首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Panda M  Smoot AL  Horowitz PM 《Biochemistry》2001,40(34):10402-10410
The molecular chaperone, GroEL, is completely disassembled into monomers by the addition of 4,4'-dipyridyl disulfide. The dissociation leads to monomers in a kinetically controlled process. The additions of functional ligands of GroEL such as Mg(2+) or adenine nucleotides produced differences in the observed rates, but at the end of the kinetics, the dissociation was complete. In addition to the information obtained from native gels, the fluorescent probe bis-ANS was utilized to follow the monomer formation. The results demonstrate that the formation of monomers was associated with the exposure of hydrophobic surfaces. This assessment was possible without the use of added chaotropes, such as urea, to dissociate GroEL. Dissociation kinetics were also followed by light scattering. The kinetics of dissociation of the 14mer are cooperative with respect to the concentration of 4,4'-DPDS. Thermodynamic parameters for the kinetic process gave a free energy of activation (DeltaG) of 19.3 +/- 1.2 kcal mol(-1), which was decomposed to an enthalpy of activation (DeltaH) of 19.30 +/- 1.2 kcal mol(-1) and an entropy of activation (DeltaS) of -8.2 +/- 3.9 cal mol(-1) K(-1). We conclude that the dissociation of GroEL observed in this investigation is an enthalpy-controlled process.  相似文献   

2.
A fundamental understanding of protein stability and the mechanism of denaturant action must ultimately rest on detailed knowledge about the structure, solvation, and energetics of the denatured state. Here, we use (17)O and (2)H magnetic relaxation dispersion (MRD) to study urea-induced denaturation of intestinal fatty acid-binding protein (I-FABP). MRD is among the few methods that can provide molecular-level information about protein solvation in native as well as denatured states, and it is used here to simultaneously monitor the interactions of urea and water with the unfolding protein. Whereas CD shows an apparently two-state transition, MRD reveals a more complex process involving at least two intermediates. At least one water molecule binds persistently (with residence time >10 nsec) to the protein even in 7.5 M urea, where the large internal binding cavity is disrupted and CD indicates a fully denatured protein. This may be the water molecule buried near the small hydrophobic folding core at the D-E turn in the native protein. The MRD data also provide insights about transient (residence time <1 nsec) interactions of urea and water with the native and denatured protein. In the denatured state, both water and urea rotation is much more retarded than for a fully solvated polypeptide. The MRD results support a picture of the denatured state where solvent penetrates relatively compact clusters of polypeptide segments.  相似文献   

3.
In the oxidative folding of onconase, the stabilization of intermediates early in the folding process gives rise to efficient formation of its biologically active form. To identify the residues responsible for the initial formation of structured intermediates, the transition from an ensemble of unstructured three-disulfide species, 3S(U), to a single structured three-disulfide intermediate species, des-[30-75] or 3S(F), at pH 8.0 and 25 °C was examined. This transition was first monitored by far-UV circular dichroism spectroscopy at pH 8.0 and 25 °C, showing that it occurs with the formation of secondary structure, presumably because of native interactions. The time dependence of formation of nativelike structure was then followed by nuclear magnetic resonance spectroscopy after we had arrested the transition at different times by lowering the pH to 3 and then acquiring (1)H-(15)N heteronuclear single-quantum coherence spectra at pH 3 and 16 °C to identify amide hydrogens that become part of nativelike structure. H/D exchange was utilized to reduce the intensity of resonances from backbone amide hydrogens not involved in structure, without allowing exchange of backbone amide hydrogens involved in initial structure. Six hydrogen-bonding residues, namely, Tyr38, Lys49, Ser82, Cys90, Glu91, and Ala94, were identified as being involved in the earliest detectable nativelike structure before complete formation of des-[30-75] and are further stabilized later in the formation of this intermediate through S-S/SH interchange. By observing the stabilization of the structures of these residues by their neighboring residues, we have identified the initial, nativelike structural elements formed in this transition, providing details of the initial events in the oxidative folding of onconase.  相似文献   

4.
The interactions of long chain fatty acids (FA) with wild type (WT) fatty acid binding proteins (FABP) and engineered FABP mutants have been monitored to determine the equilibrium binding constants as well as the rate constants for binding and dissociation. These measurements have been done using the fluorescent probes, ADIFAB and ADIFAB2, that allow the determination of the free fatty acid (FFA) concentration in the reaction of FA with proteins and membranes. The results of these studies indicate that for WT proteins from adipocyte, heart, intestine, and liver, Kd values are in the nM range and affinities decrease with increasing aqueous solubility of the FA. Binding affinities for heart and liver are generally greater than those for adipocyte and intestine. Moreover, measurements of the rate constants indicate that binding equilibrium at 37øC is achieved within seconds for all FA and FABPs. These results, together with the level of serum (unbound) FFA, suggests a buffering action of FABPs that helps to maintain the intracellular concentration of FFA so that the flux of FFA between serum and cells occurs down a concentration gradient. Measurements of the temperature dependence of binding reveal that the free energy is predominately enthalpic and that the enthalpy of the reaction results from FA-FABP interactions within the binding cavity. The nature of these interactions were investigated by determining the thermodynamics of binding to engineered point mutants of the intestinal FABP. These measurements showed that binding affinities did not report accurately the changes in protein-FA interactions because changes in the binding entropy and enthalpy tend to compensate. For example, an alanine substitution for arginine 106 yields a 30 fold increase in binding affinity, because the loss in enthalpy due to the elimination of the favorable interaction between the FA carboxylate and Arg106, is more than compensated for by an increase in entropy. Thus understanding the effects of amino acid replacements on FA-FABP interactions requires measurements of enthalpy and entropy, in addition to affinity.  相似文献   

5.
6.
7.
Computational design of surface charge-charge interactions has been demonstrated to be an effective way to increase both the thermostability and the stability of proteins. To test the robustness of this approach for proteins with predominantly beta-sheet secondary structure, the chicken isoform of the Fyn SH3 domain was used as a model system. Computational analysis of the optimal distribution of surface charges showed that the increase in favorable energy per substitution begins to level off at five substitutions; hence, the designed Fyn sequence contained four charge reversals at existing charged positions and one introduction of a new charge. Three additional variants were also constructed to explore stepwise contributions of these substitutions to Fyn stability. The thermodynamic stabilities of the variants were experimentally characterized using differential scanning calorimetry and far-UV circular dichroism spectroscopy and are in very good agreement with theoretical predictions from the model. The designed sequence was found to have increased the melting temperature, DeltaT (m) = 12.3 +/- 0.2 degrees C, and stability, DeltaDeltaG(25 degrees C) = 7.1 +/- 2.2 kJ/mol, relative to the wild-type protein. The experimental data suggest that a significant increase in stability can be achieved through a very small number of amino acid substitutions. Consistent with a number of recent studies, the presented results clearly argue for a seminal role of surface charge-charge interactions in determining protein stability and suggest that the optimization of surface interactions can be an attractive strategy to complement algorithms optimizing interactions in the protein core to further enhance protein stability.  相似文献   

8.
The WAVE regulatory complex (WRC), consisting of WAVE, Sra, Nap, Abi, and HSPC300, activates the Arp2/3 complex to control branched actin polymerization in response to Rac activation. How the WRC is assembled in vivo is not clear. Here we show that Nudel, a protein critical for lamellipodia formation, dramatically stabilized the Sra1-Nap1-Abi1 complex against degradation in cells through a dynamic binding to Sra1, whereas its physical interaction with HSPC300 protected free HSPC300 from the proteasome-mediated degradation and stimulated the HSPC300-WAVE2 complex formation. By contrast, Nudel showed little or no interactions with the Sra1-Nap1-Abi1-WAVE2 and the Sra1-Nap1-Abi1-HSPC300 complexes as well as the mature WRC. Depletion of Nudel by RNAi led to general subunit degradation and markedly attenuated the levels of mature WRC. It also abolished the WRC-dependent actin polymerization in vitro and the Rac1-induced lamellipodial actin network formation during cell spreading. Therefore, Nudel is important for the early steps of the WRC assembly in vivo by antagonizing the instability of certain WRC subunits and subcomplexes.  相似文献   

9.
Homodimeric triosephosphate isomerases from Trypanosoma cruzi (TcTIM) and Trypanosoma brucei (TbTIM) have markedly similar catalytic properties and 3-D structures; their overall amino acid sequence identity is 68% and 85% in their interface residues. Nonetheless, active dimer formation from guanidinium chloride unfolded monomers is faster and more efficient in TcTIM than in TbTIM. The enzymes thus provide a unique opportunity for exploring the factors that control the formation of active dimers. The kinetics of reactivation at different protein concentrations showed that the process involved three reactions: monomer folding, association of folded monomers, and a transition from inactive to active dimers. The rate constants of the reactions indicated that, at relatively low protein concentrations, the rate-limiting step of reactivation was the association reaction; at high protein concentrations the transition of inactive to active dimers was rate limiting. The rates of the latter two reactions were higher in TcTIM than in TbTIM. Studies with a mutant of TcTIM that had the interface residues of TbTIM showed that the association rate constant was similar to that of TbTIM. However, the rate of the transition from inactive to active dimers was close to that of TcTIM; thus, this transition depends on the noninterfacial portion of the enzymes. When unfolded monomers of TcTIM and TbTIM were allowed to reactivate together, TcTIM, the hybrid, and TbTIM were formed in a proportion of 1:0.9:0.2. This distribution suggests that, in the hybrid, the characteristics of the TcTIM monomers influence the properties of TbTIM monomers.  相似文献   

10.
Li X  Liang J 《Proteins》2005,60(1):46-65
Characterizing multibody interactions of hydrophobic, polar, and ionizable residues in protein is important for understanding the stability of protein structures. We introduce a geometric model for quantifying 3-body interactions in native proteins. With this model, empirical propensity values for many types of 3-body interactions can be reliably estimated from a database of native protein structures, despite the overwhelming presence of pairwise contacts. In addition, we define a nonadditive coefficient that characterizes cooperativity and anticooperativity of residue interactions in native proteins by measuring the deviation of 3-body interactions from 3 independent pairwise interactions. It compares the 3-body propensity value from what would be expected if only pairwise interactions were considered, and highlights the distinction of propensity and cooperativity of 3-body interaction. Based on the geometric model, and what can be inferred from statistical analysis of such a model, we find that hydrophobic interactions and hydrogen-bonding interactions make nonadditive contributions to protein stability, but the nonadditive nature depends on whether such interactions are located in the protein interior or on the protein surface. When located in the interior, many hydrophobic interactions such as those involving alkyl residues are anticooperative. Salt-bridge and regular hydrogen-bonding interactions, such as those involving ionizable residues and polar residues, are cooperative. When located on the protein surface, these salt-bridge and regular hydrogen-bonding interactions are anticooperative, and hydrophobic interactions involving alkyl residues become cooperative. We show with examples that incorporating 3-body interactions improves discrimination of protein native structures against decoy conformations. In addition, analysis of cooperative 3-body interaction may reveal spatial motifs that can suggest specific protein functions.  相似文献   

11.
Up to 50% of the actin in erythrocyte membranes can be solubilized at low ionic strength in a form capable of inhibiting DNAse I, in the presence of 0.4 mM ATP and 0.05 mM calcium. In the absence of calcium and ATP, actin is released but is apparently rapidly denatured. Solubilization of G-actin increases with temperature up to 37 degrees C. At higher temperatures, actin is released rapidly but quickly loses its ability to inhibit DNAse I.  相似文献   

12.
The effect of 2,2,2-trifluoroethanol (TFE) on the structure of an all β-sheet protein, cardiotoxin analogue 111 (CTX III) from the Taiwan cobra (Naja naja atra) is studied. It is found that high concentrations ( > 80% v/v) of TFE induced a β-sheet to -helix structural transition. It is found that in denatured and reduced CTX III (rCTX III) helical conformation is induced even upon addition of low concentrations ( > 10% v/v) of TFE. Using three other proteins, namely, ribonuclease A (RNase A), lysozyme and -lactalbumin, it is been observed that helix-induction by TFE is intricately linked to drastic destabilization of native tertiary structural interactions in the proteins.  相似文献   

13.
Pressure-induced reversible conformational changes of sperm whale apomyoglobin have been studied between 30 bar and 3000 bar on individual residue basis by utilizing 1H/15N hetero nuclear single-quantum coherence two-dimensional NMR spectroscopy at pH 6.0 and 35 degrees C. Apomyoglobin showed a series of pressure-dependent NMR spectra as a function of pressure, assignable to the native (N), intermediates (I), molten globule (MG) and unfolded (U) conformers. At 30 bar, the native fold (N) shows disorder only in the F helix. Between 500 bar and 1200 bar, a series of locally disordered conformers I are produced, in which local disorder occurs in the C helix, the CD loop, the G helix and part of the H helix. At 2000 bar, most cross-peaks exhibit severe line-broadening, suggesting the formation of a molten globule, but at 3000 bar all the cross-peaks reappear, showing that the molten globule turns into a well-hydrated, mobile unfolded conformation U. Since all the spectral changes were reversible with pressure, apomyoglobin is considered to exist as an equilibrium mixture of the N, I, MG and U conformers at all pressures. MG is situated at 2.4+/-(0.1) kcal/mol above N at 1 bar and the unfolding transition from the combined N-I state to MG is accompanied by a loss of partial molar volume by 75+/-(3) ml/mol. On the basis of these observations, we postulate a theorem that the partial molar volume of a protein decreases in parallel with the loss of its conformational order.  相似文献   

14.
Traditional simulation and analysis of amyloid aggregation kinetics has involved the examination of a single lumped parameter taken to reflect the total mass of protein in amyloid form. However use of increasingly sophisticated multi-experimental strategies capable of providing information on the structure of the growing fibril at the mesoscopic and atomistic level, has put extra information within the experimenter's reach. Although such data can be presented empirically, its incorporation into a theoretical model is more problematic due to scaling issues associated with modern day approaches which fall into either the particle based or statistical based categories. Here we present a coarse grained multi-scale simulation of irreversible amyloid formation that straddles this simulation divide by using a set of theory derived size and conformation specific rate constants to simulate the kinetic evolution of the amyloid fibril population. This approach represents a potentially profitable simulation/analytical strategy that will help to probe more deeply into the underlying molecular driving forces behind the phenomenon of amyloid formation.  相似文献   

15.
16.
It has long been understood that the proline residue has lower configurational entropy than any other amino acid residue due to pyrrolidine ring hindrance. The peptide bond between proline and its preceding amino acid (Xaa-Pro) typically exists as a mixture of cis- and trans-isomers in the unfolded protein. Cis–trans isomerization of Xaa-Pro peptide bonds are infrequent, but still occur in folded proteins. Therefore, the effects of the cis–trans isomerization equilibrium in both unfolded and folded states should be taken into account when estimating the stability contribution of a specific proline residue. In order to study the stability contribution of the four proline residues to the hyperthermophilic protein Ssh10b, in this work, we expressed and purified a series of Pro→Ala mutants of Ssh10b, and performed correlative unfolding experiments in detail. We proposed a new unfolding model including proline isomerization. The model predicts that the contribution of a proline residue to protein stability is associated with the thermodynamic equilibrium between cis- and trans-isomers both in the unfolded and folded states, agreeing well with the experimental results.  相似文献   

17.
Understanding the rate at which various parts of a molecular chain come together to facilitate the folding of a biopolymer (e.g., a protein or RNA) into its functional form remains an elusive goal. Here we use experiments, simulations, and theory to study the kinetics of internal loop closure in disordered biopolymers such as single-stranded oligonucleotides and unfolded proteins. We present theoretical arguments and computer simulation data to show that the relationship between the timescale of internal loop formation and the positions of the monomers enclosing the loop can be recast in a form of a universal master dependence. We also perform experimental measurements of the loop closure times of single-stranded oligonucleotides and show that both these and previously reported internal loop closure kinetics of unfolded proteins are well described by this theoretically predicted dependence. Finally, we propose that experimental deviations from the master dependence can then be used as a sensitive probe of dynamical and structural order in unfolded proteins and other biopolymers.  相似文献   

18.
W C AshishWimley 《Biochemistry》2001,40(46):13753-13759
Using peptides tethered to polymer microbeads, we have developed a technique for measuring the interactions between the transmembrane alpha-helices of membrane proteins and for screening combinatorial libraries of peptides for members that interact with specific helices from membrane proteins. The method was developed using the well-characterized homodimerization sequence of the membrane-spanning alpha-helix from the erythrocyte membrane protein glycophorin A (GPA). As a control, we also tested a variant with a dimer-disrupting alteration of a critical glycine residue to leucine. To test for detectable, native interactions between detergent-solubilized and microbead-tethered alpha-helices, we incubated fluorescent dye-labeled GPA analogues in sodium dodecyl sulfate solution with microbeads that contained covalently attached GPA analogues. When the dye-labeled peptide in solution and the bead-tethered peptide both contained the native glycophorin A sequence, the microbeads readily accumulated the dye through lateral peptide-peptide interactions and were visibly fluorescent under UV light. When either the peptide in solution or the peptide attached to the beads contained the glycine to leucine change, the beads did not accumulate any dye. The usefulness of this method for screening tethered peptide libraries was tested by incubating dye-labeled, native sequence peptides in detergent solution with a few native sequence beads plus an excess of beads containing the variant glycine to leucine sequence. When the dye-labeled peptide in solution was present at a concentration of > or =2 microM, the few native sequence beads were visually distinguishable from the others because of their bright fluorescence. Using this model system, we have shown that it is possible to visually detect specific, native interactions between alpha-helices from membrane proteins using peptides tethered to polymer microbeads. It will thus be possible to use this method to measure the specific lateral interactions that drive the folding and organization of membrane proteins and to screen combinatorial libraries of peptides for members that interact with them.  相似文献   

19.
Chaperone protein BiP binds to Ire1 and dissociates in response to endoplasmic reticulum (ER) stress. However, it remains unclear how the signal transducer Ire1 senses ER stress and is subsequently activated. The crystal structure of the core stress-sensing region (CSSR) of yeast Ire1 luminal domain led to the controversial suggestion that the molecule can bind to unfolded proteins. We demonstrate that, upon ER stress, Ire1 clusters and actually interacts with unfolded proteins. Ire1 mutations that affect these phenomena reveal that Ire1 is activated via two steps, both of which are ER stress regulated, albeit in different ways. In the first step, BiP dissociation from Ire1 leads to its cluster formation. In the second step, direct interaction of unfolded proteins with the CSSR orients the cytosolic effector domains of clustered Ire1 molecules.  相似文献   

20.
Pyruvate oxidase, a tetrameric enzyme consisting of 4 identical subunits, dissociates into apoenzyme monomers and free FAD when treated with acid ammonium sulfate in the presence of high concentrations of potassium bromide. Reconstitution of the native enzymatically active protein can be accomplished by incubating equimolar concentrations of apomonomers and FAD at pH 6.5. The kinetics of the reconstitution reaction have been measured by 1) enzyme activity assays, 2) spectrophotometric assays to measure FAD binding, and 3) high performance liquid chromatography analysis measuring the distribution of monomeric, dimeric, and tetrameric species during reconstitution. The kinetic analysis indicates that the second order reaction of apomonomers with FAD to form an initial monomer-FAD complex is fast. The rate-limiting step for enzymatic reactivation appears to be the folding of the polypeptide chain in the monomer-FAD complex to reconstitute the three-dimensional FAD binding site prior to subunit reassociation. The subsequent formation of native tetramers appears to proceed via an essentially irreversible dimer assembly pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号