首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3-Chloroacetylpyridine--adenine dinucleotide phosphate is both active as a hydride acceptor and inactivates estradiol 17 beta-dehydrogenase. This coenzyme analogue behaves like an affinity label. The inactivation kinetics are discussed in relation to those observed with 3-chloroacetylpyridine--adenine dinucleotide. The pH dependence of the rate of inactivation, in combination with determination of the number of reactive cysteine residues, pointed to the alkylation of one cysteine residue/subunit. The stoichiometry was one molecule of dinucleotide per subunit and no cooperativity was detected. When 14C-labeled dinucleotide was used, the 14C label was found mainly in one peptide, accounting for 90% of the incorporated radioactivity, whereas in previous work it had been shown that 3-chloroacetylpyridine--adenine dinucleotide is an affinity reagent which labels three peptides.  相似文献   

2.
3-Chloroacetylpyridine--adenine dinucleotide, which is active as a hydride acceptor (Km = 0.6 mM), inactivates and alkylates estradiol 17beta-dehydrogenase. The kinetics of inactivation by 3-chloroacetylpyridine--adenine dinucleotide and the absence of inactivation by 3-chloroacetylpyridine ribose phosphate show that the alkylation follows the formation of a binary complex (Kd = 4.5 X 10(-4) M). Studies of the labelling by 3-chloro[2-14C]acetylpyridine--adenine dinucleotide and the rate of alkylation as a function of pH, give evidence to the alkylation of a cysteine, the stoichiometry being one mole per subunit. The 14C label is distributed between three chymotryptic peptides, one of which accounts for about 50% of the radioactive label.  相似文献   

3.
Treatment of 3-aminopyridine adenine dinucleotide phosphate with sodium periodate resulted in oxidation of the ribose linked to 3-aminopyridine ring and cleavage of the dinucleotide into 3-aminopyridine and adenosine moieties. These two moieties were separated by thin layer chromatography and were synergistically bound to pigeon liver malic enzyme (EC 1.1.1.40), causing inactivation of the enzyme. The inactivation showed saturation kinetics. The apparent binding constant for the reversible enzyme-reagent binary complex (KI) and the maximum inactivation rate constant at saturating reagent concentration (kmax) were found to be 1.1 +/- 0.02 mM and 0.068 +/- 0.001 min-1, respectively. L-Malate at low concentration enhanced the inactivation rate by lowering the KI value whereas high malate concentration increased the kmax. Mn2+ or NADP+ partially protected the enzyme from the inactivation and gave additive protection when used together. L-Malate eliminated the protective effect of NADP+ or Mn2+. Maximum and synergistic protection was afforded by NADP+, Mn2+ plus L-malate (or tartronate). Oxidized and cleaved 3-aminopyridine adenine dinucleotide phosphate was also found to be a competitive inhibitor versus NADP+ in the oxidative decarboxylation reaction catalyzed by malic enzyme with a Ki value of 4.1 +/- 0.1 microM. 3-Aminopyridine adenine dinucleotide phosphate or its periodate-oxidized cleaved products bound to the enzyme anticooperatively. Oxidized 3-aminopyridine adenine dinucleotide phosphate labeled the nucleotide binding site of the enzyme with a fluorescent probe which may be readily traced or quantified. The completely inactivated enzyme incorporated 2 mol of reagent/mol of enzyme tetramer. The inactivation was partially reversible by dilution and could be made irreversible by treating the modified enzyme with sodium borohydride. This fluorescent compound and its counterpart-oxidized 3-aminopyridine adenine dinucleotide may be a potential affinity label for all other NAD(P)+-dependent dehydrogenases.  相似文献   

4.
Suicide inactivation of fructose-1,6-bisphosphate aldolase   总被引:1,自引:0,他引:1  
2-Keto-4,4,4-trifluorobutyl phosphate (HTFP) was prepared from 3,3,3-trifluoropropionic acid. HTFP acts as an irreversible inhibitor of rabbit muscle aldolase: the loss of activity was time dependent and the inactivation followed a pseudo-first-order process. Values of 1.4 mM for the dissociation constant and 2.3 X 10(-2) s-1 for the reaction rate constant were determined. The kinetic constants do not depend on the enzyme concentration. No effect of thiols on the inactivation rate was detected. Only 1-2 mol of fluoride ions was liberated per inactivated subunit, indicative of a low partition ratio. Dihydroxyacetone phosphate protected the enzyme against the inactivation in a competitive manner, and glyceraldehyde 3-phosphate protected as if it formed a condensation product with HTPF. 5,5'-Dithiobis(2-nitrobenzoic acid) thiol titration showed the loss of one very reactive thiol group per enzyme subunit after inactivation. All those observations seem to agree with a suicide substrate inactivation of aldolase by HTPF.  相似文献   

5.
Nicotinamide adenine dinucleotide phosphate-specific isocitrate dehydrogenase was extracted from etiolated pea (Pisum sativum L.) seedlings and was purified 65-fold. The purified enzyme exhibits one predominant protein band by polyacrylamide gel electrophoresis, which corresponds to the dehydrogenase activity as measured by the nitro blue tetrazolium technique. The reaction is readily reversible, the pH optima for the forward (nicotinamide adenine dinucleotide phosphate reduction) and reverse reactions being 8.4 and 6.0, respectively. The enzyme has different cofactor and inhibitor characteristics in the two directions. Manganese ions can be used as a cofactor for the reaction in each direction but magnesium ions only act as a cofactor in the forward reaction. Zinc ions, and to a lesser extent calcium ions, inhibit the enzyme at low concentrations when magnesium but not manganese is the metal activator. It is suggested that there is a fundamental difference between magnesium and manganese in the activation of the enzyme. The enzyme shows normal kinetics and the Michaelis contant for each substrate was determined. The inhibition by nucleotides, nucleosides, reaction products, and related compounds was studied. The enzyme shows a linear response to the mole fraction of reduced nicotinamide adenine dinucleotide phosphate when total nicotinamide adenine dinucleotide phosphate (nicotinamide adenine dinucleotide phosphate plus reduced nicotinamide adenine dinucleotide phosphate) is kept constant. Isocitrate in the presence of divalent metal ions will protect the enzyme from inactivation by p-chloromercuribenzoate. Protection is also afforded by manganese ions alone but not by magnesium ions alone There is a concerted inhibition of the enzyme by oxalacetate and glyoxylate.  相似文献   

6.
The analogue of NAD+, 4-chloroacetylpyridine-adenine dinucleotide (clac4PdAD+), inactivated the glyceraldehyde-3-phosphate dehydrogenase from sturgeon at a high rate. An affinity labeling was shown to occur with clac4PdAD+. The mononucleotide 4-chloroacetylpyridine 1-beta-D-ribose 5'-phosphate (clac4PdMN+) reacted with the enzyme in a second-order reaction whose rate was much smaller than that calculated for clac4PdAD+ taken as a second-order rate reagent. The rate of the reaction of clac4PdAD+ with the enzyme was determined by stopped flow, using as a probe the long-wavelength absorption maximum (430 nm) formed concomitantly with inactivation of the enzyme. Computer-assisted graphic simulation showed that the clac4PdAD+ analogue could bind to the active site of the enzyme from Bacillus stearothermophilus in a similar manner to that of NAD+, and that the reactive carbon and the reactive thiolate of Cys-149 were within bonding distance. The absorption at 430 nm was linearly proportional to the substoichiometric concentration of clac4PdAD+/mole subunit. Thiol titration suggested the modification of one thiol residue per subunit. The modified thiol was identified by degradation as Cys-149. In contrast to the absorption band generated during the reaction of the 3-chloroacetylpyridine-adenine dinucleotide (clac3PdAD+) with the same enzyme [Eur. J. Biochem. (1982) 127, 519-524; 129, 437-446], enzyme inactivated with clac4PdAD+ and clac4PdMN+ exhibited an absorption maximum at long wavelength which was still present after denaturation. The chromophore is proposed to be the enol form of the alpha-thioether ketone produced by alkylation of the thiolate of Cys-149 by the chloroacetyl group.  相似文献   

7.
Diazotized 3-aminopyridine adenine dinucleotide has been found to modify four sulfhydryl groups per molecule of enzyme during the complete inactivation of yeast alcohol dehydrogenase. The reaction of sulfhydryl groups was indicated by titration studies with 5,5-dithiobis(2-nitrobenzoic acid) as well as isolation and quantitation of the cysteinyl derivative released by acid hydrolysis of the modified enzyme. The cysteinyl derivative was identified as S-(3-pyridyl)cysteine. Authentic S-(3-pyridyl)cystein was synthesized and structurally characterized for these studies. Diazonium-sulfhydryl reactions were demonstrated for a number of diazonium derivatives with cysteine, homocysteine, glutathione, and mercaptoethanol at 0-4 degrees and neutral pH. Second order rate constants were determined in reactions of these sulfhydryl compounds with diazotized 1-methyl-3-aminopyridinium chloride, diazotized 3-aminopyridine adenine dinucleotide, and diazotized 3-aminopyridine adenine dinucleotide phosphate.  相似文献   

8.
During reaction with [14C]iodoacetamide at pH 6.3, radioactivity was incorporated primarily into a single Klebsiella aerogenes urease peptide concomitant with activity loss. This peptide was protected from modification at pH 6.3 by inclusion of phosphate, a competitive inhibitor of urease, which also protected the enzyme from inactivation. At pH 8.5, several peptides were alkylated; however, modification of one peptide, identical to that modified at pH 6.3, paralleled activity loss. The N-terminal amino acid sequence and composition of the peptide containing the essential thiol was determined. Previous enzyme inactivation studies of K. aerogenes urease could not distinguish whether one or two essential thiols were present per active site (Todd, M. J., and Hausinger, R. P. (1991) J. Biol. Chem. 266, 10260-10267); we conclude that there is a single essential thiol present and identify this residue as Cys319 in the large subunit of the heteropolymeric enzyme.  相似文献   

9.
Using conditions that produced chronic inflammation in rat liver, we were able to find a correlation between induction of nitric oxide production and inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12). This enzyme is a tetramer composed of identical M(r) 37,000 subunits. The tetramer contains 16 thiol groups, four of which are essential for enzymatic activity. Our information indicates that four thiol groups are S-nitrosylated by exposure to authentic nitric oxide (NO) gas. Furthermore, NO decreased GAPDH activity while increasing its auto-ADP-ribosylation. Reduced nicotinamide adenine dinucleotide and dithiothreitol are required for the S-nitrosylation of GAPDH caused by the NO-generating compound sodium nitroprusside. Our results suggests that a new and important action of nitric oxide on cells is the S-nitrosylation and inactivation of GAPDH. S-Nitrosylation of GAPDH may be a key covalent modification of multiple regulatory consequences in chronic liver inflammation.  相似文献   

10.
H Y Neujahr 《Biochemistry》1988,27(10):3770-3775
Spectrophotometric titration of phenol hydroxylase (EC 1.14.13.7) with phenol indicated interacting sites for phenol binding. In the absence of added thiol, the cooperativity was positive up to a pH around 8.0 but negative at higher pH values. With added thiol-ethylenediaminetetraacetate, the cooperativity was negative at all investigated pH values. Conversely, a corresponding titration of an enzyme preparation that had been selectively modified in its two most reactive SH groups indicated positive cooperativity at all studied pH values. This selective modification affects the activity of the enzyme to a very minor degree, in contrast to more extensive SH blocking, which displaces flavin adenine dinucleotide with a corresponding loss of activity [Neujahr, H. Y., & Gaal, A. (1975) Eur. J. Biochem. 58, 351-357]. The reactivity of SH groups in the enzyme was significantly decreased after turnover. Thiol treatment restored it to that of the native enzyme. Adding phenol prior to reduced nicotinamide adenine dinucleotide phosphate (NADPH) in the assay of phenol hydroxylase gave immediate linearity and higher initial rates than when NADPH was added first. In the absence of added thiol, there was then a shift of the pH optimum. The results indicate slow conformational changes limiting the rate of the overall reaction. The two most reactive SH groups of phenol hydroxylase, though not participating in any obvious redox reactions, are important for these slow conformational changes and for the cooperativity of phenol-binding sites, wherein the anionic S- forms may be involved (pKa for cysteine is 8.35).  相似文献   

11.
1. The inactivation of rat skeletal muscle AMP deaminase by Dnp-F (1-fluoro-2,4-dinitrobenzene) is accompanied by the arylation of thiol, amino and phenolic hydroxyl groups. 2. The number of thiol groups that react with Dnp-F is about 12; this is the number that reacts with Nbs2 [5,5'-dithiobis-(2-nitrobenzoic acid)] and N-ethylmaleimide without loss of enzyme activity, and it appears to be the same thiol groups that all three reagents attack. 3. Dinitrophenylation of these reactive SH groups is not the cause of inactivation, since active N-ethylmaleimide-substituted enzyme is also inactivated by Dnp-F.4. Complete inactivation of the N-ethylmaleimide-treated AMP deaminase occurs when about six tyrosine and two lysine residues are dinitrophenylated. 5. Since the treatment of Dnp-enzyme with 2-mercaptoethanol restores much of the enzyme activity, inactivation of AMP deaminase by Dnp-F is probably largely due to modification of tyrosine residues. 6. The kinetic properties of the Dnp-enzyme indicate that a marked decrease in V occurs only after extensive enzyme modification. The decreased activity after slight inactivation results from modification of Km.  相似文献   

12.
1. A method is described for the estimation of thiol ester groups. The thiol ester is converted into the corresponding thiol by reaction with ammonia; the thiol is then titrated amperometrically with mercuric chloride. 2. The method may be used in the presence of SH and S.S groups. The SH groups are titrated at pH3 in the presence of excess of chloride; under these conditions thiol esters do not react with mercuric chloride. Thiol ester plus thiol is then estimated by titration after reaction with ammonia. Finally, titration after reaction with ammonia and sulphite gives the thiol ester plus thiol plus disulphide. 3. The procedure has been applied to glyceraldehyde phosphate dehydrogenase. The enzyme was found to contain 15-16 SH groups/mol. and no S.S groups. After reaction with acetyl phosphate 1.8-3.5 thiol ester groups were detected, the number depending on the conditions of acetylation. In the absence of bound NAD, the number of thiol ester groups formed was 1.8/mol., although a value of 2.9 labile acetyl groups/mol. was given by the method of Lipmann & Tuttle (1945). The presence of thiol ester groups in the S-(d-3-phosphoglyceryl)-enzyme was also demonstrated.  相似文献   

13.
S R Earle  S G O'Neal  R R Fisher 《Biochemistry》1978,17(22):4683-4690
Chemical-modification studies on submitochondrial particle pyridine dinucleotide transhydrogenase (EC 1.6.1.1) demonstrate the presence of one class of sulfhydryl group in the nicotinamide adenine dinucleotide phosphate (NADP) site and another peripheral to the active site. Reaction of the peripheral sulfhydryl group with N-ethylmaleimide, or both classes with 5,5'-dithiobis(2-nitrobenzoic acid), completely inactivated transhydrogenase. NADP+ or NADPH nearly completely protected against 5,5'-dithiobis(2-nitrobenzoic acid) inactivation and modification of both classes of sulfhydryl groups, while NADP+ only partially protected against and NADPH substantially stimulated N-ethylmaleimide inactivation. Methyl methanethiolsulfonate treatment resulted in methanethiolation at both classes of sulfhydryl groups, and either NADP+ or NADPH protected only the NADP site group. S-Methanethio and S-cyano transhydrogenases were active derivatives with pH optima shifted about 1 unit lower than that of the native enzyme. These experiments indicate that neither class of sulfhydryl group is essential for transhydrogenation. Lack of involvement of either sulfhydryl group in energy coupling to transhydrogenation is suggested by the observations that S-methanethio transhydrogenase is functional in (a) energy-linked transhydrogenation promoted by phenazine methosulfate mediated ascorbate oxidation and (b) the generation of a membrane potential during the reduction of NAD+ by reduced nicotinamide adenine dinucleotide phosphate (NADPH).  相似文献   

14.
1. Rat liver and heart major isoenzymes of NADP-isocitrate dehydrogenase have each been purified about 100-fold by a combination of ammonium sulphate fractionation and chromatography on ion-exchange cellulose and their properties compared. 2. The properties were similar in respect of pH, inhibition by Hg(2+) and Michaelis constants for isocitrate and NADP. 3. Some of the properties of the isoenzymes were different. 4. The heart isoenzyme was activated about 210% by 0.8m-ammonium sulphate whereas the liver isoenzyme was unaffected. The heart isoenzyme showed greater sensitivity to inactivation by heat (30 degrees C for 30min), whereas the liver isoenzyme was more sensitive to inactivation by p-chloromercuribenzoate and by Cu(2+). 5. The Michaelis constants with 3-acetylpyridine-adenine dinucleotide phosphate showed a twofold difference between liver and heart isoenzyme. 6. The differential sensitivity to heat and its mainly non-cytoplasmic location may be an explanation of the failure of plasma isocitrate dehydrogenase activity to increase after a myocardial infarction.  相似文献   

15.
The kinetics of Klebsiella aerogenes urease inactivation by disulfide and alkylating agents was examined and found to follow pseudo-first-order kinetics. Reactivity of the essential thiol is affected by the presence of substrate and competitive inhibitors, consistent with a cysteine located proximal to the active site. In contrast to the results observed with other reagents, the rate of activity loss in the presence of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) saturated at high reagent concentrations, indicating that DTNB must first bind to urease before inactivation can occur. The pH dependence for the rate of urease inactivation by both disulfide and alkylating agents was consistent with an interaction between the thiol and a second ionizing group. The resulting macroscopic pKa values for the 2 residues are less than 5 and 12. Spectrophotometric studies at pH 7.75 demonstrated that 2,2'-dithiodipyridine (DTDP) modified 8.5 +/- 0.2 mol of thiol/mol of enzyme or 4.2 mol of thiol/mol of catalytic unit. With the slow tight binding competitive inhibitor phenyl-phosphorodiamidate (PPD) bound to urease, 1.1 +/- 0.1 mol of thiol/mol of catalytic unit were protected from modification. PPD-bound DTDP-modified urease could be reactivated by dialysis, consistent with the presence of one thiol per active site. Analogous studies at pH 6.1, using the competitive inhibitor phosphate, confirmed the presence of one protected thiol per catalytic unit. Under denaturing conditions, 25.5 +/- 0.3 mol of thiol/mol of enzyme (Mr = 211, 800) were modified by DTDP.  相似文献   

16.
Dimeric rat liver acid phosphatase P1 of Mr 92,000 is inactivated by p-chloromercuribenzoate and fluorescein mercuriacetate (FMA). The enzyme is protected against the mercurials by the substrate analogue Pi. The reaction with FMA is accompanied by changes in absorbance at 495 nm and in fluorescence emission at 520 nm that are characteristic of reaction of this compound with thiol groups. Titration of P1 with FMA monitored by spectrophotometry or by fluorimetry indicated that equivalence is reached at an FMA/P1 ratio of 3. Since FMA can act as a bifunctional reagent, it is likely that P1 contains either 3 or 6 reactive thiol groups per molecule. Analysis of FMA inactivation/modification data by a statistical method suggests that of 6 reactive thiol groups, 2 are essential so that there are probably 3 thiol groups per subunit, one of which is located at the active site. If the total thiol number is 3, analysis suggests 1 essential thiol per subunit.  相似文献   

17.
Late during sporulation, Bacillus subtilis produces glucose dehydrogenase (GlcDH; EC 1.1.1.47), which can react with D-glucose or 2-deoxy-D-glucose and can use nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) as a cofactor. This enzyme is found mainly in the forespore compartment and is present in spores; it is probably made exclusively in the forespore. The properties of GlcDH were determined both in crude cell extracts and after purification. The enzyme is stable at pH 6.5 but labile at pH 8 or higher; the pH optimum of enzyme activity is 8. After inactivation at pH 8, the activity can be recovered in crude extracts, but not in solutions of the purified enzyme, by incubation with 3 M KCl and 5 mM NAD or NADP. As determined by gel filtration, enzymatically active GlcDH has a molecular weight of about 115,000 (if the enzyme is assumed to be globular). GlcDH is distinct from a catabolite-repressible inositol dehydrogenase (EC 1.1.1.18), which can also react with D-glucose, requires specifically NAD as a cofactor, and has an electrophoretic mobility different from that of GlcDH.  相似文献   

18.
Biliverdin reductase (molecular form 1, EC 1.3.1.24, bilirubin:NAD(P)+ oxidoreductase) carries three thiol residues. Only one of them could be alkylated when a ratio N-ethylmaleimide (NEM)/mol enzyme's SH = 90 was used. The alkylation of this thiol group inhibited the conversion of molecular form 1 to its dimer, molecular form 3; however, it did not inhibit the enzymatic activity. At a ratio of NEM/enzyme's SH = 300, two thiol residues were alkylated and the activity of the enzyme was totally inhibited. The third thiol group could not be alkylated either by NEM or by iodoacetamide. Biliverdin as well as the co-substrate NADPH protected the thiol residue essential for the enzymatic activity from alkylation. Spectroscopic evidence was obtained that this thiol group binds covalently to the C-10 of biliverdin to form a rubinoid adduct. The presence of a lysine residue, which is also essential for the enzymatic activity, could be inferred from the fact that by reduction of the Schiff base formed by the enzyme with pyridoxal phosphate the catalytic activity was irreversibly abolished. The location of a lysine residue in the vicinity of the thiol group involved in the catalytic activity was evident when the enzyme was treated with o-phthalaldehyde. The inactivation of the enzymatic activity was coincident with the formation of the fluorescent isoindole derivative which originates when the thiol and epsilon-NH2 groups are located about 3 A apart. The presence of a positively charged ammonium ion in the vicinity of the NADPH binding site was inferred from the shifts in the UVmax of NADPH from 340 nm to 327 nm and of 3-acetyl NADPH from 360 nm to 348 nm when the pyridine nucleotides bind to the reductase. The involvement of arginine residues in the enzymatic activity was established by inhibition of the latter after reaction with butanedione. This inhibition was totally protected by NADPH but not by biliverdin. The similarity of the structural features of biliverdin reductase with those of several dehydrogenases is discussed.  相似文献   

19.
An alkylating analogue of NADP+ the 3-chloroacetylpyridine adenine dinucleotide phosphate was prepared from 3-diazoacetylpyridine adenine dinucleotide phosphate which was obtained by enzymatic transglucosidation of NADP+. The 3-diazoacetylpyridine adenine dinucleotide phosphate proved to be more unstable when compared to the corresponding NAD+ analogue. The alkylation of several dehydrogenases using this alkylating analogue is mentioned.  相似文献   

20.
Carbamoyl phosphate synthetase (CPS) from Escherichia coli catalyzes the formation of carbamoyl phosphate from 2 mol of ATP, bicarbonate, and glutamine. CPS was inactivated by the glutamine analog, acivicin. In the presence of ATP and bicarbonate the second-order rate constant for the inactivation of the glutamine-dependent activities was 4.0 x 10(4) m(-1) s(-1). In the absence of ATP and bicarbonate the second-order rate constant for inactivation of CPS was reduced by a factor of 200. The enzyme was protected against inactivation by the inclusion of glutamine in the reaction mixture. The ammonia-dependent activities were unaffected by the incubation of CPS with acivicin. These results are consistent with the covalent labeling of the glutamine-binding site located within the small amidotransferase subunit. The binding of ATP and bicarbonate to the large subunit of CPS must also induce a conformational change within the amidotransferase domain of the small subunit that enhances the nucleophilic character of the thiol group required for glutamine hydrolysis. The acivicin-inhibited enzyme was crystallized, and the three-dimensional structure was determined by x-ray diffraction techniques. The thiol group of Cys-269 was covalently attached to the dihydroisoxazole ring of acivicin with the displacement of a chloride ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号