporation was the best measure of the rate of DNA replication. Dose-response experiments with pulse and continuous labelling revealed that all S- and G2-phase cells were cycling, whereas some 20% of the cells stayed in G1-phase for long periods of time. Most, if not all of these cells were probably non-proliferating differentiated keratinocytes. At least two subpopulations of S-phase cells could be discriminated on the basis of the rate of incorporation of DNA precursors. the difference in precursor incorporation did not seem to be caused by differences in nucleotide metabolism but rather to reflect true differences in the rate of DNA replication. Continuous labelling experiments showed that these subpopulations also were apparent in the G1- and G2-phases. Studies of the grain-count distribution revealed that cells that appeared to move rapidly through the S-phase moved slowly through the G2-phase, and vice versa. Cells stained with acridine orange were subjected to a two-parameter analysis in the cell sorter by simultaneous measurement of the DNA and RNA fluorescence. Autoradiography of sorted cells revealed that, on average, cells with low RNA contents incorporated 3H-dThd at a higher rate than cells with high RNA contents.  相似文献   

4.
A cell-free nuclear replication system that is S-phase specific, that requires the activity of DNA polymerase alpha, and that is stimulated three- to eightfold by cytoplasmic factors from S-phase cells was used to examine the temporal specificity of chromosomal DNA synthesis in vitro. Temporal specificity of DNA synthesis in isolated nuclei was assessed directly by examining the replication of restriction fragments derived from the amplified 200-kilobase dihydrofolate reductase domain of methotrexate-resistant CHOC 400 cells as a function of the cell cycle. In nuclei prepared from cells collected at the G1/S boundary of the cell cycle, synthesis of amplified sequences commenced within the immediate dihydrofolate reductase origin region and elongation continued for 60 to 80 min. The order of synthesis of amplified restriction fragments in nuclei from early S-phase cells in vitro appeared to be indistinguishable from that in vivo. Nuclei prepared from CHOC 400 cells poised at later times in the S phase synthesized characteristic subsets of other amplified fragments. The specificity of fragment labeling patterns was stable to short-term storage at 4 degrees C. The occurrence of stimulatory factors in cytosol extracts was cell cycle dependent in that minimal stimulation was observed with early G1-phase extracts, whereas maximal stimulation was observed with cytosol extracts from S-phase cells. Chromosomal synthesis was not observed in nuclei from G1 cells, nor did cytosol extracts from S-phase cells induce chromosomal replication in G1 nuclei. In contrast to chromosomal DNA synthesis, mitochondrial DNA replication in vitro was not stimulated by cytoplasmic factors and occurred at equivalent rates throughout the G1 and S phases. These studies show that chromosomal DNA replication in isolated nuclei is mediated by stable replication forks that are assembled in a temporally specific fashion in vivo and indicate that the synthetic mechanisms observed in vitro accurately reflect those operative in vivo.  相似文献   

5.
A sub-nuclear preparation capable of substantial levels of DNA synthesis invitro has been obtained from isolated S-phase nuclei of Physarumpolycephalum. Nuclei were disrupted by gentle resuspension in a dextran-free medium followed by immediate addition of dextran to stabilize the liberated replication complex. Synthesis continues for at least 120 min, and appears to occur by a semi-discontinuous mechanism. Little DNA synthesis occurs in preparations obtained from G2-phase nuclei.  相似文献   

6.
Nuclear matrices were isolated from plasmodia of a true slime mold, Physarum polycephalum, and the DNA synthetic activity in vitro was examined. These matrices isolated in S-phase catalyzed DNA synthesis requiring Mg2+, deoxyribonucleoside 5'-triphosphates and ATP, without exogenous templates. The activity changed during S-phase with the rate of in vivo DNA replication. Product analysis by gel electrophoresis revealed that the matrices produced Okazaki fragments. These results suggest that DNA synthesis partially reflects in vivo DNA replication. DNA synthesis was sensitive to aphidicolin, heparin and N-ethylmaleimide, indicating involvement of the alpha-like DNA polymerase of Physarum. Exogenous addition of activated DNA stimulated DNA synthesis 4-10-fold and suggested that only some of the existing enzymes are involved in endogenous DNA synthesis. Matrices isolated in G2-phase were also associated with a similar DNA synthetic activity, but they did not produce Okazaki fragments in vitro. It is, therefore, concluded that nuclear matrices are associated with alpha-like DNA polymerase throughout the cell cycle, and that some of the enzymes participate in in vivo DNA replication in S-phase; thus, DNA replication is possibly controlled by this process. The relationship between DNA synthetic activities by the isolated nuclei and matrices was also discussed.  相似文献   

7.
Nuclear extracts from Saccharomyces cerevisiae cells synchronized in S phase support the semiconservative replication of supercoiled plasmids in vitro. We examined the dependence of this reaction on the prereplicative complex that assembles at yeast origins and on S-phase kinases that trigger initiation in vivo. We found that replication in nuclear extracts initiates independently of the origin recognition complex (ORC), Cdc6p, and an autonomously replicating sequence (ARS) consensus. Nonetheless, quantitative density gradient analysis showed that S- and M-phase nuclear extracts consistently promote semiconservative DNA replication more efficiently than G1-phase extracts. The observed semiconservative replication is compromised in S-phase nuclear extracts deficient for the Cdk1 kinase (Cdc28p) but not in extracts deficient for the Cdc7p kinase. In a cdc4-1 G1-phase extract, which accumulates high levels of the specific Clb-Cdk1 inhibitor p40SIC1, very low levels of semiconservative DNA replication were detected. Recombinant Clb5-Cdc28 restores replication in a cdc28-4 S-phase extract yet fails to do so in the cdc4-1 G1-phase extract. In contrast, the addition of recombinant Xenopus CycB-Cdc2, which is not sensitive to inhibition by p40SIC1, restores efficient replication to both extracts. Our results suggest that in addition to its well-characterized role in regulating the origin-specific prereplication complex, the Clb-Cdk1 complex modulates the efficiency of the replication machinery itself.  相似文献   

8.
Analogs of cyclic adenosine monophosphate (cAMP) (N6benzoyl cAMP and N6monobutyryl cAMP) as well as agents that increased the intracellular level of cAMP (glucagon and isobutylmethylxanthine) inhibited the EGF-stimulated DNA replication of adult rat hepatocytes in primary culture independently of cell density. This inhibition was strongly potentiated by the glucocorticoid dexamethasone. The effect of cAMP (and dexamethasone) was not due to toxicity, because the inhibition was reversible and the cell ultrastructure preserved. cAMP acted by decreasing the rate of transition from G1- to S-phase, the duration of G2- and S-phase of the hepatocyte cell cycle being unaffected. DNA replication started in the extranucleolar compartment of the nucleus and ended in the nucleolar compartment as described earlier for cells grown in the absence of cAMP (O.K. Vintermyr and S.O. Døskeland, J. Cell. Physiol., 1987, 132:12-21). The action of cAMP was very rapid: significant inhibition of the transition was noted 2 hr after the addition of glucagon/IBMX and half-maximal inhibition after 4 hours. The determination of extranucleolarly labelled nuclei in cells pulse-labelled with [3H]thymidine allowed precise analysis of rapid changes in the probability of transition from G1- to S-phase. The extranucleolar labelling index could also be determined in cells continuously exposed to [3H]thymidine.  相似文献   

9.
Phosphorylation of histone fractions in the presence and absence of DNA synthesis was measured using the new “isoleucine-limiting” method for synchronizing Chinese hamster cells in early G1-phase. Using preparative electrophoresis, histone f1 phosphorylation was found to be dependent upon cell-cycle position, being absent in G1-arrested and G1-traversing cells and active in the S-phase. The absence of f1 phosphorylation in G1-arrested cells, which are known to exhibit f1 turnover, indicates that f1 phosphorylation is not an obligatory part of the f1 turnover process. In contrast to histone f1, it was found that histone f2a2 phosphorylation is independent of cell-cycle position, occurring with equal magnitude in the G1-traversing state when DNA synthesis is essentially absent and in the S-phase when DNA synthesis is active. When cells were arrested in the G1-state by isoleucine deprivation, f2a2 phosphorylation continued to be active, occurring at 56% of the rate observed in the G1-traversing state. These results indicate that phosphorylation of histone f2a2 is independent of f2a2 synthesis, independent of DNA synthesis, and independent of histone f1 phosphorylation. Because f2a2 is actively phosphorylated in G1-arrested cells known to be active in the synthesis of various types of RNA (including messenger) as well as in G1-traversing and S-phase cells, we feel that phosphorylation of histone f2a2 should continue to be considered in models concerning activation of DNA template activity.  相似文献   

10.
Summary The varying sensitivity to radiation in the different phases of the cell cycle was investigated using L-929 cells of the mouse. The cells were synchronized by mechanical selection of mitotic cells. The synchronous populations were X-irradiated with a single dose of 10 Gy in the middle of the G1-phase, at the G1/S-transition or in the middle of the S-phase, respectively. The radiation effect was determined in 2 h intervals a) by14C-TdR incorporation (IT) into the DNA, b) by autoradiography (AR), c) by flow cytometry (FCM). The incorporation rate decreased in all three cases, but the reasons appeared to be different, as can be derived from FCM and AR data: After irradiation in G1, a fraction of cells was prevented from entering S-phase, after irradiation at G1/S a proportion of cells was blocked in the S-phase, and after irradiation in S, DNA synthesis rate was reduced. As a consequence of these effects, the mean transition time through S-phase increased. The G2 blocks, obtained after irradiation at the three stages of the cycle were also different: Cells irradiated in G1 are partly released from the block after 10 h. Irradiation at G1/S caused a persisting accumulation of 50% of the cells in G2, and for irradiation in S more than 80% of the cells were arrested in G2.  相似文献   

11.
EFFECT OF METHOTREXATE ON THE CELL CYCLE OF L1210 LEUKEMIA   总被引:1,自引:0,他引:1  
The influence of methotrexate (MTX) on the proliferative activity of cells in different phases of cell cycle has been studied. MTX (5 mg/kg) was injected i.p. 3 days after the inoculation of 5 × 106 leukemia cells into F1 (DBA × C57 BL) mice. It was shown that MTX causes degeneration of cells, being in G1- as well as in S-phase at the time of drug injection. Incorporation of 3H-TdR was suppressed for a period ranging from 2 to 12 hr after MTX administration, which is demonstrated by the decrease in the number of grains per cell. The number of cells labeled after 3H-TdR injection was also sharply decreased during this period. For a period of 3 until 15 hr after MTX administration the mitotic index decreased significantly as a result of inhibition of DNA synthesis. The blocking of the G1-S transition was evident during 4 hr after MTX. Thereafter the G1-S transition proceeds at a rate which is practically equal to that for nontreated controls. MTX did not inhibit transition to mitosis of cells being in G2-phase and in a very late S-phase at the time of drug injection. The sensitivity of G1-cells to the cytocidal effect of MTX shows that for L1210 leukemia cells MTX can be classified as a cycle-specific drug killing both G1 and S-cells rather than S-phase specific agent with self-limitation.  相似文献   

12.
Mitkova AV  Biswas EE  Biswas SB 《Biochemistry》2002,41(16):5255-5265
Plasmid DNA replication in nuclear extracts of Saccharomyces cerevisiae in vitro has been shown to be S-phase specific, similar to that observed in vivo. We report here a reconstituted in vitro system with partially purified replication proteins, purified replication protein A (RPA), and recombinant proliferating cell nuclear antigen (PCNA). Nuclear extracts from S-phase, G(1)-phase, and unsynchronized yeast cells were fractionated by phosphocellulose chromatography. Protein fraction (polymerase fraction) enriched with replication proteins, including DNA polymerases (alpha, delta, etc.), was isolated, which was not capable of in vitro replication of supercoiled plasmid DNA. However, when purified yeast RPA and recombinant PCNA together were added to the polymerase fraction obtained from S-phase synchronized cells, in vitro plasmid DNA replication was restored. In vitro plasmid DNA replication with polymerase fractions from unsynchronized and G(1)-phase cells could not be reconstituted upon addition of purified RPA and PCNA. RPA and PCNA isolated from various phases of the cell cycle complemented the S-phase polymerase pool to the same extent. Reconstituted systems with the S-phase polymerase pool, complemented with either the RPA- and PCNA-containing fraction or purified RPA and recombinant PCNA together, were able to produce replication intermediates (ranging in size from 50 to 1500 bp) similar to that observed with the S-phase nuclear extract. Results presented here demonstrate that both RPA and PCNA are cell cycle-independent in their ability to stimulate in vitro plasmid DNA replication, whereas replication factors in the polymerase fractions are strictly S-phase dependent.  相似文献   

13.
Centrosome includes two centrioles and is a structural basis of mitotic spindle pole. Duplication of this organelle and doubling of chromosomes quantity during DNA replication are two principal events of cell cycle in the course of preparation for cell division. In this work, cells of pig kidney embryonic cell line PE (SPEV) were individually monitored after mitosis and procentriole appearance was detected by electron microscopy as soon as 5–6 h after mitosis. This period was 1–2 h shorter than minimal duration of G1-phase in PE cell line. Ultrastructural analysis of centrosomes in the cells with known “cell cycle age” in combination with autoradiography study of the same cells using 3H-thimidine directly confirmed that duplication of centrioles started earlier than cells entered in S-phase of cell cycle, i.e., preceded the DNA replication.  相似文献   

14.
Ganglioside GM1 inhibited either DNA synthesis in isolated nuclei or the activity of DNA polymerase α fractionated from S-phase HeLa cells. The concentrations of GM1 necessary for 50% inhibition were about 5 μM and 10 μM for nuclei and DNA polymerase α, respectively. The GM1 inhibition of the enzyme activity was suppressed by the addition of 0.05% Triton X-100. Neither gangliotetraosylceramide (asialo-GM1) nor free N-acetylneuraminic acid inhibited the enzyme activity. These facts suggest that GM1, probably in the form of micelles, could influence the enzyme activity by behaving as a polyanionic macromolecule. The kinetic studies indicate that the GM1 inhibition of the enzyme activity was not competitive with the substrate, deoxythymidine triphosphate, but rather with the template DNA. Binding of GM1 and DNA polymerase α was suggested by the cocentrifugation of GM1 and the enzyme fraction after their preincubation. It was also observed that other acidic glycolipids, i.e., brain sulphatide and seminolipid, also inhibited the enzyme activity, whilst neutral galactosylceramide did not. The inhibitory influences of these sulphate esters of glycolipids were, similarly to GM1, suppressed by the addition of 0.05% Triton X-100.  相似文献   

15.
16.
Intracellular pool levels of ribo- and deoxyribonucleoside triphosphates were monitored throughout the cell cycle of C3H10T1/2 mouse embryo fibrolast cells synchronized by isoleucine deprivation. Absolute pool sizes of ribonucleoside triphosphates were approximately 30 fold greater than those of the corresponding deoxyribonucleoside triphosphates. Of the ribonucleoside triphosphates, pool sizes of ATP exhibited the greatest change, increasing from a low of 32.7 nmol/107 cells during G1 to a high of 81.6 nmol/107 cells 2 h prior to mid S-phase. Levels of ATP subsequently declined to 40.2 nmol/107 cells during late S-phase, followed by a second peak of 65.8 nmol/107 with the onset of cell division. No significant changes in the pool sizes of UTP and GTP were found throughout the cell cycle. Of the deoxyribonucleoside triphosphates, pool sizes of pyrimidine deoxyribonucleoside triphosphates were approx. 5–10 fold greater than those of purine deoxyribonucleoside triphosphates. Low levels of deoxyribonucleoside triphosphates during G1 (0.3–1.3 pmol/107 cells) increased coordinately with the initiation of DNA synthesis to an initial peak during mid S-phase (0.5–6.4 pmol/107 cells). Decling levels of deoxyribonucleoside triphosphates during late S-phase were followed by a subsequent larger second peak (1.7–10.7 pmol/107 cells) during G2-M.  相似文献   

17.
18.
SYNOPSIS. DNA synthesis during growth and differentiation in Naegleria gruberi strain NEG populations has been studied. Autoradiography of cells labeled with [3H]thymidine revealed that grains are concentrated over the nuclei in logarithmically growing populations of cells, whereas in differentiating cells, grains are scattered over the cytoplasm; i.e. no significant nuclear labeling is detectable. It was established by MAK chromatographic analysis that [3H]thymidine is incorporated into double-stranded DNA in Naegleria and that the actual amount of incorporation in the logarithmically growing populations of cells is 20 times greater than that in differentiating cells. These results suggest that nuclear DNA synthesis is reduced markedly soon after the initiation of differentiation, while cytoplasmic DNA synthesis continues. It was established from cell cycle analysis that the approximate intervals of G1, S, G2, and M phases were 180, 183, 90, and 28 min, respectively. Hence, the reduction in the nuclear DNA synthesis in differentiating cells is not due to the inhibition of initiation of DNA replication, but rather to the termination of the DNA replicating process. Thus DNA synthesis is curtailed in the presence of RNA and protein synthesis which are required for differentiation.  相似文献   

19.
When proliferating fission yeast cells are exposed to nitrogen starvation, they initiate conjugation and differentiate into ascospores. Cell cycle arrest in the G1-phase is one of the prerequisites for cell differentiation, because conjugation occurs only in the pre-Start G1-phase. The role of ste9+ in the cell cycle progression was investigated. Ste9 is a WD-repeat protein that is highly homologous to Hct1/Cdh1 and Fizzy-related. The ste9 mutants were sterile because they were defective in cell cycle arrest in the G1-phase upon starvation. Sterility was partially suppressed by the mutation in cig2 that encoded the major G1/S cyclin. Although cells lacking Ste9 function grow normally, the ste9 mutation was synthetically lethal with the wee1 mutation. In the double mutants of ste9 cdc10ts, cells arrested in G1-phase at the restrictive temperature, but the level of mitotic cyclin (Cdc13) did not decrease. In these cells, abortive mitosis occurred from the pre-Start G1-phase. Overexpression of Ste9 decreased the Cdc13 protein level and the H1-histone kinase activity. In these cells, mitosis was inhibited and an extra round of DNA replication occurred. Ste9 regulates G1 progression possibly by controlling the amount of the mitotic cyclin in the G1-phase.  相似文献   

20.
The specific action of a pig skin fraction enriched in epidermal G1-chalone, a tissuespecific inhibitor of epidermal DNA synthesis, was investigated by means of flow cytofluorometry. The results indicate that G1-chalone inhibits progression of partially synchronized rat tongue epithelial cells (line RTE-2) through the cell cycle at a point 2 h prior to the beginning of the S-phase. Approximately 8 h after chalone addition, the cells can overcome the inhibition and begin to enter the S-phase. The duration of this delay is concentrationindependent, but the fraction of cells affected is proportional to the chalone concentration. The progression of cells which already have entered S-phase is not affected. In contrast to the G1-chalone preparation, aphidicolin, a potent inhibitor of DNA polymerase α, clearly shows S-phase-specific inhibition. These results indicate that the epidermal G1-chalone inhibits epidermal cell proliferation in a fully reversible manner by a highly specific effect on cell cycle traverse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号