首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypothesis that hepatic nitric oxide (NO) and glutathione (GSH) are involved in the synthesis of a putative hormone referred to as hepatic insulin-sensitizing substance HISS. Insulin action was assessed in Wistar rats using the rapid insulin sensitivity test (RIST). Blockade of hepatic NO synthesis with N(G)-nitro-l-arginine methyl ester (l-NAME, 1.0 mg/kg intraportal) decreased insulin sensitivity by 45.1 +/- 2.1% compared with control (from 287.3 +/- 18.1 to 155.3 +/- 10.1 mg glucose/kg, P < 0.05). Insulin sensitivity was restored to 321.7 +/- 44.7 mg glucose/kg after administration of an NO donor, intraportal SIN-1 (5 mg/kg), which promotes GSH nitrosation, but not after intraportal sodium nitroprusside (20 nmol x kg(-1) x min(-1)), which does not nitrosate GSH. We depleted hepatic GSH using the GSH synthesis inhibitor l-buthionine-[S,R]-sulfoximine (BSO, 2 mmol/kg body wt ip for 20 days), which reduced insulin sensitivity by 39.1%. Insulin sensitivity after l-NAME was not significantly different between BSO- and sham-treated animals. SIN-1 did not reverse the insulin resistance induced by l-NAME in the BSO-treated group. These results support our hypothesis that NO and GSH are essential for insulin action.  相似文献   

2.
We tested the hypothesis that an elevation in albumin synthetic rate contributes to increased plasma albumin content during exercise-induced hypervolemia. Albumin synthetic rate was measured in seven healthy subjects at 1-5 and 21-22 h after 72 min of intense (85% peak oxygen consumption rate) intermittent exercise and after 5 h recovery in either upright (Up) or supine (Sup) postures. Deuterated phenylalanine (d(5)-Phe) was administrated by a primed-constant infusion method, and fractional synthetic rate (FSR) and absolute synthetic rate (ASR) of albumin were calculated from the enrichment of d(5)-Phe in plasma albumin, determined by gas chromatography-mass spectrometry. FSR of albumin in Up increased significantly (P < 0.05) from 4.9 +/- 0.9%/day at control to 7.3 +/- 0.9%/day at 22 h of recovery. ASR of albumin increased from 87.9 +/- 17.0 to 141.1 +/- 16.6 mg albumin. kg body wt(-1). day(-1). In contrast, FSR and ASR of albumin were unchanged in Sup (3.9 +/- 0.4 to 4.0 +/- 1.4%/day and 74.2 +/- 8.9 to 85.3 +/- 23.9 mg albumin. kg body wt(-1). day(-1) at control and 22 h of recovery, respectively). Increased albumin synthesis after upright intense exercise contributes to the expansion of greater albumin content and its maintenance. We conclude that stimuli related to posture are critical in modulating the drive for albumin synthesis after intense exercise.  相似文献   

3.
Insulin resistance in acromegaly causes glucose intolerance and diabetes, but it is unknown whether it involves protein metabolism, since both insulin and growth hormone promote protein accretion. The effects of acromegaly and of its surgical cure on the insulin sensitivity of glucose and amino acid/protein metabolism were evaluated by infusing [6,6-(2)H(2)]glucose, [1-(13)C]leucine, and [2-(15)N]glutamine during a euglycemic insulin (1 mU x kg(-1) x min(-1)) clamp in 12 acromegalic patients, six studied again 6 mo after successful adenomectomy, and eight healthy controls. Acromegalic patients, compared with postsurgical and control subjects, had higher postabsorptive glucose concentration (5.5 +/- 0.3 vs. 4.9 +/- 0.2 micromol/l, P < 0.05, and 5.1 +/- 0.1 micromol/l) and flux (2.7 +/- 0.1 vs. 2.0 +/- 0.2 micromol x kg(-1) x min(-1), P < 0.01, and 2.2 +/- 0.1 micromol x kg(-1) x min(-1), P < 0.05) and reduced insulin-stimulated glucose disposal (+15 +/- 9 vs. +151 +/- 18%, P < 0.01, and 219 +/- 58%, P < 0.001 from basal). Postabsorptive leucine metabolism was similar among groups. In acromegalic and postsurgical subjects, insulin suppressed less than in controls the endogenous leucine flux (-9 +/- 1 and -12 +/- 2 vs. -18 +/- 2%, P < 0.001 and P < 0.05), the nonoxidative leucine disposal (-4 +/- 3 and -1 +/- 3 vs. -18 +/- 2%, P < 0.01 and P < 0.05), respectively, indexes of proteolysis and protein synthesis, and leucine oxidation (-17 +/- 6% in postsurgical patients vs. -26 +/- 6% in controls, P < 0.05). Within 6 mo, surgery reverses insulin resistance for glucose but not for protein metabolism. After adenomectomy, more leucine is oxidized during hyperinsulinemia.  相似文献   

4.
Increased concentrations of plasma fibrinogen, an independent risk factor for cardiovascular disease (CVD), in obese children have been reported. The underlying mechanism for this, however, remains to be defined. In the current study, we measured the fractional synthesis rates (FSR) of plasma fibrinogen in six healthy postpubertal obese girls [body mass index (BMI) 36.6 +/- 1.8 kg/m(2); age 16.6 +/- 0.5 yr] and six age-matched lean normal control girls (BMI 20.8 +/- 0.7 kg/m(2); age 16.4 +/- 0.4 yr) during a primed, continuous infusion of L-[1-(13)C]leucine in the postabsorptive state. The method involved purification of plasma fibrinogen by use of immunoaffinity chromatography followed by measurement of [(13)C]leucine enrichment using gas chromatography-combustion-isotope ratio mass spectrometry. The FSR of fibrinogen in obese girls (35.06 +/- 2.61%/day) was almost double that in lean girls (17.02 +/- 1.43%/day), and this increase was associated with a relative increase in plasma concentration of fibrinogen as well as BMI in the subjects studied. Obese subjects had high fasting insulin levels (138 +/- 47 pmol/l) compared with lean subjects (54 +/- 11 pmol/l), whereas their glucose concentrations were similar (4.5 +/- 0.3 mmol/l in obese and 4.4 +/- 0.4 mmol/l in lean subjects), suggesting insulin resistance. The doubling of the FSR of fibrinogen provides novel insight into the mechanism of elevated levels of plasma fibrinogen and suggests a primary role for increased synthesis in producing the hyperfibrinogenemia associated with obesity. This finding may have important implications in the design of therapies for modulating plasma fibrinogen levels in obesity and/or CVD in childhood.  相似文献   

5.
To determine whether glutamine affects glutathione (GSH, gamma-glutamyl-cysteinyl-glycine) metabolism, seven healthy beagle dogs received 6-h infusions of [(15)N]glutamate and [(13)C]leucine after a 3-day fast. Isotope infusions were performed during oral feeding with an elemental regimen, supplemented with either l-glutamine or an isonitrogenous amino acid mixture, on two separate days and in randomized order. Timed blood samples were obtained, and a surgical duodenal biopsy was performed after 6 h of isotope infusion. GSH fractional synthesis rate (FSR) was assessed from [(15)N]glutamate incorporation into blood and gut GSH, and duodenal protein synthesis from [(13)C]leucine incorporation into gut protein. Glutamine supplementation failed to alter erythrocyte GSH concentration (2189+/-86 vs. 1994+/-102 micromol L(-1) for glutamine vs. control; ns) or FSR (64+/-17% vs. 74+/-20% day(-1); ns). In the duodenum, glutamine supplementation was associated with a 92% rise in reduced/oxidized GSH ratio (P=.024) and with a 44% decline in GSH FSR (96+/-15% day(-1) vs. 170+/-18% day(-1); P=.005), whereas total GSH concentration remained unchanged (808+/-154 vs. 740+/-127 micromol kg(-1); P=.779). We conclude that, in dogs receiving enteral nutrition after a 3-day fast: (1) glutamine availability does not affect blood GSH, and, (2) in contrast, in the duodenum, the preserved GSH pool, along with a decreased synthesis rate, suggests that glutamine may maintain GSH pool and intestinal redox status by acutely decreasing GSH utilization.  相似文献   

6.
Although lipid excess can impair beta-cell function in vitro, short-term high-fat feeding in normal rats produces insulin resistance but not hyperglycemia. This study examines the effect of long-term (10-mo) high polyunsaturated fat feeding on glucose tolerance in Wistar rats. The high fat-fed compared with the chow-fed group was 30% heavier and 60% fatter, with approximately doubled fasting hyperinsulinemia (P < 0.001) but only marginal fasting hyperglycemia (7.5 +/- 0.1 vs. 7.2 +/- 0.1 mmol/l, P < 0.01). Insulin sensitivity was approximately 67% lower in the high-fat group (P < 0.01). The acute insulin response to intravenous arginine was approximately double in the insulin-resistant high-fat group (P < 0.001), but that to intravenous glucose was similar in the two groups. After the intravenous glucose bolus, plasma glucose decline was slower in the high fat-fed group, confirming mild glucose intolerance. Therefore, despite severe insulin resistance, there was only a mildly elevated fasting glucose level and a relative deficiency in glucose-stimulated insulin secretion; this suggests that a genetic or congenital susceptibility to beta-cell impairment is required for overt hyperglycemia to develop in the presence of severe insulin resistance.  相似文献   

7.
Islet function was examined in 13 severely obese women [body mass index 46.4 +/- 5.5 (SD) kg/m(2)] before and after standardized 15 and 25% weight reduction (WR) instituted by bariatric surgery. The insulin response to arginine at fasting (AIR(1)), at 14 mmol/l, and at >25 mmol/l glucose was reduced by 37-50% after 15 and 25% WR (P 相似文献   

8.
We have previously shown that deficient arginine intake increased the rate of endogenous arginine synthesis from proline. In this paper, we report in vivo quantification of the effects of arginine intake on total endogenous arginine synthesis, on the rates of conversion between arginine, citrulline, ornithine, and proline, and on nitric oxide synthesis. Male piglets, with gastric catheters for diet and isotope infusion and femoral vein catheters for blood sampling, received a complete diet for 2 days and then either a generous (+Arg; 1.80 g x kg(-1) x day(-1); n = 5) or deficient (-Arg; 0.20 g.kg(-1).day(-1); n = 5) arginine diet for 5 days. On day 7, piglets received a primed, constant infusion of [guanido-(15)N(2)]arginine, [ureido-(13)C;5,5-(2)H(2)]citrulline, [U-(13)C(5)]ornithine, and [(15)N;U-(13)C(5)]proline in an integrated study of the metabolism of arginine and its precursors. Arginine synthesis (micromol x kg(-1) x h(-1)) from both proline (+Arg: 42, -Arg: 74, pooled SE: 5) and citrulline (+Arg: 67, -Arg: 120; pooled SE: 15) were higher in piglets receiving the -Arg diet (P < 0.05); and for both diets proline accounted for approximately 60% of total endogenous arginine synthesis. The conversion of proline to citrulline (+Arg: 39, -Arg: 67, pooled SE: 6) was similar to the proline-to-arginine conversion, confirming that citrulline formation limits arginine synthesis from proline in piglets. Nitric oxide synthesis (micromol x kg(-1) x h(-1)), measured by the rate conversion of [guanido-(15)N(2)]arginine to [ureido-(15)N]citrulline, was greater in piglets receiving the +Arg diet (105) than in those receiving the -Arg diet (46, pooled SE: 10; P < 0.05). This multi-isotope method successfully allowed many aspects of arginine metabolism to be quantified simultaneously in vivo.  相似文献   

9.
The goal of this study was to discover whether using different tracers affects the measured rate of muscle protein synthesis in human muscle. We therefore measured the mixed muscle protein fractional synthesis rate (FSR) in the quadriceps of older adults during basal, postabsorptive conditions and mixed meal feeding (70 mg protein x kg fat-free mass(-1) x h(-1) x 2.5 h) by simultaneous intravenous infusions of [5,5,5-(2)H(3)]leucine and either [ring-(13)C(6)]phenylalanine or [ring-(2)H(5)]phenylalanine and analysis of muscle tissue samples by gas chromatography-mass spectrometry. Both the basal FSR and the FSR during feeding were approximately 20% greater (P < 0.001) when calculated from the leucine labeling in muscle tissue fluid and proteins (fasted: 0.063 +/- 0.005%/h; fed: 0.080 +/- 0.007%/h) than when calculated from the phenylalanine enrichment data (0.051 +/- 0.004 and 0.066 +/- 0.005%/h, respectively). The feeding-induced increase in the FSR ( approximately 20%; P = 0.011) was not different with leucine and phenylalanine tracers (P = 0.69). Furthermore, the difference between the leucine- and phenylalanine-derived FSRs was independent of the phenylalanine isotopomer used (P = 0.92). We conclude that when using stable isotope-labeled tracers and the classic precursor product model to measure the rate of muscle protein synthesis, absolute rates of muscle protein FSR differ significantly depending on the tracer amino acid used; however, the anabolic response to feeding is independent of the tracer used. Thus different precursor amino acid tracers cannot be used interchangeably for the evaluation of muscle protein synthesis, and data from studies using different tracer amino acids can be compared qualitatively but not quantitatively.  相似文献   

10.
Little is known about amino acid (AA) and protein metabolism in lactating women. We hypothesized: 1) AA sources other than the plasma acid pool provide substrate for milk protein synthesis in humans and 2) if albumin was one such source, then albumin fractional synthesis rate (FSR) is higher in the lactating women. To test these hypotheses, six healthy exclusively breast-feeding women [27 +/- 3 yr; body mass index (BMI) 26 +/- 2 kg/m2] between 6 wk and 3 mo postpartum and six healthy nonlactating women (28 +/- 2 yr; BMI 22 +/- 1 kg/m2) were studied two times, in random order, during 22 h fasting or 10 h of continuous feeding with a mixed nutrient drink. Protein metabolism was determined using [1-13C]leucine and [15N2]urea. In both the fed and fasted states, a significant portion of milk protein (20 +/- 5 and 31 +/- 6%, respectively) was derived from sources other than the plasma free AA pool. A 70% higher (P < 0.02) FSR of albumin was observed in lactating women during feeding, suggesting that albumin is a likely source of AA for milk protein synthesis. We conclude that plasma free AA contribute only 70-80% of the substrate for milk protein synthesis in humans and that albumin may be a significant source of amino acids for the remainder.  相似文献   

11.
Endothelial dysfunction is a hallmark of Type 2 diabetes related to hyperglycemia and oxidative stress. Nitric oxide-dependent vasodilator actions of insulin may augment glucose disposal. Thus endothelial dysfunction may worsen insulin resistance. Intra-arterial administration of vitamin C improves endothelial dysfunction in diabetes. In the present study, we investigated effects of high-dose oral vitamin C to alter endothelial dysfunction and insulin resistance in Type 2 diabetes. Plasma vitamin C levels in 109 diabetic subjects were lower than healthy (36 +/- 2 microM) levels. Thirty-two diabetic subjects with low plasma vitamin C (<40 microM) were subsequently enrolled in a randomized, double-blind, placebo-controlled study of vitamin C (800 mg/day for 4 wk). Insulin sensitivity (determined by glucose clamp) and forearm blood flow in response to ACh, sodium nitroprusside (SNP), or insulin (determined by plethysmography) were assessed before and after 4 wk of treatment. In the placebo group (n = 17 subjects), plasma vitamin C (22 +/- 3 microM), fasting glucose (159 +/- 12 mg/dl), insulin (19 +/- 7 microU/ml), and SI(Clamp) [2.06 +/- 0.29 x 10(-4) dl x kg(-1) x min(-1)/(microU/ml)] did not change significantly after placebo treatment. In the vitamin C group (n = 15 subjects), basal plasma vitamin C (23 +/- 2 microM) increased to 48 +/- 6 microM (P < 0.01) after treatment, but this was significantly less than that expected for healthy subjects (>80 microM). No significant changes in fasting glucose (156 +/- 11 mg/dl), insulin (14 +/- 2 microU/ml), SI(Clamp) [2.71 +/- 0.46 x 10(-4) dl x kg(-1) x min(-1)/(microU/ml)], or forearm blood flow in response to ACh, SNP, or insulin were observed after vitamin C treatment. We conclude that high-dose oral vitamin C therapy, resulting in incomplete replenishment of vitamin C levels, is ineffective at improving endothelial dysfunction and insulin resistance in Type 2 diabetes.  相似文献   

12.
Increased synthesis rate of fibrinogen, an independent risk factor for cardiovascular disease, was recently reported in obese insulin-resistant female adolescents with chronic elevated nonesterified fatty acids (NEFA). It is unknown whether a short-term change of NEFA concentrations controls hepatic fibrinogen synthesis. Therefore, 10 healthy male volunteers (24.5 +/- 3.3 yr, body mass index 23.5 +/- 2.9 kg/m2) were investigated in random order under basal and elevated NEFA for 8 h. Leucine metabolism, the fractional synthesis rates (FSR) of plasma fibrinogen, and endogenous urea production rates were measured during primed, continuous infusion of [1-13C]leucine and [15N2]urea, respectively. Plasma alpha-[13C]ketoisocaproic acid and [15N2]urea enrichment values were measured with GC-MS. Plasma fibrinogen was isolated with the beta-alanine method, and fibrinogen-related [13C]leucine enrichment was analyzed by GC-CIRMS. Lipofundin infusion and subcutaneous heparin tripled NEFA and triglycerides in the tests. Plasma glucose, circulating insulin, human C-peptide, and plasma glucagon were not changed by the study procedure. Fibrinogen FSR were significantly lower in tests with NEFA elevation (18.44 +/- 4.67%) than in control tests (21.48 +/- 4.32%; P < 0.05). Plasma fibrinogen concentrations measured were not significantly different (NEFA test subjects: 1.85 +/- 0.33, controls: 1.97 +/- 0.54 g/l). Parameters of leucine metabolism, such as leucine rate of appearance, leucine oxidation, and nonoxidative leucine disposal, were not influenced by NEFA elevation, and endogenous urea production remained unchanged. NEFA contributes to short-term regulation of fibrinogen FSR in healthy volunteers under unchanged hormonal status, leucine metabolism, and overall amino acid catabolism. Its contribution might be of relevance at least after fat-rich meals, counteracting by reduction of FSR the blood viscosity increase implied by hyperlipidemia.  相似文献   

13.
Albumin is the major binding protein in the human neonate. Low production of albumin will lower its transport and binding capacity. This is especially important in preterm infants, in whom albumin binds to potentially toxic products such as bilirubin and antibiotics. To study the metabolism of plasma albumin in preterm infants, we administered a 24-h constant infusion of [1-(13)C]leucine to 24 very low birth weight (VLBW) infants (28.4 +/- 0.4 wk, 1,080 +/- 75 g) on the first day of life. The caloric intake consisted of glucose only, and therefore amino acids for albumin synthesis were derived from proteolysis. The fractional synthesis rate (FSR) of plasma albumin was 13.9 +/- 1.5%/day, and the absolute synthesis rate was 148 +/- 17 mg x kg(-1) x day(-1). Synthesis rates were significantly lower (P<0.03) in infants showing intrauterine growth retardation. Albumin synthesis increased with increasing SD scores for gestation and weight (P<0.05). The FSR of albumin tended to increase by 37% after administration of antenatal corticosteroids to improve postnatal lung function (P=0.09). We conclude that liver synthetic capacity is well developed in VLBW infants and that prenatal corticosteroids tend to increase albumin synthesis. Decreased weight gain rates in utero have effects on protein synthesis postnatally.  相似文献   

14.
We evaluated the effects of physiologic increases in insulin on hepatic and peripheral glucose metabolism in nonpregnant (NP) and pregnant (P; 3rd trimester) conscious dogs (n = 9 each) using tracer and arteriovenous difference techniques during a hyperinsulinemic euglycemic clamp. Insulin was initially (-150 to 0 min) infused intraportally at a basal rate. During 0-120 min (Low Insulin), the rate was increased by 0.2 mU x kg(-1) x min(-1), and from 120 to 240 min (High Insulin) insulin was infused at 1.5 mU x kg(-1) x min(-1). Insulin concentrations were significantly higher in NP than P during all periods. Matched subsets (n = 5 NP and 6 P) were identified. In the subsets, insulin was 7 +/- 1, 9 +/- 1, and 28 +/- 3 microU/ml (basal, Low Insulin, and High Insulin, respectively) in NP, and 5 +/- 1, 7 +/- 1, and 27 +/- 3 microU/ml in P. Net hepatic glucose output was suppressed similarly in both subsets (> or =50% with Low Insulin, 100% with High Insulin), as was endogenous glucose rate of appearance. During High Insulin, NP dogs required more glucose (10.8 +/- 1.5 vs. 6.2 +/- 1.0 mg x kg(-1) x min(-1), P < 0.05), and hindlimb (primarily skeletal muscle) glucose uptake tended to be greater in NP than P (18.6 +/- 2.5 mg/min vs. 13.6 +/- 2.0 mg/min, P = 0.06). The normal canine liver remains insulin sensitive during late pregnancy. Differing insulin concentrations in pregnant and nonpregnant women and excessive insulin infusion rates may explain previous findings of hepatic insulin resistance in healthy pregnant women.  相似文献   

15.
Insulin stimulates production of NO in vascular endothelium via activation of phosphatidylinositol (PI) 3-kinase, Akt, and endothelial NO synthase. We hypothesized that insulin resistance may cause imbalance between endothelial vasodilators and vasoconstrictors (e.g., NO and ET-1), leading to hypertension. Twelve-week-old male spontaneously hypertensive rats (SHR) were hypertensive and insulin resistant compared with control Wistar-Kyoto (WKY) rats (systolic blood pressure 202 +/- 11 vs. 132 +/- 10 mmHg; fasting plasma insulin 5 +/- 1 vs. 0.9 +/- 0.1 ng/ml; P < 0.001). In WKY rats, insulin stimulated dose-dependent relaxation of mesenteric arteries precontracted with norepinephrine (NE) ex vivo. This depended on intact endothelium and was blocked by genistein, wortmannin, or N(omega)-nitro-l-arginine methyl ester (inhibitors of tyrosine kinase, PI3-kinase, and NO synthases, respectively). Vasodilation in response to insulin (but not ACh) was impaired by 20% in SHR (vs. WKY, P < 0.005). Preincubation of arteries with insulin significantly reduced the contractile effect of NE by 20% in WKY but not SHR rats. In SHR, the effect of insulin to reduce NE-mediated vasoconstriction became evident when insulin pretreatment was accompanied by ET-1 receptor blockade (BQ-123, BQ-788). Similar results were observed during treatment with the MEK inhibitor PD-98059. In addition, insulin-stimulated secretion of ET-1 from primary endothelial cells was significantly reduced by pretreatment of cells with PD-98059 (but not wortmannin). We conclude that insulin resistance in SHR is accompanied by endothelial dysfunction in mesenteric vessels with impaired PI3-kinase-dependent NO production and enhanced MAPK-dependent ET-1 secretion. These results may reflect pathophysiology in other vascular beds that directly contribute to elevated peripheral vascular resistance and hypertension.  相似文献   

16.
Physiological actions of insulin via activation of the phosphatidylinositol 3-kinase/Akt pathway in the endothelium serve to couple regulation of hemodynamic and metabolic homeostasis. Insulin resistance, endothelial dysfunction, and hypertension increase in prevalence with aging. We investigated the metabolic and endothelial actions of insulin in 24- vs. 3-mo Sprague-Dawley rats. With the use of the hyperinsulinemic euglycemic clamp, the rate of glucose infusion necessary to maintain equivalent plasma glucose (5.5 mmol/l) was similar in 24- vs. 3-mo rats, as was fasting glucose (5.2 +/- 0.33 vs. 4.4 +/- 0.37 mmol/l; mean +/- SE) and insulin (0.862 +/- 0.193 vs. 1.307 +/- 0.230 mg/l). Systolic blood pressure was higher in 24-mo rats (133 +/- 5 vs. 110 +/- 4 mmHg; P = 0.005). Endothelial nitric oxide (NO)-dependent relaxation to insulin was impaired in aortas of 24- vs. 3-mo rats (maximal response 8.9 +/- 4.3 vs. 34.9 +/- 3.9%; P = 0.002); N(G)-nitro-l-arginine methyl ester abolished insulin-mediated relaxation in 3- but not 24-mo rats. Endothelium NO-dependent (acetylcholine) and -independent (sodium nitroprusside) relaxation, as well as NADPH oxidase activity, were similar in 3- and 24-mo rats. Insulin increased aortic serine phosphorylation of Akt in 3-mo rats by 120% over 24-mo rats (P < 0.05) and serine phosphorylation of endothelial NO synthase (eNOS) in 3-mo rats by 380% over 24-mo rats (P < 0.05). Aortic expression of phosphorylated c-Jun NH(2)-terminal kinase-1 and serine phosphorylated insulin receptor substrate-1, known mediators of metabolic insulin resistance, was similar in 3- and 24-mo rats. Expression of caveolin-1, a regulator of eNOS activity and insulin signaling, was 55% lower in 24- than 3-mo rats (P = 0.002). In summary, impaired vasorelaxation to insulin in aging was independent of metabolic insulin sensitivity and associated with impaired insulin-mediated activation of the Akt/eNOS pathway, but intact activation of the acetylcholine-mediated Ca(2+)-calmodulin/eNOS pathway. Vascular insulin resistance in aging may add to the increased susceptibility of this population to vascular injury induced by traditional cardiovascular risk factors.  相似文献   

17.
Administration of arginine or a high-protein diet increases the hepatic content of N-acetylglutamate (NAG) and the synthesis of urea. However, the underlying mechanism is unknown. We have explored the hypothesis that agmatine, a metabolite of arginine, may stimulate NAG synthesis and, thereby, urea synthesis. We tested this hypothesis in a liver perfusion system to determine 1) the metabolism of l-[guanidino-15N2]arginine to either agmatine, nitric oxide (NO), and/or urea; 2) hepatic uptake of perfusate agmatine and its action on hepatic N metabolism; and 3) the role of arginine, agmatine, or NO in regulating NAG synthesis and ureagenesis in livers perfused with 15N-labeled glutamine and unlabeled ammonia or 15NH4Cl and unlabeled glutamine. Our principal findings are 1) [guanidino-15N2]agmatine is formed in the liver from perfusate l-[guanidino-15N2]arginine ( approximately 90% of hepatic agmatine is derived from perfusate arginine); 2) perfusions with agmatine significantly stimulated the synthesis of 15N-labeled NAG and [15N]urea from 15N-labeled ammonia or glutamine; and 3) the increased levels of hepatic agmatine are strongly correlated with increased levels and synthesis of 15N-labeled NAG and [15N]urea. These data suggest a possible therapeutic strategy encompassing the use of agmatine for the treatment of disturbed ureagenesis, whether secondary to inborn errors of metabolism or to liver disease.  相似文献   

18.
Authentic N omega-hydroxy-L-arginine was synthesized and used to determine whether it is an intermediate in nitric oxide (.NO) synthesis from L-arginine by macrophage .NO synthase. The apparent Km (6.6 microM) and Vmax (99 nmol x min-1 x mg-1) observed with N omega-hydroxy-L-arginine were similar to those observed with L-arginine (Km = 2.3 microM; Vmax = 54 mumol x min-1 x mg-1). N omega-Hydroxy-D-arginine was not a substrate. Stable isotope studies showed that .NO synthase exclusively oxidized the hydroxylated nitrogen of N omega-hydroxy-L-arginine, forming .NO and L-citrulline. As with L-arginine, O2 was the source of the ureido oxygen in L-citrulline from N omega-hydroxy-L-arginine. In the presence of excess N omega-hydroxy-L-arginine, .NO synthase generated a metabolite of L-[14C]arginine that cochromatographed with authentic N omega-hydroxy-L-arginine. The labeled metabolite exhibited identical chromatographic behavior in three solvent systems and generated the same product (L-citrulline) upon alkaline hydrolysis as authentic N omega-hydroxy-L-arginine. Experiments were then run to identify which redox cofactor (NADPH or tetrahydrobiopterin) participated in the enzymatic synthesis of N omega-hydroxy-L-arginine. Both cofactors were required for synthesis of .NO from either N omega-hydroxy-L-arginine or L-arginine. However, with L-arginine, the synthesis of 1 mol of .NO was coupled to the oxidation of 1.52 +/- 0.02 mol of NADPH; whereas with N omega-hydroxy-L-arginine, only 0.53 +/- 0.04 mol of NADPH was oxidized per mol of .NO formed. These results support a mechanism in which N omega-hydroxy-L-arginine is generated as an intermediate in .NO synthesis through an NADPH-dependent hydroxylation of L-arginine.  相似文献   

19.
Recent studies have documented transfer of labeled nitrogen from [2-(15)N]glutamine to citrulline and arginine in fasting human adults. Conversely, in neonates and piglets we have shown no synthesis of arginine from [2-(15)N]glutamate, and others have shown in mice that glutamine is a nitrogen, but not a carbon donor, for arginine synthesis. Therefore, we performed a multitracer study to determine whether glutamine is a nitrogen and/or carbon donor for arginine in healthy adult men. Two glutamine tracers, 2-(15)N and 1-(13)C, were given enterally to five healthy men fed a standardized milkshake diet. There was no difference in plasma enrichments between the two glutamine tracers. 1-(13)C isotopomers of citrulline and arginine were synthesized from [1-(13)C]glutamine. Three isotopomers each of citrulline and arginine were synthesized from the [2-(15)N]glutamine tracer: 2-(15)N, 5-(15)N, and 2,5-(15)N(2). Significantly greater enrichment was found of both [5-(15)N]arginine (0.75%) and citrulline (3.98%) compared with [2-(15)N]arginine (0.44%) and [2-(15)N]citrulline (2.62%), indicating the amino NH(2) from glutamine is mostly transferred to arginine and citrulline by transamination. Similarly, the enrichment of the 1-(13)C isotopomers was significantly less than the 2-(15)N isotopomers, suggesting rapid formation of α-ketoglutarate and recycling of the nitrogen label. Our results show that the carbon for 50% of newly synthesized arginine comes from dietary glutamine but that glutamine acts primarily as a nitrogen donor for arginine synthesis. Hence, studies using [2-(15)N]glutamine will overestimate arginine synthesis rates.  相似文献   

20.
Short-term exercise training improves insulin action, but the impact of replacing the energy expended during exercise to prevent energy deficit is unclear. The purpose of this study was to establish the role of an energy deficit in mediating improved insulin action after short-term exercise training. Two groups of previously sedentary, overweight/obese subjects performed 6 consecutive days of moderate-intensity walking to expend approximately 500 kcal/day. In one group, energy and carbohydrate expended during exercise was replaced [balance group (BAL), n = 8] and in the other group, energy was not replaced [deficit group (DEF), n = 8]. Insulin action (blood glucose uptake during glucose infusion) and selected lipids and adipokines were measured pre- and posttraining. Training increased estimated daily energy expenditure by approximately 500 kcal/day (DEF = 469 +/- 45, BAL = 521 +/- 48), generating an energy deficit in DEF (-481 +/- 24 kcal/day) but not BAL (+8 +/- 20 kcal/day). Insulin action increased 40% in DEF (P = 0.032) but not BAL (-8.4%, P = 0.107). Hepatic glucose production was suppressed during glucose infusion in DEF (30.2 +/- 9.5%, P = 0.037) but not BAL (-10.0 +/- 7.4%, P = 0.417). Fasting leptin concentrations declined in DEF but not BAL. Six days of exercise training without energy replacement significantly increased insulin action. Restoring energy balance by refeeding the energy and carbohydrate expended during exercise resulted in no change in insulin action. These findings suggest that changes in short-term energy and/or carbohydrate balance play a key role in mediating the beneficial effects of exercise on whole body and hepatic insulin action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号