首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
The Golgi-resident N-acetylglucosamine-1-phosphotransferase (PT) complex is composed of two α-, β-, and γ-subunits and represents the key enzyme for the biosynthesis of mannose 6-phosphate recognition marker on soluble lysosomal proteins. Mutations in the PT complex cause the lysosomal storage diseases mucolipidosis II and III. A prerequisite for the enzymatic activity is the site-1 protease-mediated cleavage of the PT α/β-subunit precursor protein in the Golgi apparatus. Here, we have investigated structural requirements of the PT α/β-subunit precursor protein for its efficient export from the endoplasmic reticulum (ER). Both wild-type and a cleavage-resistant type III membrane PT α/β-subunit precursor protein are exported whereas coexpressed separate α- and β-subunits failed to reach the cis-Golgi compartment. Mutational analyses revealed combinatorial, non-exchangeable dileucine and dibasic motifs located in a defined sequence context in the cytosolic N- and C-terminal domains that are required for efficient ER exit and subsequent proteolytic activation of the α/β-subunit precursor protein in the Golgi. In the presence of a dominant negative Sar1 mutant the ER exit of the PT α/β-subunit precursor protein is inhibited indicating its transport in coat protein complex II-coated vesicles. Expression studies of missense mutations identified in mucolipidosis III patients that alter amino acids in the N- and C-terminal domains demonstrated that the substitution of a lysine residue in close proximity to the dileucine sorting motif impaired ER-Golgi transport and subsequent activation of the PT α/β-subunit precursor protein. The data suggest that the oligomeric type III membrane protein PT complex requires a combinatorial sorting motif that forms a tertiary epitope to be recognized by distinct sites within the coat protein complex II machinery.  相似文献   

2.
The oat (Avena sativa L.) seed globulin was found to be synthesized in vitro as 60,000 to 64,000 dalton precursors. In vivo protein labeling yielded polypeptides of 58,000 to 62,000 daltons, suggesting cleavage of signal sequences from the precursors. Further cleavage is apparently required to separate the α and β polypeptide sequences which are known to form disulfide-linked 53,000 to 58,000 dalton species in the (αβ)6 holoprotein. The data are discussed with respect to analogous synthesis and processing of some legume 11S storage proteins.  相似文献   

3.

Background

During seed germination, β-conglutin undergoes a major cycle of limited proteolysis in which many of its constituent subunits are processed into a 20 kDa polypeptide termed blad. Blad is the main component of a glycooligomer, accumulating exclusively in the cotyledons of Lupinus species, between days 4 and 12 after the onset of germination.

Principal Findings

The sequence of the gene encoding β-conglutin precursor (1791 nucleotides) is reported. This gene, which shares 44 to 57% similarity and 20 to 37% identity with other vicilin-like protein genes, includes several features in common with these globulins, but also specific hallmarks. Most notable is the presence of an ubiquitin interacting motif (UIM), which possibly links the unique catabolic route of β-conglutin to the ubiquitin/proteasome proteolytic pathway.

Significance

Blad forms through a unique route from and is a stable intermediary product of its precursor, β-conglutin, the major Lupinus seed storage protein. It is composed of 173 amino acid residues, is encoded by an intron-containing, internal fragment of the gene that codes for β-conglutin precursor (nucleotides 394 to 913) and exhibits an isoelectric point of 9.6 and a molecular mass of 20,404.85 Da. Consistent with its role as a storage protein, blad contains an extremely high proportion of the nitrogen-rich amino acids.  相似文献   

4.
Reports from a number of laboratories describe the presence of a family of proteins (the major intrinsic protein family) in a variety of organisms. These proteins are postulated to form channels that function in metabolite transport. In plants, this family is represented by the product of NOD26, a nodulation gene in soybean that encodes a protein of the peribacteroid membrane, and tonoplast intrinsic protein (TIP), an abundant protein in the tonoplast of protein storage vacuoles of bean seeds (KD Johnson, H Höfte, MJ Chrispeels [1990] Plant Cell 2: 525-532). Other homologs that are induced by water stress in pea and in Arabidopsis thaliana and that are expressed in the roots of tobacco have been reported, but the location of the proteins they encode is not known. We now report the presence and derived amino acid sequences of two different TIP proteins in A. thaliana. α-TIP is a seed-specific protein that has 68% amino acid sequence identity with bean seed TIP; γ-TIP is expressed in the entire vegetative body of A. thaliana and has 58% amino acid identity with bean seed TIP. Both proteins are associated with the tonoplast. Comparisons of the derived amino acid sequences of the seven known plant proteins in the major intrinsic protein family show that genes with similar expression patterns (e.g. water stress-induced or seed specific) are more closely related to each other than the three A. thaliana homologs are related. We propose that the nonoverlapping gene expression patterns reported here, and the evolutionary relationships indicated by the phylogenetic tree, suggest a functional specialization of these proteins.  相似文献   

5.
Globulins are an important group of seed storage proteins in dicotyledonous plants. They are synthesized during seed development, assembled into very compact protein complexes, and finally stored in protein storage vacuoles (PSVs). Here, we report a proteomic investigation on the native composition and structure of cruciferin, the 12 S globulin of Brassica napus. PSVs were directly purified from mature seeds by differential centrifugations. Upon analyses by blue native (BN) PAGE, two major types of cruciferin complexes of ∼ 300–390 kDa and of ∼470 kDa are resolved. Analyses by two-dimensional BN/SDS-PAGE revealed that both types of complexes are composed of several copies of the cruciferin α and β polypeptide chains, which are present in various isoforms. Protein analyses by two-dimensional isoelectric focusing (IEF)/SDS-PAGE not only revealed different α and β isoforms but also several further versions of the two polypeptide chains that most likely differ with respect to posttranslational modifications. Overall, more than 30 distinct forms of cruciferin were identified by mass spectrometry. To obtain insights into the structure of the cruciferin holocomplex, a native PSV fraction was analyzed by single particle electron microscopy. More than 20,000 images were collected, classified, and used for the calculation of detailed projection maps of the complex. In contrast to previous reports on globulin structure in other plant species, the cruciferin complex of Brassica napus has an octameric barrel-like structure, which represents a very compact building block optimized for maximal storage of amino acids within minimal space.  相似文献   

6.
The insertion of organellar membrane proteins with the correct topology requires the following: First, the proteins must contain topogenic signals for translocation across and insertion into the membrane. Second, proteinaceous complexes in the cytoplasm, membrane, and lumen of organelles are required to drive this process. Many complexes required for the intracellular distribution of membrane proteins have been described, but the signals and components required for the insertion of plastidic β-barrel-type proteins into the outer membrane are largely unknown. The discovery of common principles is difficult, as only a few plastidic β-barrel proteins exist. Here, we provide evidence that the plastidic outer envelope β-barrel proteins OEP21, OEP24, and OEP37 from pea (Pisum sativum) and Arabidopsis thaliana contain information defining the topology of the protein. The information required for the translocation of pea proteins across the outer envelope membrane is present within the six N-terminal β-strands. This process requires the action of translocon of the outer chloroplast (TOC) membrane. After translocation into the intermembrane space, β-barrel proteins interact with TOC75-V, as exemplified by OEP37 and P39, and are integrated into the membrane. The membrane insertion of plastidic β-barrel proteins is affected by mutation of the last β-strand, suggesting that this strand contributes to the insertion signal. These findings shed light on the elements and complexes involved in plastidic β-barrel protein import.

Plastidic β-barrel proteins contain sequence-intrinsic signals for translocation and membrane insertion, the latter of which involves a complex formation with TOC75-V prior to the final membrane insertion.  相似文献   

7.
In eukaryotic cells, COPI vesicles retrieve resident proteins to the endoplasmic reticulum and mediate intra-Golgi transport. Here, we studied the Hansenula polymorpha homologue of the Saccharomyces cerevisiae RET1 gene, encoding α-COP, a subunit of the COPI protein complex. H. polymorpha ret1 mutants, which expressed truncated α-COP lacking more than 300 C-terminal amino acids, manifested an enhanced ability to secrete human urokinase-type plasminogen activator (uPA) and an inability to grow with a shortage of Ca2+ ions, whereas a lack of α-COP expression was lethal. The α-COP defect also caused alteration of intracellular transport of the glycosylphosphatidylinositol-anchored protein Gas1p, secretion of abnormal uPA forms, and reductions in the levels of Pmr1p, a Golgi Ca2+-ATPase. Overexpression of Pmr1p suppressed some ret1 mutant phenotypes, namely, Ca2+ dependence and enhanced uPA secretion. The role of COPI-dependent vesicular transport in cellular Ca2+ homeostasis is discussed.  相似文献   

8.
Site-1 protease (S1P) cleaves membrane-bound lipogenic sterol regulatory element-binding proteins (SREBPs) and the α/β-subunit precursor protein of the N-acetylglucosamine-1-phosphotransferase forming mannose 6-phosphate (M6P) targeting markers on lysosomal enzymes. The translocation of SREBPs from the endoplasmic reticulum (ER) to the Golgi-resident S1P depends on the intracellular sterol content, but it is unknown whether the ER exit of the α/β-subunit precursor is regulated. Here, we investigated the effect of cholesterol depletion (atorvastatin treatment) and elevation (LDL overload) on ER-Golgi transport, S1P-mediated cleavage of the α/β-subunit precursor, and the subsequent targeting of lysosomal enzymes along the biosynthetic and endocytic pathway to lysosomes. The data showed that the proteolytic cleavage of the α/β-subunit precursor into mature and enzymatically active subunits does not depend on the cholesterol content. In either treatment, lysosomal enzymes are normally decorated with M6P residues, allowing the proper sorting to lysosomes. In addition, we found that, in fibroblasts of mucolipidosis type II mice and Niemann-Pick type C patients characterized by aberrant cholesterol accumulation, the proteolytic cleavage of the α/β-subunit precursor was not impaired. We conclude that S1P substrate-dependent regulatory mechanisms for lipid synthesis and biogenesis of lysosomes are different.  相似文献   

9.
The 7S seed storage protein (β-conglycinin) of soybean (Glycine max [L]. Merr.) has three major subunits; α, α′, and β. Accumulation of the β-subunit, but not the α- and α′-subunits, has been shown to be repressed by exogenously applied methionine to the immature cotyledon culture system (LP Holowach, JF Thompson, JT Madison [1984] Plant Physiol 74: 576-583) and to be enhanced under sulfate deficiency in soybean plants (KR Gayler, GE Sykes [1985] Plant Physiol 78: 582-585). Transgenic petunia (Petunia hybrida) harboring either the α′- or β-subunit gene were constructed to test whether the patterns of differential expression were retained in petunia. Petunia regulates these genes in a similar way as soybean in response to sulfur nutritional stimuli, i.e. (a) expression of the β-subunit gene is repressed by exogenous methionine in in vitro cultured seeds, whereas the α′-subunit gene expression is not affected; and (b) accumulation of the β-subunit is enhanced by sulfur deficiency. The pattern of accumulation of major seed storage protein of petunia was not affected by these treatments. These results indicate that this mechanism of gene regulation in response to sulfur nutrition is conserved in petunia even though it is not used to regulate its own major seed storage proteins.  相似文献   

10.
The common bean, Phaseolus vulgaris, contains a glycoprotein that inhibits the activity of mammalian and insect α-amylases, but not of plant α-amylases. It is therefore classified as an antifeedant or seed defense protein. In P. vulgaris cv Greensleeves, α-amylase inhibitor (αAl) is present in embryonic axes and cotyledons, but not in other organs of the plant. The protein is synthesized during the same time period that phaseolin and phytohemagglutinin are made and also accumulates in the protein storage vacuoles (protein bodies). Purified αAl can be resolved by SDS-PAGE into five bands (Mr 15,000-19,000), four of which have covalently attached glycans. These bands represent glycoforms of two different polypeptides. All the glycoforms have complex glycans that are resistant to removal by endoglycosidase H, indicating transport of the protein through the Golgi apparatus. The two different polypeptides correspond to the N-terminal and C-terminal halves of a lectin-like protein encoded by an already identified gene or a gene closely related to it (LM Hoffman [1984] J Mol Appl Genet 2: 447-453; J Moreno, MJ Chrispeels [1989] Proc Natl Acad Sci USA 86:7885-7889). The primary translation product of αAl is a polypeptide of Mr 28,000. Immunologically cross-reacting glycopolypeptides of Mr 30,000 to 35,000 are present in the endoplasmic reticulum, while the smaller polypeptides (Mr 15,000-19,000) accumulate in protein storage vacuoles (protein bodies). Together these data indicate that αAl is a typical bean lectin-type protein that is synthesized on the rough endoplasmlc reticulum, modified in the Golgi, and transported to the protein storage vacuoles.  相似文献   

11.
The synthesis, transport and localization of a nuclear coded 22-kd heat-shock protein (HSP) in the chloroplast membranes was studied in pea plants and Chlamydomonas reinhardi. HSPs were detected in both systems by in vivo labeling and in vitro translation of poly(A)+RNA, using the wheat-germ and reticulocyte lysate systems. Heat-shock treatment of pea plants for 2 h at 42-45°C induces the expression of ˜10 nuclear coded proteins, among which several (18 kd, 19 kd, 22 kd) are predominant. A 22-kd protein is synthesized as a 26-kd precursor protein and is localized in a chloroplast membrane fraction in vivo. Following post-translational transport into intact chloroplasts in vitro of the 26-kd precursor, the protein is processed but the resulting 22-kd mature protein is localized in the chloroplast stroma. If, however, the in vitro transport is carried out with chloroplasts from heat-shocked plants, the 22-kd protein is preferentially transported to the chloroplast membrane fraction. In C. reinhardi the synthesis of poly(A)+RNAs coding for several HSPs is progressively and sequentially induced when raising the temperature for 1.5 h from 36°C to 42°C, while that of several preexisting RNAs is reduced. Various pre-existing poly(A)+RNAs endure in the cells at 42°C up to 5 h but are no longer translated in vivo, whereas some poly(A)RNAs persist and are translated. As in pea, a poly(A)+RNA coded 22-kd HSP is localized in the chloroplast membranes in vivo, although it is translated as a 22-kd protein in vitro. The in vitro translated protein is not transported in isolated pea chloroplast which, however, processes and transports other nuclear coded chloroplast proteins of Chlamydomonas. The poly(A)+RNA coding for the 22-kd HSP appears after 1 h at 36°C. Its synthesis increases with the temperature of incubation up to 42°C, although it decreases after ˜2 h of heat treatment and the already synthesized RNA is rapidly degraded. The degradation is faster upon return of the cells to 26°C. None of the heat-induced proteins is identical to the light-inducible proteins of the chloroplast membranes.  相似文献   

12.
The major storage protein fraction, globulin-1 protein, of French bean (Phaseolus vulgaris L.) was analyzed by two-dimensional electrophoresis. The protein pattern suggested a more complex system for globulin-1 protein than the model of three polypeptides, α, β, and γ, differing in molecular weight. Isoelectrofocusing analyses of the individual proteins showed that each exhibited charge microheterogeneity over a similar pH range. Isoelectrofocusing banding patterns may help to understand the relationships between the globulin-1 polypeptide subunits.  相似文献   

13.
14.
The localizations of soybean lectin (SBL) and antigenically related proteins in cotyledons and roots of lectin positive (Le+) and lectin negative (Le) soybean cultivars were compared by light level immunocytochemistry using antibodies produced against the 120 kilodalton (kD) native seed lectin tetramer or its subunits. Lectin is present in the protein bodies of cotyledons cells as are two other seed proteins, the Kunitz trypsin inhibitor and the storage protein glycinin. Analysis of single seed extracts by immunoblotting of sodium dodecyl sulfate-polyacrylamide gels using the same antibodies, reveals up to 4 milligrams of the 30 kD seed lectin protein is present per seed in the Le+ varieties. There is no detectable lectin in the protein bodies of Le cotyledons as determined by immunocytochemistry and immunoblotting. Enzyme-linked immunosorbent assay confirmed this result to a sensitivity of less than 20 nanograms per seed. In contrast, the roots of both Le+ and Le plants bind the seed lectin antibody during immunocytochemistry, with fluorescence mainly localized in vacuole-like bodies in the epidermis. Root extracts contain a 33 kD polypeptide that binds anti-SBL antibody at an estimated minimal level of 20 nanograms per 4-day seedling, or 2.0 nanograms per primary root tip. This polypeptide is also present in the embryo axis and in leaves. The latter also contain a 26 kD species that binds seed lectin antibody. The 30 kD seed lectin subunit, however, is not detectable in roots or leaves.  相似文献   

15.
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are group of proteins that depend on p24 cargo receptors for their transport from the endoplasmic reticulum to the Golgi apparatus. The GPI anchor is expected to act as a sorting and transport signal, but so far little is known about the recognition mechanism. In the present study we investigate the GPI-AP transport in cell knockdown of p24γ, the most diverse p24 subfamily. Knockdown of p24γ2 but not of other p24γ family members impaired the transport of a reporter GPI-AP. Restoration of the knockdown-induced phenotype using chimeric constructs between p24γ2 and the related p24γ1 further implied a role of the α-helical region of p24γ2 but not its GOLD domain in the specific binding of GPI-APs. We conclude that motifs in the membrane-adjacent α-helical region of p24γ2 are involved in recognition of GPI-APs and are consequently responsible for the incorporation of these proteins into coat protein complex II-coated transport vesicles.  相似文献   

16.
17.
A Yeast t-SNARE Involved in Endocytosis   总被引:15,自引:10,他引:5       下载免费PDF全文
The ORF YOL018c (TLG2) of Saccharomyces cerevisiae encodes a protein that belongs to the syntaxin protein family. The proteins of this family, t-SNAREs, are present on target organelles and are thought to participate in the specific interaction between vesicles and acceptor membranes in intracellular membrane trafficking. TLG2 is not an essential gene, and its deletion does not cause defects in the secretory pathway. However, its deletion in cells lacking the vacuolar ATPase subunit Vma2p leads to loss of viability, suggesting that Tlg2p is involved in endocytosis. In tlg2Δ cells, internalization was normal for two endocytic markers, the pheromone α-factor and the plasma membrane uracil permease. In contrast, degradation of α-factor and uracil permease was delayed in tlg2Δ cells. Internalization of positively charged Nanogold shows that the endocytic pathway is perturbed in the mutant, which accumulates Nanogold in primary endocytic vesicles and shows a greatly reduced complement of early endosomes. These results strongly suggest that Tlg2p is a t-SNARE involved in early endosome biogenesis.  相似文献   

18.
γ-Secretase is responsible for proteolytic maturation of signaling and cell surface proteins, including amyloid precursor protein (APP). Abnormal processing of APP by γ-secretase produces a fragment, Aβ42, that may be responsible for Alzheimer's disease (AD). The biogenesis and trafficking of this important enzyme in relation to aberrant Aβ processing is not well defined. Using a cell-free reaction to monitor the exit of cargo proteins from the endoplasmic reticulum (ER), we have isolated a transient intermediate of γ-secretase. Here, we provide direct evidence that the γ-secretase complex is formed in an inactive complex at or before the assembly of an ER transport vesicle dependent on the COPII sorting subunit, Sec24A. Maturation of the holoenzyme is achieved in a subsequent compartment. Two familial AD (FAD)–linked PS1 variants are inefficiently packaged into transport vesicles generated from the ER. Our results suggest that aberrant trafficking of PS1 may contribute to disease pathology.  相似文献   

19.
Retrograde transport from the Golgi to the ER is an essential process. Resident ER proteins that escape the ER and proteins that cycle between the Golgi and the ER must be retrieved. The interdependence of anterograde and retrograde vesicle trafficking makes the dissection of both processes difficult in vivo. We have developed an in vitro system that measures the retrieval of a soluble reporter protein, the precursor of the yeast pheromone α-factor fused to a retrieval signal (HDEL) at its COOH terminus (Dean, N., and H.R.B Pelham. 1990. J. Cell Biol. 111:369–377). Retrieval depends on the HDEL sequence; the α-factor precursor, naturally lacking this sequence, is not retrieved. A full cycle of anterograde and retrograde transport requires a simple set of purified cytosolic proteins, including Sec18p, the Lma1p complex, Uso1p, coatomer, and Arf1p. Among the membrane-bound v-SNAP receptor (v-SNARE) proteins, Bos1p is required only for forward transport, Sec22p only for retrograde trafficking, and Bet1p is implicated in both avenues of transport. Putative retrograde carriers (COPI vesicles) generated from Golgi-enriched membranes contain v-SNAREs as well as Emp47p as cargo.  相似文献   

20.
Polypeptides targeted to the yeast endoplasmic reticulum (ER) posttranslationally are thought to be kept in the cytoplasm in an unfolded state by Hsp70 chaperones before translocation. We show here that Escherichia coli β-lactamase associated with Hsp70, but adopted a native-like conformation before translocation in living Saccharomyces cerevisiae cells. β-Lactamase is a globular trypsin-resistant molecule in authentic form. For these studies, it was linked to the C terminus of a yeast polypeptide Hsp150Δ, which conferred posttranslational translocation and provided sites for O-glycosylation. We devised conditions to retard translocation of Hsp150Δ-β-lactamase. This enabled us to show by protease protection assays that an unglycosylated precursor was associated with the cytoplasmic surface of isolated microsomes, whereas a glycosylated form resided inside the vesicles. Both proteins were trypsin resistant and had similar β-lactamase activity and Km values for nitrocefin. The enzymatically active cytoplasmic intermediate could be chased into the ER, followed by secretion of the activity to the medium. Productive folding in the cytoplasm occurred in the absence of disulfide formation, whereas in the ER lumen, proper folding required oxidation of the sulfhydryls. This suggests that the polypeptide was refolded in the ER and consequently, at least partially unfolded for translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号