首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endotoxin (lipopolysaccharide, LPS) is a component of the outer membrane of Gram-negative bacteria and promotes the activation of macrophages and microglia. Although these cells are highly LPS-responsive, they serve unique tissue-specific functions and exhibit different LPS sensitivities. Accordingly, it was of interest to evaluate whether these biological differences reside in variations within LPS signaling pathways between these two cell types. Because the mitogen-activated protein kinases ERK-1 and ERK-2 have been implicated in the control of many immune responses, we tested the concept that they are a key indicator for differences in cellular LPS sensitivity. We observed that murine RAW 264.7 macrophages and murine BV-2 microglial cells both respond to LPS by exhibiting increased IkappaBalpha degradation, enhanced NF-kappaB DNA binding activity, and elevated nitric oxide and interleukin-1beta production. Although LPS potently stimulates ERK activation in RAW 264.7 macrophages, it does not activate ERK-1/-2 in BV-2 microglia. Moreover, antagonism of the MEK/ERK pathway potentiates LPS-stimulated nitric oxide production, suggesting that LPS-stimulated ERK activation can exert inhibitory effects in macrophage-like cells. These data support the idea that ERK activation is not a required function of LPS-mediated signaling events and illustrate that alternative/additional pathways for LPS action exist in these cell types.  相似文献   

2.
BACKGROUND: Tumor necrosis factor (TNF) production by macrophages plays an important role in the host response to infection. TNF-alpha gene expression in RAW 264.7 macrophages is predominantly regulated at the translational level. A key element in this regulation is an AU-rich (AUR) sequence located in the 3' untranslated region (UTR) of TNF mRNA. In unstimulated macrophages, the translation of TNF mRNA is inhibited via this AUR sequence. Upon stimulation with LPS, this repression is overcome and translation occurs. In this study, we attempted to identify cellular proteins that interact with the AUR sequence and thereby regulate TNF mRNA translation. MATERIALS AND METHODS: RNA probes corresponding to portions of TNF mRNA 3' UTR were synthesized. These labeled RNAs were incubated with cytoplasmic extracts of either unstimulated or lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophages. The RNA/protein complexes formed were analyzed by gel retardation. Ultraviolet (UV) cross-linking experiments were performed to determine the molecular weight of the proteins involved in the complexes. RESULTS: TNF mRNA AUR sequence formed two complexes (1 and 2) of distinct electrophoretic mobilities. While the formation of complex 1 was independent of the activation state of the macrophages from which the extracts were obtained, complex 2 was detected only using cytoplasmic extracts from LPS-stimulated macrophages. Upon UV cross-linking, two proteins, of 50 and 80 kD, respectively, were capable of binding the UAR sequence. The 50-kD protein is likely to be part of the LPS-inducible complex 2, since its binding ability was enhanced upon LPS stimulation. Interestingly, complex 2 formation was also triggered by Sendaï virus infection, another potent activator of TNF mRNA translation in RAW 264.7 macrophages. In contrast, complex 2 was not detected with cytoplasmic extracts obtained from B and T cell lines which are unable to produce TNF in response to LPS. Protein tyrosine phosphorylation is required for LPS-induced TNF mRNA translation. Remarkably, the protein tyrosine phosphorylation inhibitor herbimycin A abolished LPS-induced complex 2 formation. Complex 2 was already detectable after 0.5 hr of LPS treatment and was triggered by a minimal LPS dose of 10 pg/ml. CONCLUSIONS: The tight correlation between TNF production and the formation of an LPS-inducible cytoplasmic complex suggests that this complex plays a role in the translational regulation of TNF mRNA.  相似文献   

3.
The effect of bacterial lipopolysaccharide (LPS) on macrophage receptors for tumor necrosis factor/cachectin (TNF-R) was studied. At equilibrium, iodinated recombinant human TNF alpha (rTNF alpha) bound to 1100 +/- 200 sites/cell on macrophage-like RAW 264.7 cells with a Kd of 1.3 +/- 0.1 x 10(-9) M. Preexposure of RAW 264.7 cells to 10 ng/ml LPS for 1 h at 37 degrees C resulted in complete loss of cell surface TNF alpha binding sites. 50% loss ensued after 1 h with 0.6 ng/ml LPS, or after 15 min with 10 ng/ml LPS. Complete loss of TNF alpha binding sites occurred without change in numbers of complement receptor type 3. No decrease in TNF-R followed preexposure to LPS at 4 degrees C, nor could LPS displace 125I-rTNF alpha from its binding sites. Although TNF-R disappeared from the surface of intact macrophages following exposure to LPS, specific TNF alpha binding sites were unchanged in permeabilized macrophages, indicating that TNF-R were rapidly internalized. Conditioned media from LPS-treated RAW 264.7 cells induced 30% down-regulation of TNF-R on macrophages from LPS-hyporesponsive mice (C3H/HeJ), suggesting that a soluble macrophage product may be responsible for a minor portion of the LPS effect. Additional evidence against endogenous TNF alpha being the major cause of TNF-R internalization was the rapid onset of the effect of LPS on TNF-R compared to the reported onset of TNF alpha production, the relatively high concentrations of exogenous rTNF alpha required to mimic the effect of LPS, and the inability of TNF alpha-neutralizing antibody to block the effect of LPS. LPS-induced down-regulation of TNF-R was complete or nearly complete not only in RAW 264.7 cells, but also in primary macrophages of both human and murine origin, was less marked in human endothelial cells, and was absent in human granulocytes and melanoma cells and mouse L929 cells. Thus, in situ, macrophages and some other host cells may be resistant to the actions of TNF alpha produced during endotoxinemia, because such cells may internalize their TNF-R in response to LPS before TNF alpha is produced.  相似文献   

4.
The MEK kinase TPL-2 (also known as Cot) is required for lipopolysaccharide (LPS) activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase cascade in macrophages and consequent upregulation of genes involved in innate immune responses. In resting cells, TPL-2 forms a stoichiometric complex with NF-kappaB1 p105, which negatively regulates its MEK kinase activity. Here, it is shown that lipopolysaccharide (LPS) stimulation of primary macrophages causes the release of both long and short forms of TPL-2 from p105 and that TPL-2 MEK kinase activity is restricted to this p105-free pool. Activation of TPL-2, MEK, and ERK by LPS is also demonstrated to require proteasome-mediated proteolysis. p105 is known to be proteolysed by the proteasome following stimulus-induced phosphorylation of two serines in its PEST region by the IkappaB kinase (IKK) complex. Expression of a p105 point mutant, which is not susceptible to signal-induced proteolysis, in RAW264.7 macrophages impairs LPS-induced release of TPL-2 from p105 and its subsequent activation of MEK. Furthermore, expression of wild-type but not mutant p105 reconstitutes LPS stimulation of MEK and ERK phosphorylation in primary NF-kappaB1-deficient macrophages. Consistently, pharmacological blockade of IKK inhibits LPS-induced release of TPL-2 from p105 and TPL-2 activation. These data show that IKK-induced p105 proteolysis is essential for LPS activation of TPL-2, thus revealing a novel function of IKK in the regulation of the ERK MAP kinase cascade.  相似文献   

5.
Chronic obstructive pulmonary disease (COPD) is characterized by intense lung infiltrations of immune cells (macrophages and monocytes). Lipopolysaccharide (LPS) activates macrophages/monocytes, leading to production of tumor necrosis factor α (TNFα) and other cytokines, which cause subsequent lung damages. In the current study, our results demonstrated that AS-703026, a novel MEK/ERK inhibitor, suppressed LPS-induced TNFα mRNA expression and protein secretion in RAW 264.7 murine macrophages, and in murine bone marrow-derived macrophages (BMDMs). Meanwhile, TNFα production in LPS-stimulated COPD patents’ peripheral blood mononuclear cells (PBMCs) was also repressed by AS-703026. At the molecular level, we showed that AS-703026 blocked LPS-induced MEK/ERK activation in above macrophages/monocytes. However, restoring ERK activation in AS-703026-treated RAW 264.7 cells by introducing a constitutive-actively (CA)-ERK1 only partially reinstated LPS-mediated TNFα production. Meanwhile, AS-703026 could still inhibit TNFα response in ERK1/2-depleted (by shRNA) RAW 264.7 cells. Significantly, we found that AS-703026 inhibited LPS-induced nuclear factor κB (NFκB) activation in above macrophages and COPD patients’ PBMCs. In vivo, oral administration of AS-703026 inhibited LPS-induced TNFα production and endotoxin shock in BALB/c mice. Together, we show that AS-703026 in vitro inhibits LPS-induced TNFα production in macrophages/monocytes, and in vivo protects mice from LPS-induced endotoxin shock. Thus, it could be further studied as a useful anti-inflammatory therapy for COPD patients.  相似文献   

6.
Lactoferrin (LF) is a component of innate immunity and is known to interact with accessory molecules involved in the TLR4 pathway, including CD14 and LPS binding protein, suggesting that LF may activate components of the TLR4 pathway. In the present study, we have asked whether bovine LF (bLF)-induced macrophage activation is TLR4-dependent. Both bLF and LPS stimulated IL-6 production and CD40 expression in RAW 264.7 macrophages and in BALB/cJ peritoneal exudate macrophages. However, in macrophages from congenic TLR4(-/-) C.C3-Tlr4(lps-d) mice, CD40 was not expressed while IL-6 secretion was increased relative to wild-type cells. The signaling components NF-kappaB, p38, ERK and JNK were activated in RAW 264.7 cells and BALB/cJ macrophages after bLF or LPS stimulation, demonstrating that the TLR4-dependent bLF activation pathway utilizes signaling components common to LPS activation. In TLR4 deficient macrophages, bLF-induced activation of NF-kappaB, p38, ERK and JNK whereas LPS-induced cell signaling was absent. We conclude from these studies that bLF induces limited and defined macrophage activation and cell signaling events via TLR4-dependent and -independent mechanisms. bLF-induced CD40 expression was TLR4-dependent whereas bLF-induced IL-6 secretion was TLR4-independent, indicating potentially separate pathways for bLF mediated macrophage activation events in innate immunity.  相似文献   

7.
5-Aminoimidazole-4-carboxamide riboside (AICAR) is an adenosine analog and a widely used activator of AMP-activated protein kinase (AMPK). We examined the effect of AICAR on LPS-induced TNF-alpha production in RAW 264.7 and peritoneal macrophages and its molecular mechanism in RAW 264.7 macrophages. Treatment with AICAR inhibited LPS-induced increases in TNF-alpha mRNA and protein levels in these cells. AICAR or LPS did not alter the AMPK activity as well as the phosphorylations of AMPK alpha (Thr172) and ACC (Ser79). Moreover, an adenosine kinase inhibitor 5'-iodotubercidin enhanced the suppressive effect of AICAR on TNF-alpha levels. These results suggest that the effect of AICAR on TNF-alpha suppression in RAW 264.7 cells is independent of AMPK activation. In addition, an adenosine receptor antagonist 8-SPT had no effect on AICAR-induced suppression of TNF-alpha levels. Finally, we observed that AICAR inhibited LPS-induced activation of PI 3-kinase and Akt, whereas it had no effect on the activation of p38 and ERK1/2. Taken together, these results suggest that the anti-inflammatory action of AICAR in RAW 264.7 macrophages is independent of AMPK activation and is associated with inhibition of LPS-induced activation of PI 3-kinase/Akt pathway.  相似文献   

8.
Lipopolysaccharide (LPS) is a potent activator of tumor necrosis factor-alpha (TNF-alpha) production by macrophages. LPS stimulates the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and increases TNF-alpha mRNA and protein accumulation in RAW 264.7 murine macrophages. However, the role of ERK1/2 activation in mediating LPS-stimulated TNF-alpha production is not well understood. Inhibition of ERK1/2 activation with PD-98059 or overexpression of dominant negative ERK1/2 decreased LPS-induced TNF-alpha mRNA quantity. LPS rapidly increased early growth response factor (Egr)-1 binding to the TNF-alpha promoter; this response was blunted in cells treated with PD-98059 or transfected with dominant-negative ERK1/2. Using a chloramphenicol acetyltransferase reporter gene linked to the Egr-1 promoter, we show that LPS increased Egr-1 promoter activity via an ERK1/2-dependent mechanism. These results delineate the role of ERK1/2 activation of Egr-1 activity in mediating LPS-induced increases in TNF-alpha mRNA expression in macrophages.  相似文献   

9.
Lipopolysaccharide (LPS) treatment of monocytic cells has been shown to activate the Raf-1/mitogen-activated protein kinase (MAPK) signaling pathway and to increase secretory interleukin-1 receptor antagonist (sIL-1Ra) gene expression. The significance of the activation of the Raf-1/MAPK signaling pathway to LPS regulation of sIL-1Ra gene expression, however, has not been determined. This study addresses the role of the Raf-1/MAPK signaling pathway in regulation of sIL-1Ra gene expression by LPS. Cotransfection of the murine macrophage cell line RAW 264.7 with a 294-bp sIL-1Ra promoter/luciferase construct (pRA-294-luc) and a constitutively active Raf-1 kinase expression vector (pRSV-Raf-BXB) resulted in induction of sIL-1Ra promoter activity, indicating that Raf-1, like LPS, can regulate sIL-1Ra promoter activity. An in vitro MAPK analysis indicated that both LPS treatment and pRSV-Raf-BXB transfection of RAW 264.7 cells increases p42 MAPK activity. An in vitro Raf-1 kinase assay, however, failed to detect LPS-induced Raf-1 kinase activity in RAW 264.7 cells, suggesting that in RAW 264.7 cells, Raf-1 kinase is not an activating component of the LPS signaling pathway regulating MAPK activity or sIL-1Ra promoter activity. This observation was supported by results from transfection studies which demonstrated that expression of a dominant-inhibitory Raf-1 mutant in RAW 264.7 cells does not inhibit LPS-induced MAPK activity or sIL-1Ra promoter activity, indicating that LPS-induced sIL-1Ra promoter activation occurs independent of the Raf-1/MAPK signaling pathway. In additional studies, cotransfection of RAW 264.7 cells with pRA-294-luc and increasing amounts of pRSV-Raf-BXB caused a dose-dependent inhibition of LPS-induced sIL-1Ra promoter activity, indicating that the role of the Raf-1 pathway in the regulation of sIL-1Ra promoter activity by LPS is as an antagonizer. Interestingly, LPS treatment of RAW 264.7 cells, cotransfected with pRA-294-luc and pRSV-Raf-BXB, also inhibited pRSV-Raf-BXB-induced sIL-1Ra promoter activity, suggesting that inductions of sIL-1Ra promoter activity by LPS and Raf-1 actually occur by mutually antagonistic mechanisms. In support of this conclusion, sIL-1Ra promoter mapping studies indicated that LPS and Raf-1 responses localized to different regions of the sIL-1Ra promoter. Further studies demonstrated that mutual antagonism between the LPS and Raf-1 kinase pathways is not promoter specific, as the same phenomenon is observed in assays using a c-fos enhancer/thymidine kinase promoter/luciferase construct (pc-fos-TK81-luc). Additionally, mutual antagonism with regard to sIL-1Ra promoter activity also was observed between the LPS and MEK kinase pathways, indicating that mutual antagonism can occur in more than one MAPK activation pathway.  相似文献   

10.
11.
Lipopolysaccharide (LPS) signaling is critical for the innate immune response to gram-negative bacteria. Here, evidence is presented for LPS stimulation of sphingosine kinase (SPK) in the RAW 264.7 murine macrophage cell line and rat primary hepatic macrophages (HMs). LPS treatment of RAW 264.7 cells resulted in a time- and dose-dependent activation of SPK and membrane translocation of SPK1. Further, LPS-induced SPK activation was blocked by SPK1-specific small interfering RNA (siRNA). Overexpression of Toll-like receptor 4 and MD2, the receptor and coreceptor of LPS, in HEK 293 cells activated SPK activity in the absence of LPS treatment. Inhibition of SPK by the pharmacological inhibitor N,N-dimethylsphingosine (DMS) or SPK1-specific siRNA blocked LPS stimulation of extracellular signal-regulated kinase 1/2 and p38 but enhanced LPS-induced c-Jun N-terminal kinase activation. The SPK inhibitor DMS and dominant-negative SPK1 also blocked LPS activation of Elk-1 and NF-kappaB reporters in RAW 264.7 cells. Inhibition of SPK sensitized RAW 264.7 cells and HMs to LPS-induced apoptosis. These data demonstrate the critical role of SPK1 in LPS signaling in macrophages and suggest that SPK1 is a potential therapeutic target to block hyperimmune responses induced by gram-negative bacteria.  相似文献   

12.
Irie T  Muta T  Takeshige K 《FEBS letters》2000,467(2-3):160-164
Stimulation of monocytes/macrophages with lipopolysaccharide (LPS) results in activation of nuclear factor-kappaB (NF-kappaB), which plays crucial roles in regulating expression of many genes involved in the subsequent inflammatory responses. Here, we investigated roles of transforming growth factor-beta activated kinase 1 (TGF-TAK1), a mitogen-activated protein kinase kinase kinase (MAPKKK), in the LPS-induced signaling cascade. A kinase-negative mutant of TAK1 inhibited the LPS-induced NF-kappaB activation both in a macrophage-like cell line, RAW 264.7, and in human embryonic kidney 293 cells expressing toll-like receptor 2 or 4. Furthermore, we demonstrated that endogenous TAK1 is phosphorylated upon simulation of RAW 264.7 cells with LPS. These results indicate that TAK1 functions as a critical mediator in the LPS-induced signaling pathway.  相似文献   

13.
Gangliosides are known to specifically inhibit vascular leukocyte recruitment and consequent interaction with the injured endothelium, the basic inflammatory process. In this study, we have found that the production of nitric oxide (NO), a main regulator of inflammation, is suppressed by GM3 on murine macrophage RAW 264.7 cells, when induced by LPS. In addition, GM3 attenuated the increase in cyclooxyenase‐2 (COX‐2) protein and mRNA levels in lipopolysaccharide (LPS)‐activated RAW 264.7 cells in a dose‐dependent manner. Moreover, GM3 inhibited the expression and release of pro‐inflammatory cytokines of tumor necrosis factor‐alpha (TNF‐α), interleukin‐6 (IL‐6), and interleukin‐1β (IL‐1β) in RAW 264.7 macrophages. At the intracellular level, GM3 inhibited LPS‐induced nuclear translocation of nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) and activator protein (AP)‐1 in RAW 264.7 macrophages. We, therefore, investigated whether GM3 affects mitogen‐activated protein kinase (MAPK) phosphorylation, a process known as the upstream signaling regulator. GM3 dramatically reduced the expression levels of the phosphorylated forms of ERK, JNK, and p38 in LPS‐activated RAW 264.7 cells. These results indicate that GM3 is a promising suppressor of the vascular inflammatory responses and ganglioside GM3 suppresses the LPS‐induced inflammatory response in RAW 264.7 macrophages by suppression of NF‐κB, AP‐1, and MAPKs signaling. Accordingly, GM3 is suggested as a beneficial agent for the treatment of diseases that are associated with inflammation.  相似文献   

14.
Macrophages are integrated into adipose tissues and interact with adipocytes in obese subjects, thereby exacerbating adipose insulin resistance. This study aimed to elucidate the molecular mechanism underlying the insulin-sensitizing effect of the angiotensin II receptor blocker (ARB) valsartan, as demonstrated in clinical studies. Insulin signaling, i.e., insulin receptor substrate-1 and Akt phosphorylations, in 3T3-L1 adipocytes was impaired markedly by treatment with tumor necrosis factor-α (TNFα) or in the culture medium of lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages, and valsartan had no effects on these impairments. However, in contrast, when cocultured with RAW 264.7 cells using a transwell system, the LPS-induced insulin signaling impairment in 3T3-L1 adipocytes showed almost complete normalization with coaddition of valsartan. Furthermore, valsartan strongly suppressed LPS-induced productions of cytokines such as interleukin (IL)-1β, IL-6, and TNFα with nuclear factor-κB activation and c-Jun NH(2)-terminal kinase phosphorylation in RAW 264.7 and primary murine macrophages. Very interestingly, this effect of valsartan was also observed in THP-1 cells treated with angiotensin II type 1 (AT1) siRNA or a peroxisome proliferator-activated receptor-γ (PPARγ) antagonist as well as macrophages from AT1a receptor-knockout mice. We conclude that valsartan suppresses the inflammatory response of macrophages, albeit not via PPARγ or the AT1a receptor. This suppression appears to secondarily improve adipose insulin resistance.  相似文献   

15.
Peroxiredoxin (PRX), a scavenger of H2O2 and alkyl hydroperoxides in living organisms, protects cells from oxidative stress. Contrary to its known anti‐oxidant roles, the involvement of PRX‐1 in the regulation of lipopolysaccharide (LPS) signaling is poorly understood, possible immunological functions of PRX‐1 having been uncovered only recently. In the present study, it was discovered that the PRX‐1 deficient macrophage like cell line (RAW264.7) has anti‐inflammatory activity when stimulated by LPS. Treatment with LPS for 3 hrs resulted in increased gene expression of an anti‐inflammatory cytokine, interleukin‐10 (IL‐10), in PRX‐1 knock down RAW264.7 cells. Gene expression of pro‐inflammatory cytokines IL‐1β and tumor necrosis factor‐ α (TNF‐α) did not show notable changes under the same conditions. However, production of these cytokines significantly decreased in PRX‐1 knock down RAW264.7 cells with 12 hrs of stimulation. Production of IL‐10 was also increased in PRX‐1 knock down RAW264.7 cells with 12 hrs of stimulation. We predicted that higher concentrations of IL‐10 would result in decreased expression of IL‐1β and TNF‐α in PRX‐1 knock‐down cells. This was confirmed by blocking IL‐10, which reestablished IL‐1β and TNF‐α secretion. We also observed that increased concentrations of IL‐10 do not affect the NF‐κB pathway. Interestingly, STAT3 phosphorylation by LPS stimulation was significantly increased in PRX‐1 knockdown RAW264.7 cells. Up‐regulation of IL‐10 in PRX‐1 knockdown cells and the resulting downregulation of proinflammatory cytokine production seem to involve the STAT3 pathway in macrophages. Thus, down‐regulation of PRX‐1 may contribute to the suppression of adverse effects caused by excessive activation of macrophages through affecting the STAT3 signaling pathway.  相似文献   

16.
Nitric oxide (NO.) produced by inducible nitric oxide synthase (iNOS) mediates a number of important physiological and pathophysiological processes. The objective of this investigation was to examine the role of mitogen-activated protein kinases (MAPKs) in the regulation of iNOS and NO. by interferon-gamma (IFN-gamma) + lipopolysaccharide (LPS) in macrophages using specific inhibitors and dominant inhibitory mutant proteins of the MAPK pathways. The signaling pathway utilized by IFN-gamma in iNOS induction is well elucidated. To study signaling pathways that are restricted to the LPS-signaling arm, we used a subclone of the parental RAW 264.7 cell line that is unresponsive to IFN-gamma alone with respect to iNOS induction. In this RAW 264.7gammaNO(-) subclone, IFN-gamma and LPS are nevertheless required for synergistic activation of the iNOS promoter. We found that extracellular signal-regulated kinase (ERK) augmented and p38(mapk) inhibited IFN-gamma + LPS induction of iNOS. Dominant-negative MAPK kinase-4 inhibited iNOS promoter activation by IFN-gamma + LPS, also implicating the c-Jun NH(2)-terminal kinase (JNK) pathway in mediating iNOS induction. Inhibition of the ERK pathway markedly reduced IFN-gamma + LPS-induced tumor necrosis factor-alpha protein expression, providing a possible mechanism by which ERK augments iNOS expression. The inhibitory effect of p38(mapk) appears more complex and may be due to the ability of p38(mapk) to inhibit LPS-induced JNK activation. These results indicate that the MAPKs are important regulators of iNOS-NO. expression by IFN-gamma + LPS.  相似文献   

17.
Cell death and cell survival are central components of normal development and pathologic states. Transforming growth factor beta1 (TGF-beta1) is a pleiotropic cytokine that regulates both cell growth and cell death. To better understand the molecular mechanisms that control cell death or survival, we investigated the role of TGF-beta1 in the apoptotic process by dominant-negative inhibition of both TGF-beta1 and mitogen-activated protein kinase (MAPK) signaling pathways. Murine macrophages (RAW 264.7) undergo apoptosis following serum deprivation, as determined by DNA laddering assay. However, apoptosis is prevented in serum-deprived macrophages by the presence of exogenous TGF-beta1. Using stably transfected RAW 264.7 cells with the kinase-deleted dominant-negative mutant of TbetaR-II (TbetaR-IIM) cDNA, we demonstrate that this protective effect by TGF-beta1 is completely abrogated. To determine the downstream signaling pathways, we examined TGF-beta1 effects on the MAPK pathway. We show that TGF-beta1 induces the extracellular signal-regulated kinase (ERK) activity in a time-dependent manner up to 4 h after stimulation. Furthermore, TGF-beta1 does not rescue serum deprivation-induced apoptosis in RAW 264.7 cells transfected with a dominant-negative mutant MAPK (ERK2) cDNA or in wild type RAW 264.7 cells in the presence of the MAPK kinase (MEK1) inhibitor. Taken together, our data demonstrate for the first time that TGF-beta1 is an inhibitor of apoptosis in cultured macrophages and may serve as a cell survival factor via TbetaR-II-mediated signaling and downstream intracellular MAPK signaling pathway.  相似文献   

18.
19.
The mitogen-activated protein kinases (MAPK) have been shown to participate in iNOS induction following lipopolysaccharide (LPS) stimulation, while the role of MAPKs in the regulation of arginase remains unclear. We hypothesized that different MAPK family members are involved in iNOS and arginase expression following LPS stimulation. LPS-stimulated RAW 264.7 cells exhibited increased protein and mRNA levels for iNOS, arginase I, and arginase II; although the induction of arginase II was more robust than that for arginase I. A p38 inhibitor completely prevented iNOS expression while it only attenuated arginase II induction. In contrast, a MEK1/2 inhibitor (ERK pathway) completely abolished arginase II expression while actually enhancing iNOS induction in LPS-stimulated cells. Arginase II promoter activity was increased by ∼4-fold following LPS-stimulation, which was prevented by the ERK pathway inhibitor. Arginase II promoter activity was unaffected by a p38 inhibitor or JNK pathway interference. Transfection with a construct expressing a constitutively active RAS mutant increased LPS-induced arginase II promoter activity, while transfection with a vector expressing a dominant negative ERK2 mutant or a vector expressing MKP-3 inhibited the arginase II promoter activity. LPS-stimulated nitric oxide (NO) production was increased following siRNA-mediated knockdown of arginase II and decreased when arginase II was overexpressed. Our results demonstrate that while both the ERK and p38 pathways regulate arginase II induction in LPS-stimulated macrophages, iNOS induction by LPS is dependent on p38 activation. These results suggest that differential inhibition of the MAPK pathway may be a potential therapeutic strategy to regulate macrophage phenotype.  相似文献   

20.
We isolated the phenolic glucoside salicortin from a Populus euramericana bark extract, and examined its ability to suppress inflammatory responses as well as the molecular mechanisms underlying these abilities, using lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Salicortin inhibited iNOS expression and the subsequent production of NO in a dose-dependent manner in the LPS-stimulated RAW 264.7 cells. Salicortin significantly suppressed LPS-induced signal cascades of NF-κB activation, such as IKK activation, IκBα phosphorylation and p65 phosphorylation in RAW 264.7 cells. In addition, salicortin inhibited the LPS-induced activation of JNK, but not ERK or p38 MAPK. Furthermore, salicortin significantly inhibited production of pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6 in the LPS-stimulated RAW 264.7 cells. These findings suggest that salicortin may show its anti-inflammatory activity by suppressing the LPS-induced expression of pro-inflammatory mediators through inhibition of NF-κB and JNK MAPK signaling cascades in macrophages. [BMB Reports 2014; 47(6): 318-323]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号