首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shen JC  Loeb LA 《Nucleic acids research》2000,28(17):3260-3268
Werner syndrome (WS) is an autosomal recessive disease characterized by early onset of many features of aging, by an unusual spectrum of cancers, and by genomic instability. The WS protein (WRN) possesses 3′→5′ DNA helicase and associated ATPase activities, as well as 3′→5′ DNA exonuclease activity. Currently, WRN is the only member of the widely distributed RecQ DNA helicase family with documented exonuclease activity. It is not known whether deficiency of the exonuclease or helicase/ATPase activities of WRN, or all of them, is responsible for various elements of the WS phenotype. WRN exonuclease has limited homology to Escherichia coli RNaseD, a tRNA processing enzyme. We show here that WRN preferentially degrades synthetic DNA substrates containing alternate secondary structures, with an exonucleolytic mode of action suggestive of RNaseD. We present evidence that structure-dependent binding of WRN to DNA requires ATP binding, while DNA degradation requires ATP hydrolysis. Apparently, the exonuclease and ATPase act in concert to catalyze structure-dependent DNA degradation. We propose that WRN protein functions as a DNA processing enzyme in resolving aberrant DNA structures via both exonuclease and helicase activities.  相似文献   

2.
Werner syndrome (WS) is a premature aging disorder where the affected individuals appear much older than their chronological age. The single gene that is defective in WS encodes a protein (WRN) that has ATPase, helicase and 3′→5′ exonuclease activities. Our laboratory has recently uncovered a physical and functional interaction between WRN and the Ku heterodimer complex that functions in double-strand break repair and V(D)J recombination. Importantly, Ku specifically stimulates the exonuclease activity of WRN. We now report that Ku enables the Werner exonuclease to digest through regions of DNA containing 8-oxoadenine and 8-oxoguanine modifications, lesions that have previously been shown to block the exonuclease activity of WRN alone. These results indicate that Ku significantly alters the exonuclease function of WRN and suggest that the two proteins function concomitantly in a DNA damage processing pathway. In support of this notion we also observed co-localization of WRN and Ku, particularly after DNA damaging treatments.  相似文献   

3.
Individuals with mutations in the WRN gene suffer from Werner syndrome, a disease with early onset of many characteristics of normal aging. The WRN protein (WRNp) functions in DNA metabolism, as the purified polypeptide has both 3′→5′ helicase and 3′→5′ exonuclease activities. In this study, we have further characterized WRNp exonuclease activity by examining its ability to degrade double-stranded DNA substrates containing abnormal and damaged nucleo­tides. In addition, we directly compared the 3′→5′ WRNp exonuclease activity with that of exo­nuclease III and the Klenow fragment of DNA polymerase I. Our results indicate that the presence of certain abnormal bases (such as uracil and hypoxanthine) does not inhibit the exonuclease activity of WRNp, exo­nuclease III or Klenow, whereas other DNA modifications, including apurinic sites, 8-oxoguanine, 8-oxoadenine and cholesterol adducts, inhibit or block WRNp. The ability of damaged nucleo­tides to inhibit exonucleolytic digestion differs significantly between WRNp, exonuclease III and Klenow, indicating that each exonuclease has a distinct mechanism of action. In addition, normal and modified DNA substrates are degraded similarly by full-length WRNp and an N-terminal fragment of WRNp, indicating that the specificity for this activity lies mostly within this region. The biochemical and physiological significance of these results is discussed.  相似文献   

4.
The human Werner syndrome protein, WRN, is a member of the RecQ helicase family and contains 3′→5′ helicase and 3′→5′ exonuclease activities. Recently, we showed that the exonuclease activity of WRN is greatly stimulated by the human Ku heterodimer protein. We have now mapped this interaction physically and functionally. The Ku70 subunit specifically interacts with the N-terminus (amino acids 1–368) of WRN, while the Ku80 subunit interacts with its C-terminus (amino acids 940– 1432). Binding between Ku70 and the N-terminus of WRN (amino acids 1–368) is sufficient for stimulation of WRN exonuclease activity. A mutant Ku heterodimer of full-length Ku80 and truncated Ku70 (amino acids 430–542) interacts with C-WRN but not with N-WRN and cannot stimulate WRN exonuclease activity. This emphasizes the functional significance of the interaction between the N-terminus of WRN and Ku70. The interaction between Ku80 and the C-terminus of WRN may modulate some other, as yet unknown, function. The strong interaction between Ku and WRN suggests that these two proteins function together in one or more pathways of DNA metabolism.  相似文献   

5.
Genome instability is a characteristic of cancer and aging, and is a hallmark of the premature aging disorder Werner syndrome (WS). Evidence suggests that the Werner syndrome protein (WRN) contributes to the maintenance of genome integrity through its involvement in DNA repair. In particular, biochemical evidence indicates a role for WRN in base excision repair (BER). We have previously reported that WRN helicase activity stimulates DNA polymerase beta (pol β) strand displacement synthesis in vitro. In this report we demonstrate that WRN exonuclease activity can act cooperatively with pol β, a polymerase lacking 3′–5′ proofreading activity. Furthermore, using small interference RNA technology, we demonstrate that WRN knockdown cells are hypersensitive to the alkylating agent methyl methanesulfonate, which creates DNA damage that is primarily repaired by the BER pathway. In addition, repair assays using whole cell extracts from WRN knockdown cells indicate a defect in long patch (LP) BER. These findings demonstrate that WRN plays a direct role in the repair of methylation-induced DNA damage, and suggest a role for both WRN helicase and exonuclease activities together with pol β during LP BER.  相似文献   

6.
The nuclease activity of FEN-1 is essential for both DNA replication and repair. Intermediate DNA products formed during these processes possess a variety of structures and termini. We have previously demonstrated that the 5′→3′ exonuclease activity of the Schizosaccharomyces pombe FEN-1 protein Rad2p requires a 5′-phosphoryl moiety to efficiently degrade a nick-containing substrate in a reconstituted alternative excision repair system. Here we report the effect of different 5′-terminal moieties of a variety of DNA substrates on Rad2p activity. We also show that Rad2p possesses a 5′→3′ single-stranded exonuclease activity, similar to Saccharomyces cerevisiae Rad27p and phage T5 5′→3′ exonuclease (also a FEN-1 homolog). FEN-1 nucleases have been associated with the base excision repair pathway, specifically processing cleaved abasic sites. Because several enzymes cleave abasic sites through different mechanisms resulting in different 5′-termini, we investigated the ability of Rad2p to process several different types of cleaved abasic sites. With varying efficiency, Rad2p degrades the products of an abasic site cleaved by Escherichia coli endonuclease III and endonuclease IV (prototype AP endonucleases) and S.pombe Uve1p. These results provide important insights into the roles of Rad2p in DNA repair processes in S.pombe.  相似文献   

7.
BLM and WRN, the products of the Bloom’s and Werner’s syndrome genes, are members of the RecQ family of DNA helicases. Although both have been shown previously to unwind simple, partial duplex DNA substrates with 3′→5′ polarity, little is known about the structural features of DNA that determine the substrate specificities of these enzymes. We have compared the substrate specificities of the BLM and WRN proteins using a variety of partial duplex DNA molecules, which are based upon a common core nucleotide sequence. We show that neither BLM nor WRN is capable of unwinding duplex DNA from a blunt-ended terminus or from an internal nick. However, both enzymes efficiently unwind the same blunt-ended duplex containing a centrally located 12 nt single-stranded ‘bubble’, as well as a synthetic X-structure (a model for the Holliday junction recombination intermediate) in which each ‘arm’ of the 4-way junction is blunt-ended. Surprisingly, a 3′-tailed duplex, a standard substrate for 3′→5′ helicases, is unwound much less efficiently by BLM and WRN than are the bubble and X-structure substrates. These data show conclusively that a single-stranded 3′-tail is not a structural requirement for unwinding of standard B-form DNA by these helicases. BLM and WRN also both unwind a variety of different forms of G-quadruplex DNA, a structure that can form at guanine-rich sequences present at several genomic loci. Our data indicate that BLM and WRN are atypical helicases that are highly DNA structure specific and have similar substrate specificities. We interpret these data in the light of the genomic instability and hyper-recombination characteristics of cells from individuals with Bloom’s or Werner’s syndrome.  相似文献   

8.
Werner syndrome (WS) is a severe recessive disorder characterized by premature aging, cancer predisposition and genomic instability. The gene mutated in WS encodes a bi-functional enzyme called WRN that acts as a RecQ-type DNA helicase and a 3′-5′ exonuclease, but its exact role in DNA metabolism is poorly understood. Here we show that WRN physically interacts with the MSH2/MSH6 (MutSα), MSH2/MSH3 (MutSβ) and MLH1/PMS2 (MutLα) heterodimers that are involved in the initiation of mismatch repair (MMR) and the rejection of homeologous recombination. MutSα and MutSβ can strongly stimulate the helicase activity of WRN specifically on forked DNA structures with a 3′-single-stranded arm. The stimulatory effect of MutSα on WRN-mediated unwinding is enhanced by a G/T mismatch in the DNA duplex ahead of the fork. The MutLα protein known to bind to the MutS α–heteroduplex complexes has no effect on WRN-mediated DNA unwinding stimulated by MutSα, nor does it affect DNA unwinding by WRN alone. Our data are consistent with results of genetic experiments in yeast suggesting that MMR factors act in conjunction with a RecQ-type helicase to reject recombination between divergent sequences.  相似文献   

9.
Reaction intermediates formed during the degradation of linear PM2, T5, and λ DNA by herpes simplex virus (HSV) DNase have been examined by agarose gel electrophoresis. Digestion of T5 DNA by HSV type 2 (HSV-2) DNase in the presence of Mn2+ (endonuclease only) gave rise to 6 major and 12 minor fragments. Some of the fragments produced correspond to those observed after cleavage of T5 DNA by the single-strand-specific S1 nuclease, indicating that the HSV DNase rapidly cleaves opposite a nick or gap in a duplex DNA molecule. In contrast, HSV DNase did not produce distinct fragments upon digestion of linear PM2 or λ DNA, which do not contain nicks. In the presence of Mg2+, when both endonuclease and exonuclease activities of the HSV DNase occur, most of the same distinct fragments from digestion of T5 DNA were observed. However, these fragments were then further degraded preferentially from the ends, presumably by the action of the exonuclease activity. Unit-length λ DNA, EcoRI restriction fragments of λ DNA, and linear PM2 DNA were also degraded from the ends by HSV DNase in the same manner. Previous studies have suggested that the HSV exonuclease degrades in the 3′ → 5′ direction. If this is correct, and since only 5′-monophosphate nucleosides are produced, then HSV DNase should “activate” DNA for DNA polymerase. However, unlike pancreatic DNase I, neither HSV-1 nor HSV-2 DNase, in the presence of Mg2+ or Mn2+, activated calf thymus DNA for HSV DNA polymerase. This suggests that HSV DNase degrades both strands of a linear double-stranded DNA molecule from the same end at about the same rate. That is, HSV DNase is apparently capable of degrading DNA strands in the 3′ → 5′ direction as well as in the 5′ → 3′ direction, yielding progressively smaller double-stranded molecules with flush ends. Except with minor differences, HSV-1 and HSV-2 DNases act in a similar manner.  相似文献   

10.
Individuals affected by the autosomal recessive disorder Werner’s syndrome (WS) develop many of the symptoms characteristic of premature ageing. Primary fibroblasts cultured from WS patients exhibit karyotypic abnormalities and a reduced replicative life span. The WRN gene encodes a 3′–5′ DNA helicase, and is a member of the RecQ family, which also includes the product of the Bloom’s syndrome gene (BLM). In this work, we show that WRN promotes the ATP-dependent translocation of Holliday junctions, an activity that is also exhibited by BLM. In cells arrested in S-phase with hydroxyurea, WRN localizes to discrete nuclear foci that coincide with those formed by the single-stranded DNA binding protein replication protein A. These results are consistent with a model in which WRN prevents aberrant recombination events at sites of stalled replication forks by dissociating recombination intermediates.  相似文献   

11.
Werner syndrome (WS) predisposes patients to cancer and premature aging, owing to mutations in WRN. The WRN protein is a RECQ-like helicase and is thought to participate in DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) or homologous recombination (HR). It has been previously shown that non-homologous DNA ends develop extensive deletions during repair in WS cells, and that this WS phenotype was complemented by wild-type (wt) WRN. WRN possesses both 3' --> 5' exonuclease and 3' --> 5' helicase activities. To determine the relative contributions of each of these distinct enzymatic activities to DSB repair, we examined NHEJ and HR in WS cells (WRN-/-) complemented with either wtWRN, exonuclease-defective WRN (E-), helicase-defective WRN (H-) or exonuclease/helicase-defective WRN (E-H-). The single E-and H- mutants each partially complemented the NHEJ abnormality of WRN-/- cells. Strikingly, the E-H- double mutant complemented the WS deficiency nearly as efficiently as did wtWRN. Similarly, the double mutant complemented the moderate HR deficiency of WS cells nearly as well as did wtWRN, whereas the E- and H- single mutants increased HR to levels higher than those restored by either E-H- or wtWRN. These results suggest that balanced exonuclease and helicase activities of WRN are required for optimal HR. Moreover, WRN appears to play a structural role, independent of its enzymatic activities, in optimizing HR and efficient NHEJ repair. Another human RECQ helicase, BLM, suppressed HR but had little or no effect on NHEJ, suggesting that mammalian RECQ helicases have distinct functions that can finely regulate recombination events.  相似文献   

12.
The first step of homology-dependent repair of DNA double-strand breaks (DSBs) is the resection of the 5′ strand to generate 3′ ss-DNA. Of the two major nucleases responsible for resection, EXO1 has intrinsic 5′->3′ directionality, but DNA2 does not. DNA2 acts with RecQ helicases such as the Werner syndrome protein (WRN) and the heterotrimeric eukaryotic ss-DNA binding protein RPA. We have found that the N-terminus of the RPA large subunit (RPA1N) interacts with both WRN and DNA2 and is essential for stimulating WRN''s 3′->5′ helicase activity and DNA2''s 5′->3′ ss-DNA exonuclease activity. A mutant RPA complex that lacks RPA1N is unable to support resection in Xenopus egg extracts and human cells. Furthermore, relocating RPA1N to the middle subunit but not to the small subunit causes severe defects in stimulating DNA2 and WRN and in supporting resection. Together, these findings suggest that RPA1N and its spatial position are critical for restricting the directionality of the WRN-DNA2 resection pathway.  相似文献   

13.
Werner syndrome is a rare autosomal recessive disease characterized by a premature aging phenotype, genomic instability, and a dramatically increased incidence of cancer and heart disease. Mutations in a single gene encoding a 1432-amino acid helicase/exonuclease (hWRN) have been shown to be responsible for the development of this disease. We have cloned, overexpressed, and purified a minimal, 171-amino acid fragment of hWRN that functions as an exonuclease. This fragment, encompassing residues 70-240 of hWRN (hWRN-N(70-240)), exhibits the same level of 3'-5' exonuclease activity as the previously described exonuclease fragment encompassing residues 1-333 of the full-length protein. The fragment also contains a 5'-protruding DNA strand endonuclease activity at a single-strand-double-strand DNA junction and within single-stranded DNA, as well as a 3'-5' exonuclease activity on single-stranded DNA. We find hWRN-N(70-240) is in a trimer-hexamer equilibrium in the absence of DNA when examined by gel filtration chromatography and atomic force microscopy. Upon addition of DNA substrate, hWRN-N(70-240) forms a hexamer and interacts with the recessed 3'-end of the DNA. Moreover, we find that the interaction of hWRN-N(70-240) with the replication protein PCNA also causes this minimal, 171-amino acid exonuclease region to form a hexamer. Thus, the active form of this minimal exonuclease fragment of human WRN appears to be a hexamer. The implications these results have on our understanding of hWRN's roles in DNA replication and repair are discussed.  相似文献   

14.
The 5′-3′ resection of DNA ends is a prerequisite for the repair of DNA double strand breaks by homologous recombination, microhomology-mediated end joining, and single strand annealing. Recent studies in yeast have shown that, following initial DNA end processing by the Mre11-Rad50-Xrs2 complex and Sae2, the extension of resection tracts is mediated either by exonuclease 1 or by combined activities of the RecQ family DNA helicase Sgs1 and the helicase/endonuclease Dna2. Although human DNA2 has been shown to cooperate with the BLM helicase to catalyze the resection of DNA ends, it remains a matter of debate whether another human RecQ helicase, WRN, can substitute for BLM in DNA2-catalyzed resection. Here we present evidence that WRN and BLM act epistatically with DNA2 to promote the long-range resection of double strand break ends in human cells. Our biochemical experiments show that WRN and DNA2 interact physically and coordinate their enzymatic activities to mediate 5′-3′ DNA end resection in a reaction dependent on RPA. In addition, we present in vitro and in vivo data suggesting that BLM promotes DNA end resection as part of the BLM-TOPOIIIα-RMI1-RMI2 complex. Our study provides new mechanistic insights into the process of DNA end resection in mammalian cells.  相似文献   

15.
Bacterial exonuclease III (ExoIII) is a multifunctional enzyme that uses a single active site to perform two conspicuous activities: (i) apurinic/apyrimidinic (AP)-endonuclease and (ii) 3′→5′ exonuclease activities. The AP endonuclease activity results in AP site incision, while the exonuclease activity results in the continuous excision of 3′ terminal nucleobases to generate a partial duplex for recruiting the downstream DNA polymerase during the base excision repair process (BER). The key determinants of functional selection between the two activities are poorly understood. Here, we use a series of mutational analyses and single-molecule imaging to unravel the pivotal rules governing these endo- and exonuclease activities at the single amino acid level. An aromatic residue, either W212 or F213, recognizes AP sites to allow for the AP endonuclease activity, and the F213 residue also participates in the stabilization of the melted state of the 3′ terminal nucleobases, leading to the catalytically competent state that activates the 3′→5′ exonuclease activity. During exonucleolytic cleavage, the DNA substrate must be maintained as a B-form helix through a series of phosphate-stabilizing residues (R90, Y109, K121 and N153). Our work decouples the AP endonuclease and exonuclease activities of ExoIII and provides insights into how this multifunctional enzyme controls each function at the amino acid level.  相似文献   

16.
During the establishment of an infection, bacterial pathogens encounter oxidative stress resulting in the production of DNA lesions. Majority of these lesions are repaired by base excision repair (BER) pathway. Amongst these, abasic sites are the most frequent lesions in DNA. Class II apurinic/apyrimidinic (AP) endonucleases play a major role in BER of damaged DNA comprising of abasic sites. Mycobacterium tuberculosis, a deadly pathogen, resides in the human macrophages and is continually subjected to oxidative assaults. We have characterized for the first time two AP endonucleases namely Endonuclease IV (End) and Exonuclease III (XthA) that perform distinct functions in M.tuberculosis. We demonstrate that M.tuberculosis End is a typical AP endonuclease while XthA is predominantly a 3′→5′ exonuclease. The AP endonuclease activity of End and XthA was stimulated by Mg2+ and Ca2+ and displayed a preferential recognition for abasic site paired opposite to a cytosine residue in DNA. Moreover, End exhibited metal ion independent 3′→5′ exonuclease activity while in the case of XthA this activity was metal ion dependent. We demonstrate that End is not only a more efficient AP endonuclease than XthA but it also represents the major AP endonuclease activity in M.tuberculosis and plays a crucial role in defense against oxidative stress.  相似文献   

17.
Most eukaryotic DNA replication is performed by A- and B-family DNA polymerases which possess a faithful polymerase activity that preferentially incorporates correct over incorrect nucleotides. Additionally, many replicative polymerases have an efficient 3′→5′ exonuclease activity that excises misincorporated nucleotides. Together, these activities contribute to overall low polymerase error frequency (one error per 106–108 incorporations) and support faithful eukaryotic genome replication. Eukaryotic DNA polymerase ϵ (Polϵ) is one of three main replicative DNA polymerases for nuclear genomic replication and is responsible for leading strand synthesis. Here, we employed pre-steady-state kinetic methods and determined the overall fidelity of human Polϵ (hPolϵ) by measuring the individual contributions of its polymerase and 3′→5′ exonuclease activities. The polymerase activity of hPolϵ has a high base substitution fidelity (10−4–10−7) resulting from large decreases in both nucleotide incorporation rate constants and ground-state binding affinities for incorrect relative to correct nucleotides. The 3′→5′ exonuclease activity of hPolϵ further enhances polymerization fidelity by an unprecedented 3.5 × 102 to 1.2 × 104-fold. The resulting overall fidelity of hPolϵ (10−6–10−11) justifies hPolϵ to be a primary enzyme to replicate human nuclear genome (0.1–1.0 error per round). Consistently, somatic mutations in hPolϵ, which decrease its exonuclease activity, are connected with mutator phenotypes and cancer formation.  相似文献   

18.
Thermotoga neapolitana (Tne) DNA polymerase belongs to the DNA polymerase I (Pol I) family. The O-helix region of these polymerases is involved in dNTP binding and also plays a role in binding primer–template during DNA synthesis. Here we report that mutations in the O-helix region of Tne DNA polymerase (Arg722 to His, Tyr or Lys) almost completely abolished the enzyme’s ability to catalyze the template-independent addition of a single base at the 3′-end of newly synthesized DNA in vitro. The mutations did not significantly affect the DNA polymerase catalytic activity and reduced base misinsertions 5- to 50-fold. The same Arg722 mutations dramatically increased the ability of the enzyme’s 3′→5′ exonuclease to remove mispaired 3′ bases in a primer extension assay. These mutant DNA polymerases can be used to accurately amplify target DNA in vitro for gene cloning and genotyping analysis.  相似文献   

19.
In eukaryotic DNA replication, DNA polymerase ε (Polε) is responsible for leading strand synthesis, whereas DNA polymerases α and δ synthesize the lagging strand. The human Polε (hPolε) holoenzyme is comprised of the catalytic p261 subunit and the noncatalytic p59, p17, and p12 small subunits. So far, the contribution of the noncatalytic subunits to hPolε function is not well understood. Using pre-steady-state kinetic methods, we established a minimal kinetic mechanism for DNA polymerization and editing catalyzed by the hPolε holoenzyme. Compared with the 140-kDa N-terminal catalytic fragment of p261 (p261N), which we kinetically characterized in our earlier studies, the presence of the p261 C-terminal domain (p261C) and the three small subunits increased the DNA binding affinity and the base substitution fidelity. Although the small subunits enhanced correct nucleotide incorporation efficiency, there was a wide range of rate constants when incorporating a correct nucleotide over a single-base mismatch. Surprisingly, the 3′→5′ exonuclease activity of the hPolε holoenzyme was significantly slower than that of p261N when editing both matched and mismatched DNA substrates. This suggests that the presence of p261C and the three small subunits regulates the 3′→5′ exonuclease activity of the hPolε holoenzyme. Together, the 3′→5′ exonuclease activity and the variable mismatch extension activity modulate the overall fidelity of the hPolε holoenzyme by up to 3 orders of magnitude. Thus, the presence of p261C and the three noncatalytic subunits optimizes the dual enzymatic activities of the catalytic p261 subunit and makes the hPolε holoenzyme an efficient and faithful replicative DNA polymerase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号