首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ces1g/Es-x deficiency in mice results in weight gain, insulin resistance, fatty liver and hyperlipidemia through upregulation of de novo lipogenesis and oversecretion of triacylglycerol (TG)-rich lipoproteins. Here, we show that restoration of Ces1g/Es-x expression only in the liver significantly reduced hepatic TG concentration accompanied by decreased size of lipid droplets, reduced secretion of very low-density lipoproteins and improved insulin-mediated signal transduction in the liver. Collectively, these results demonstrate that hepatic Ces1g/Es-x plays a critical role in limiting hepatic steatosis, very low-density lipoprotein assembly and in augmenting insulin sensitivity.  相似文献   

2.
High sucrose (HS) feeding in rats induces hepatic steatosis and plasma dyslipidemia. In previous reports (Huang W, Dedousis N, Bhatt BA, O'Doherty RM. J Biol Chem 279: 21695-21700, 2004; and Huang W, Dedousis N, Bandi A, Lopaschuk GD, O'Doherty RM. Endocrinology 147: 1480-1487, 2006), our laboratory demonstrated a rapid ( approximately 100 min) leptin-induced decrease in liver and plasma VLDL triglycerides (TG) in lean rats, effects that were abolished in obese rats fed a high-fat diet, a model that also presents with hepatic steatosis and plasma dyslipidemia. To further examine the capacity of acute leptin treatment to improve metabolic abnormalities induced by nutrient excess, hepatic leptin action was studied in rats after 5 wk of HS feeding. HS feeding induced hepatic steatosis (TG+80+/-8%; P=0.001), plasma hyperlipidemia (VLDL-TG+102+/-14%; P=0.001), hyperinsulinemia (plasma insulin +67+/-12%; P=0.04), and insulin resistance as measured by homeostasis model assessment (+125+/-20%; P=0.02), without increases in adiposity or plasma leptin concentration compared with standard chow-fed controls. A 120-min infusion of leptin (plasma leptin 13.6+/-0.7 ng/ml) corrected hepatic steatosis (liver TG-29+/-3%; P=0.003) and plasma hyperlipidemia in HS (VLDL-TG-42+/-4%; P=0.001) and increased plasma ketones (+45+/-3%; P=0.006), without altering plasma glucose, insulin, or homeostasis model assessment compared with saline-infused HS controls. In addition, leptin activated liver phosphatidylinositol 3-kinase (+70+/-18%; P=0.01) and protein kinase B (Akt; +90+/-29%; P=0.02), and inhibited acetyl-CoA carboxylase (40+/-7%; P=0.04) in HS, further demonstrating that hepatic leptin action was intact in these animals. We conclude that 1) leptin action on hepatic lipid metabolism remains intact in HS-fed rats, 2) leptin rapidly reverses hepatic steatosis and plasma dyslipidemia induced by sucrose, and 3) the preservation of hepatic leptin action after a HS diet is associated with the maintenance of low adiposity and plasma leptin concentrations.  相似文献   

3.
Accumulation of triglycerides (TG) in the liver is generally associated with hepatic insulin resistance. We questioned whether acute hepatic steatosis induced by pharmacological blockade of beta-oxidation affects hepatic insulin sensitivity, i.e., insulin-mediated suppression of VLDL production and insulin-induced activation of phosphatidylinositol 3-kinase (PI3-kinase) and PKB. Tetradecylglycidic acid (TDGA), an inhibitor of carnitine palmitoyl transferase-1 (CPT1), was used for this purpose. Male C57BL/6J mice received 30 mg/kg TDGA or its solvent intraperitoneally and were subsequently fasted for 12 h. CPT1 inhibition resulted in severe microvesicular hepatic steatosis (19.9 +/- 8.3 vs. 112.4 +/- 25.2 nmol TG/mg liver, control vs. treated, P < 0.05) with elevated plasma nonesterified fatty acid (0.68 +/- 0.25 vs. 1.21 +/- 0.41 mM, P < 0.05) and plasma TG (0.39 +/- 0.16 vs. 0.60 +/- 0.10 mM, P < 0.05) concentrations. VLDL-TG production rate was not affected on CPT1 inhibition (74.9 +/- 15.2 vs. 79.1 +/- 12.8 mumol TG.kg(-1).min(-1), control vs. treated) although treated mice secreted larger VLDL particles (59.3 +/- 3.6 vs. 66.6 +/- 4.5 nm diameter, P < 0.05). Infusion of insulin under euglycemic conditions suppressed VLDL production rate in control and treated mice by 43 and 54%, respectively, with formation of smaller VLDL particles (51.2 +/- 2.5 and 53.2 +/- 2.8 nm diameter). Insulin-induced insulin receptor substrate (IRS)1- and IRS2-associated PI3-kinase activity and PKB-phosphorylation were not affected on TDGA treatment. In conclusion, acute hepatic steatosis caused by pharmacological inhibition of beta-oxidation is not associated with reduced hepatic insulin sensitivity, indicating that hepatocellular fat content per se is not causally related to insulin resistance.  相似文献   

4.
Obese obob mice with strong overexpression of the human apolipoprotein C1 (APOC1) exhibit excessive free fatty acid (FFA) and triglyceride (TG) levels and severely reduced body weight (due to the absence of subcutaneous adipose tissue) and skin abnormalities. To evaluate the effects of APOC1 overexpression on hepatic and peripheral insulin sensitivity in a less-extreme model, we generated obob mice with mild overexpression of APOC1 (obob/APOC1(+/-)) and performed hyperinsulinemic clamp analysis. Compared with obob littermates, obob/APOC1(+/-) mice showed reduced body weight (-25%) and increased plasma levels of TG (+632%), total cholesterol (+134%), FFA (+65%), glucose (+73%), and insulin (+49%). Hyperinsulinemic clamp analysis revealed severe whole-body and hepatic insulin resistance in obob/APOC1(+/-) mice and, in addition, increased hepatic uptake of FFA and hepatic TG content. Treatment of obob/APOC1(+/-) mice with rosiglitazone strongly improved whole-body insulin sensitivity as well as hepatic insulin sensitivity, despite a further increase of hepatic fatty acid (FA) uptake and a panlobular increase of hepatic TG accumulation. We conclude that overexpression of APOC1 prevents rosiglitazone-induced peripheral FA uptake leading to severe hepatic steatosis. Interestingly, despite rosiglitazone-induced hepatic steatosis, hepatic insulin sensitivity improves dramatically. We hypothesize that the different hepatic fat accumulation and/or decrease in FA intermediates has a major effect on the insulin sensitivity of the liver.  相似文献   

5.
The ability of insulin to suppress gluconeogenesis in type II diabetes mellitus is impaired; however, the cellular mechanisms for this insulin resistance remain poorly understood. To address this question, we generated transgenic (TG) mice overexpressing the phosphoenolpyruvate carboxykinase (PEPCK) gene under control of its own promoter. TG mice had increased basal hepatic glucose production (HGP), but normal levels of plasma free fatty acids (FFAs) and whole-body glucose disposal during a hyperinsulinemic-euglycemic clamp compared with wild-type controls. The steady-state levels of PEPCK and glucose-6-phosphatase mRNAs were elevated in livers of TG mice and were resistant to down-regulation by insulin. Conversely, GLUT2 and glucokinase mRNA levels were appropriately regulated by insulin, suggesting that insulin resistance is selective to gluconeogenic gene expression. Insulin-stimulated phosphorylation of the insulin receptor, insulin receptor substrate (IRS)-1, and associated phosphatidylinositol 3-kinase were normal in TG mice, whereas IRS-2 protein and phosphorylation were down-regulated compared with control mice. These results establish that a modest (2-fold) increase in PEPCK gene expression in vivo is sufficient to increase HGP without affecting FFA concentrations. Furthermore, these results demonstrate that PEPCK overexpression results in a metabolic pattern that increases glucose-6-phosphatase mRNA and results in a selective decrease in IRS-2 protein, decreased phosphatidylinositol 3-kinase activity, and reduced ability of insulin to suppress gluconeogenic gene expression. However, acute suppression of HGP and glycolytic gene expression remained intact, suggesting that FFA and/or IRS-1 signaling, in addition to reduced IRS-2, plays an important role in downstream insulin signal transduction pathways involved in control of gluconeogenesis and progression to type II diabetes mellitus.  相似文献   

6.
We recently observed that ANG II receptor blocker therapy improved the overproduction of triglyceride (TG) in fructose-fed rats and Zucker fatty rats with insulin resistance, which in turn suggests that ANG II may stimulate TG production. Accordingly, we investigated the effects of ANG II on TG production and the association with insulin resistance in normal rats. Male Wistar rats were continuously infused with ANG II (100 ng.min(-1).kg body wt(-1)) via an osmotic minipump for 14 days. ANG II infusion markedly elevated both the systolic and diastolic blood pressure. The plasma TG level increased twofold, but cholesterol was unchanged. ANG II infusion stimulated the TG secretion rate (TGSR) by twofold and increased the hepatic TG content by 31%. Lipogenesis determined by [2-(3)H]glycerol incorporation into hepatic TG was also significantly increased in ANG II-infused rats. The stimulatory effect of ANG II on TGSR was dose dependent and was not observed until 2 wk after the start of infusion. ANG II infusion significantly reduced insulin sensitivity index (SI) without affecting glucose effectiveness determined by Bergman's minimal model. The plasma TG level was positively correlated with TGSR (r = 0.88, P < 0.001) and inversely with SI (r = -0.80, P < 0.005). These results suggest that chronic ANG II infusion stimulates hepatic TG production, which is partly associated with simultaneous development of insulin resistance. Our results may suggest a new mechanism for the intimate association between hypertension and dyslipidemia.  相似文献   

7.
The factors underlying cardiovascular risk in patients with diabetes have not been clearly elucidated. Efforts to study this in mice have been hindered because the usual atherogenic diets that contain fat and cholesterol also lead to obesity and insulin resistance. We compared plasma glucose, insulin, and atherosclerotic lesion formation in LDL receptor knockout (Ldlr(-/-)) mice fed diets with varying fat and cholesterol content that induced similar lipoprotein profiles. Ldlr(-/-) mice fed a high-fat diet developed obesity, mild hyperglycemia, hyperinsulinemia, and hypertriglyceridemia. Quantitative and qualitative assessments of atherosclerosis were unchanged in diabetic Ldlr(-/-) mice fed a high-fat diet compared with lean nondiabetic control mice after 20 weeks of diet. Although one group of mice fed diets for 40 weeks had larger lesions at the aortic root, this was associated with a more atherogenic lipoprotein profile. The presence of a human aldose reductase transgene had no effect on atherosclerosis in fat-fed Ldlr(-/-) mice with mild diabetes. Our data suggest that when lipoprotein profiles are similar, addition of fat to a cholesterol-rich diet does not increase atherosclerotic lesion formation in Ldlr(-/-) mice.  相似文献   

8.
Familial hypobetalipoproteinemia (FHBL) subjects may develop fatty liver. Liver fat was assessed in 21 FHBL with six different apolipoprotein B (apoB) truncations (apoB-4 to apoB-89) and 14 controls by magnetic resonance spectroscopy (MRS). Liver fat percentages were 16.7 +/- 11.5 and 3.3 +/- 2.9 (mean +/- SD) (P = 0.001). Liver fat percentage was positively correlated with body mass index, waist circumference, and areas under the insulin curves of 2 h glucose tolerance tests, suggesting that obesity may affect the severity of liver fat accumulation in both groups. Despite 5-fold differences in liver fat percentage, mean values for obesity and insulin indexes were similar. Thus, for similar degrees of obesity, FHBL subjects have more hepatic fat. VLDL-triglyceride (TG)-fatty acids arise from plasma and nonplasma sources (liver and splanchnic tissues). To assess the relative contributions of each, [2H2]palmitate was infused over 12 h in 13 FHBL subjects and 11 controls. Isotopic enrichment of plasma free palmitate and VLDL-TG-palmitate was determined by mass spectrometry. Non-plasma sources contributed 51 +/- 15% in FHBL and 37 +/- 13% in controls (P = 0.02). Correlations of liver fat percentage and percent VLDL-TG-palmitate from liver were r = 0.89 (P = 0.0001) for FHBL subjects and r = 0.69 (P = 0.01) for controls. Thus, apoB truncation-producing mutations result in fatty liver and in altered assembly of VLDL-TG.  相似文献   

9.
CD36 is involved in high-affinity peripheral FFA uptake. CD36-deficient (cd36(-)(/)(-)) mice exhibit increased plasma FFA and triglyceride (TG) levels. The aim of the present study was to elucidate the cause of the increased plasma TG levels in cd36(-)(/)(-) mice. cd36(-)(/)(-) mice showed no differences in hepatic VLDL-TG production or intestinal [(3)H]TG uptake compared with wild-type littermates. cd36(-)(/)(-) mice showed a 2-fold enhanced postprandial TG response upon an intragastric fat load (P < 0.05), with a concomitant 2.5-fold increased FFA response (P < 0.05), suggesting that the increased FFA in cd36(-/-) mice may impair LPL-mediated TG hydrolysis. Postheparin LPL levels were not affected. However, the in vitro LPL-mediated TG hydrolysis rate as induced by postheparin plasma of cd36(-)(/)(-) mice in the absence of excess FFA-free BSA was reduced 2-fold compared with wild-type plasma (P < 0.05). This inhibition was relieved upon the addition of excess FFA-free BSA. Likewise, increasing plasma FFA in wild-type mice to the levels observed in cd36(-)(/)(-) mice by infusion prolonged the plasma half-life of glycerol tri[(3)H]oleate-labeled VLDL-like emulsion particles by 2.5-fold (P < 0.05). We conclude that the increased plasma TG levels observed in cd36(-)(/)(-) mice are caused by decreased LPL-mediated hydrolysis of TG-rich lipoproteins resulting from FFA-induced product inhibition of LPL.  相似文献   

10.
Acylation-stimulating protein (ASP) is a lipogenic hormone secreted by white adipose tissue (WAT). Male C3 knockout (KO; C3(-/-)) ASP-deficient mice have delayed postprandial triglyceride (TG) clearance and reduced WAT mass. The objective of this study was to examine the mechanism(s) by which ASP deficiency induces differences in postprandial TG clearance and body composition in male KO mice. Except for increased (3)H-labeled nonesterified fatty acid (NEFA) trapping in brown adipose tissue (BAT) of KO mice (P = 0.02), there were no intrinsic tissue differences between wild-type (WT) and KO mice in (3)H-NEFA or [(14)C]glucose oxidation, TG synthesis or lipolysis in WAT, muscle, or liver. There were no differences in WAT or skeletal muscle hydrolysis, uptake, and storage of [(3)H]triolein substrate [in situ lipoprotein lipase (LPL) activity]. ASP, however, increased in situ LPL activity in WAT (+64.8%, P = 0.02) but decreased it in muscle (-35.0%, P = 0.0002). In addition, after prelabeling WAT with [(3)H]oleate and [(14)C]glucose, ASP increased (3)H-lipid retention, [(3)H]TG synthesis, and [(3)H]TG-to-[(14)C]TG ratio, whereas it decreased (3)H-NEFA release, indicating increased NEFA trapping in WAT. Conversely, in muscle, ASP induced effects opposite to those in WAT and increased lipolysis, indicating reduced NEFA trapping within muscle by ASP (P < 0.05 for all parameters). In conclusion, novel data in this study suggest that 1) there is little intrinsic difference between KO and WT tissue in the parameters examined and 2) ASP differentially regulates in situ LPL activity and NEFA trapping in WAT and skeletal muscle, which may promote optimal insulin sensitivity in vivo.  相似文献   

11.
A novel animal model of insulin resistance, the fructose-fed Syrian golden hamster, was employed to investigate the mechanisms mediating the overproduction of very low density lipoprotein (VLDL) in the insulin resistant state. Fructose feeding for a 2-week period induced significant hypertriglyceridemia and hyperinsulinemia, and the development of whole body insulin resistance was documented using the euglycemic-hyperinsulinemic clamp technique. In vivo Triton WR-1339 studies showed evidence of VLDL-apoB overproduction in the fructose-fed hamster. Fructose feeding induced a significant increase in cellular synthesis and secretion of total triglyceride (TG) as well as VLDL-TG by primary hamster hepatocytes. Increased TG secretion was accompanied by a 4.6-fold increase in VLDL-apoB secretion. Enhanced stability of nascent apoB in fructose-fed hepatocytes was evident in intact cells as well as in a permeabilized cell system. Analysis of newly formed lipoprotein particles in hepatic microsomes revealed significant differences in the pattern and density of lipoproteins, with hepatocytes derived from fructose-fed hamsters having higher levels of luminal lipoproteins at a density of VLDL versus controls. Immunoblot analysis of the intracellular mass of microsomal triglyceride transfer protein, a key enzyme involved in VLDL assembly, showed a striking 2.1-fold elevation in hepatocytes derived from fructose-fed versus control hamsters. Direct incubation of hamster hepatocytes with various concentrations of fructose failed to show any direct stimulation of its intracellular stability or extracellular secretion, further supporting the notion that the apoB overproduction in the fructose-fed hamster may be related to the fructose-induced insulin resistance in this animal model. In summary, hepatic VLDL-apoB overproduction in fructose-fed hamsters appears to result from increased intracellular stability of nascent apoB and an enhanced expression of MTP, which act to facilitate the assembly and secretion of apoB-containing lipoprotein particles.  相似文献   

12.
The purpose of this study was to examine the association between cardiorespiratory fitness, ectopic triglyceride accumulation, and insulin sensitivity among youth with and without type 2 diabetes. Subjects included 137 youth ages 13-18 years including 27 with type 2 diabetes, 97 overweight normoglycemic controls, and 13 healthy weight normoglycemic controls. The primary outcome measure was cardiorespiratory fitness defined as peak oxygen uptake indexed to fat free mass. Secondary outcomes included liver and muscle triglyceride content determined by (1)H-magnetic resonance spectroscopy and insulin sensitivity determined by frequently sampled intravenous glucose tolerance test. Despite similar measures of adiposity, peak oxygen uptake was 11% lower (38.9 ± 7.9 vs. 43.9 ± 6.1 ml/kgFFM/min, P = 0.002) and hepatic triglyceride content was nearly threefold higher (14.4 vs. 5.7%, P = 0.001) in youth with type 2 diabetes relative to overweight controls. In all 137 youth, cardiorespiratory fitness was negatively associated with hepatic triglyceride content (r = -0.22, P = 0.02) and positively associated with insulin sensitivity (r = 0.29, P = 0.002) independent of total body and visceral fat mass. Hepatic triglyceride content was also negatively associated with insulin sensitivity (r = -0.35, P < 0.001), independent of adiposity, sex, age, and peak oxygen uptake. This study demonstrated that low cardiorespiratory fitness and elevated hepatic triglyceride content are features of type 2 diabetes in youth. Furthermore, cardiorespiratory fitness and hepatic triglyceride are associated with insulin sensitivity in youth. Taken together, these data suggest that cardiorespiratory fitness and hepatic steatosis are potential clinical biomarkers for type 2 diabetes among youth.  相似文献   

13.
Lecithin-cholesterol acyltransferase deficiency is frequently associated with hypertriglyceridemia (HTG) in animal models and humans. We investigated the mechanism of HTG in the ldlr-/- x lcat-/- (double knockout (dko)) mice using the ldlr-/- x lcat+/+ (knock-out (ko)) littermates as control. Mean fasting triglyceride (TG) levels in the dko mice were elevated 1.75-fold compared with their controls (p < 0.002). Both the very low density lipoprotein and the low density lipoprotein/intermediate density lipoprotein fractions separated by fast protein liquid chromatography were TG-enriched in the dko mice. In vitro lipolysis assay revealed that the dko mouse very low density lipoprotein (d < 1.019 g/ml) fraction separated by ultracentrifugation was a more efficient substrate for lipolysis by exogenous bovine lipoprotein lipase. Post-heparin lipoprotein lipase activity was reduced by 61% in the dko mice. Hepatic TG production rate, determined after intravenous Triton WR1339 injection, was increased 8-fold in the dko mice. Hepatic mRNA levels of sterol regulatory element binding protein-1 (srebp-1) and its target genes acetyl-CoA carboxylase-1 (acc-1), fatty acid synthase (fas), and stearoyl-CoA desaturase-1 (scd-1) were significantly elevated in the dko mice compared with the ko control. The hepatic mRNA levels of LXRalpha (lxralpha) and its target genes including angiopoietin-like protein 3 (angptl-3) in the dko mice were unchanged. Fasting glucose and insulin levels were reduced by 31 and 42%, respectively in the dko mice, in conjunction with a 49% reduction in hepatic pepck-1 mRNA (p = 0.014). Both the HTG and the improved fasting glucose phenotype seen in the dko mice are at least in part attributable to an up-regulation of the hepatic srebp-1c gene.  相似文献   

14.
To address the role of the noncatalytic ligand function of hepatic lipase (HL) in low density lipoprotein (LDL) receptor-mediated lipoprotein metabolism, we characterized transgenic mice lacking the LDL receptor (LDLR) that express either catalytically active (Ldlr(-/-)HL) or inactive (Ldlr(-/-)HL(S145G)) human HL on both chow and high fat diets and compared them with nontransgenic Ldlr(-/-) mice. In mice fed a chow diet, apolipoprotein (apo)B-containing lipoprotein levels were 40-60% lower in Ldlr(-/-)HL and Ldlr(-/-)HL(S145G) mice than in Ldlr(-/-) mice. This decrease was mainly reflected by decreased apoB-48 levels in the Ldlr(-/-)HL mice and by decreased apoB-100 levels in Ldlr(-/-) HL(S145G) mice. These findings indicate that HL can reduce apoB-100-containing lipoproteins through a noncatalytic ligand activity that is independent of the LDLR. Cholesterol enrichment of the apoB-containing lipoproteins induced by feeding Ldlr(-/-)HL and Ldlr(-/-)HL(S145G) mice a cholesterol-enriched high fat (Western) diet resulted in parallel decreases in both apoB-100 and apoB-48 levels, indicating that HL is particularly efficient at reducing cholesterol-enriched apoB-containing lipoproteins through both catalytic and noncatalytic mechanisms. These data suggest that the noncatalytic function of HL provides an alternate clearance pathway for apoB-100- and apoB-48-containing lipoproteins that is independent of the LDLR and that contributes to the clearance of high density lipoproteins.  相似文献   

15.
Murine norovirus (MNV) is prevalent in rodent facilities in the United States. Because MNV has a tropism for macrophages and dendritic cells, we hypothesized that it may alter phenotypes of murine models of inflammatory diseases, such as obesity and atherosclerosis. We examined whether MNV infection influences phenotypes associated with diet-induced obesity and atherosclerosis by using Ldlr(-/-) mice. Male Ldlr(-/-) mice were maintained on either a diabetogenic or high-fat diet for 16 wk, inoculated with either MNV or vehicle, and monitored for changes in body weight, blood glucose, glucose tolerance, and insulin sensitivity. Influence of MNV on atherosclerosis was analyzed by determining aortic sinus lesion area. Under both dietary regimens, MNV-infected and control mice gained similar amounts of weight and developed similar degrees of insulin resistance. However, MNV infection was associated with significant increases in aortic sinus lesion area and macrophage content in Ldlr(-/-) mice fed a high-fat diet but not those fed a diabetogenic diet. In conclusion, MNV infection exacerbates atherosclerosis in Ldlr(-/-) mice fed a high-fat diet but does not influence obesity- and diabetes-related phenotypes. Increased lesion size was associated with increased macrophages, suggesting that MNV may influence macrophage activation or accumulation in the lesion area.  相似文献   

16.
Hepatic insulin resistance and lipoprotein overproduction are common features of the metabolic syndrome and insulin-resistant states. A fructose-fed, insulin-resistant hamster model was recently developed to investigate mechanisms linking the development of hepatic insulin resistance and overproduction of atherogenic lipoproteins. Here we report a systematic analysis of protein expression profiles in the endoplasmic reticulum (ER) fractions isolated from livers of fructose-fed hamsters with the intention of identifying new candidate proteins involved in hepatic complications of insulin resistance and lipoprotein dysregulation. We have profiled hepatic ER-associated proteins from chow-fed (control) and fructose-fed (insulin-resistant) hamsters using two-dimensional gel electrophoresis and mass spectrometry. A total of 26 large scale two-dimensional gels of hepatic ER were used to identify 34 differentially expressed hepatic ER protein spots observed to be at least 2-fold differentially expressed with fructose feeding and the onset of insulin resistance. Differentially expressed proteins were identified by matrix-assisted laser desorption ionization-quadrupole time of flight (MALDI-Q-TOF), MALDI-TOF-postsource decay, and database mining using ProteinProspector MS-fit and MS-tag or the PROWL ProFound search engine using a focused rodent or mammalian search. Hepatic ER proteins ER60, ERp46, ERp29, glutamate dehydrogenase, and TAP1 were shown to be more than 2-fold down-regulated, whereas alpha-glucosidase, P-glycoprotein, fibrinogen, protein disulfide isomerase, GRP94, and apolipoprotein E were all found to be up-regulated in the hepatic ER of the fructose-fed hamster. Seven isoforms of ER60 in the hepatic ER were all shown to be down-regulated at least 2-fold in hepatocytes from fructosefed/insulin-resistant hamsters. Implications of the differential expression of positively identified protein factors in the development of hepatic insulin resistance and lipoprotein abnormalities are discussed.  相似文献   

17.
Mutations of Comparative Gene Identification-58 (CGI-58) in humans cause triglyceride (TG) accumulation in multiple tissues. Mice genetically lacking CGI-58 die shortly after birth due to a skin barrier defect. To study the role of CGI-58 in integrated lipid and energy metabolism, we utilized antisense oligonucleotides (ASOs) to inhibit CGI-58 expression in adult mice. Treatment with two distinct CGI-58-targeting ASOs resulted in ∼80–95% knockdown of CGI-58 protein expression in both liver and white adipose tissue. In chow-fed mice, ASO-mediated depletion of CGI-58 did not alter weight gain, plasma TG, or plasma glucose, yet raised hepatic TG levels ∼4-fold. When challenged with a high-fat diet (HFD), CGI-58 ASO-treated mice were protected against diet-induced obesity, but their hepatic contents of TG, diacylglycerols, and ceramides were all elevated, and intriguingly, their hepatic phosphatidylglycerol content was increased by 10-fold. These hepatic lipid alterations were associated with significant decreases in hepatic TG hydrolase activity, hepatic lipoprotein-TG secretion, and plasma concentrations of ketones, nonesterified fatty acids, and insulin. Additionally, HFD-fed CGI-58 ASO-treated mice were more glucose tolerant and insulin sensitive. Collectively, this work demonstrates that CGI-58 plays a critical role in limiting hepatic steatosis and maintaining hepatic glycerophospholipid homeostasis and has unmasked an unexpected role for CGI-58 in promoting HFD-induced obesity and insulin resistance.  相似文献   

18.
Complete lecithin cholesterol acyltransferase (LCAT) deficiency uniformly results in a profound HDL deficiency. We recently reported unexpected enhanced insulin sensitivity in LCAT knock-out mice in the LDL receptor knock-out background (Ldlr(-/-)×Lcat(-/-); double knock-out (DKO)), when compared with their Ldlr(-/-)×Lcat(+/+) (single knock-out (SKO)) controls. Here, we report that LCAT-deficient mice (DKO and Lcat(-/-)) are protected against high fat high sucrose (HFHS) diet-induced obesity without hypophagia in a gender-specific manner compared with their respective (SKO and WT) controls. The metabolic phenotypes are more pronounced in the females. Changes in endoplasmic reticulum stress were examined as a possible mechanism for the metabolic protection. The female DKO mice developed attenuated HFHS-induced endoplasmic reticulum stress as evidenced by a lack of increase in mRNA levels of the hepatic unfolded protein response (UPR) markers Grp78 and CHOP compared with SKO controls. The DKO female mice were also protected against diet-induced insulin resistance. In white adipose tissue of chow-fed DKO mice, we also observed a reduction in UPR, gene markers for adipogenesis, and markers for activation of Wnt signaling. In skeletal muscles of female DKO mice, we observed an unexpected increase in UCP1 in association with increase in phospho-AMPKα, PGC1α, and UCP3 expressions. This increase in UCP1 was associated with ectopic islands of brown adipocytes between skeletal muscle fibers. Our findings suggest that LCAT deficiency confers gender-specific protection against diet-induced obesity and insulin resistance at least in part through regulation in UPR, white adipose tissue adipogenesis, and brown adipocyte partitioning.  相似文献   

19.
We investigated the mechanisms that lead to combined hyperlipidemia in transgenic mice that overexpress human apolipoprotein (apo) A-II (line 11.1). The 11.1 transgenic mice develop pronounced hypertriglyceridemia, and a moderate increase in free fatty acid (FFA) and plasma cholesterol, especially when fed a high-fat/high-cholesterol diet. Post-heparin plasma lipoprotein lipase and hepatic lipase activities (using artificial or natural autologous substrates), the decay of plasma triglycerides with fasting, and the fractional catabolic rate of the radiolabeled VLDL-triglyceride (both fasting and postprandial) were similar in 11. 1 transgenic mice and in control mice. In contrast, a 2.5-fold increase in hepatic VLDL-triglyceride production was observed in 11. 1 transgenic mice in a period of 2 h in which blood lipolysis was inhibited. This increased synthesis of hepatic VLDL-triglyceride used preformed FFA rather than FFA of de novo hepatic synthesis. The 11.1 transgenic mice also presented reduced epididymal/parametrial white adipose tissue weight (1.5-fold), increased rate of epididymal/parametrial hormone-sensitive lipase-mediated lipolysis (1.2-fold) and an increase in cholesterol and, especially, in triglyceride liver content, suggesting an enhanced mobilization of fat as the source of preformed FFA reaching the liver. Increased plasma FFA was reverted by insulin, demonstrating that 11.1 transgenic mice are not insulin resistant. We conclude that the overexpression of human apoA-II in transgenic mice induces combined hyperlipidemia through an increase in VLDL production. These mice will be useful in the study of molecular mechanisms that regulate the overproduction of VLDL, a situation of major pathophysiological interest since it is the basic mechanism underlying familial combined hyperlipidemia.  相似文献   

20.
We examined the relationship between peripheral/hepatic insulin sensitivity and abdominal superficial/deep subcutaneous fat (SSF/DSF) and intra-abdominal visceral fat (VF) in patients with type 2 diabetes mellitus (T2DM). Sixty-two T2DM patients (36 males and 26 females, age = 55 +/- 3 yr, body mass index = 30 +/- 1 kg/m2) underwent a two-step euglycemic insulin clamp (40 and 160 mU. m(-2). min(-1)) with [3-3H]glucose. SSF, DSF, and VF areas were quantitated with magnetic resonance imaging at the L(4-5) level. Basal endogenous glucose production (EGP), hepatic insulin resistance index (basal EGP x FPI), and total glucose disposal (TGD) during the first and second insulin clamp steps were similar in male and female subjects. VF (159 +/- 9 vs. 143 +/- 9 cm2) and DSF (199 +/- 14 vs. 200 +/- 15 cm(2)) were not different in male and female subjects. SSF (104 +/- 8 vs. 223 +/- 15 cm2) was greater (P < 0.0001) in female vs. male subjects despite similar body mass index (31 +/- 1 vs. 30 +/- 1 kg/m2) and total body fat mass (31 +/- 2 vs. 33 +/- 2 kg). In male T2DM, TGD during the first insulin clamp step (1st TGD) correlated inversely with VF (r = -0.45, P < 0.01), DSF (r = -0.46, P < 0.01), and SSF (r = -0.39, P < 0.05). In males, VF (r = 0.37, P < 0.05), DSF (r = 0.49, P < 0.01), and SSF (r = 0.33, P < 0.05) were correlated positively with hepatic insulin resistance. In females, the first TGD (r = -0.45, P < 0.05) and hepatic insulin resistance (r = 0.49, P < 0.05) correlated with VF but not with DSF, SSF, or total subcutaneous fat area. We conclude that visceral adiposity is associated with both peripheral and hepatic insulin resistance, independent of gender, in T2DM. In male but not female T2DM, deep subcutaneous adipose tissue also is associated with peripheral and hepatic insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号