共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The transcriptional response of yeast to saline stress 总被引:32,自引:0,他引:32
Posas F Chambers JR Heyman JA Hoeffler JP de Nadal E Ariño J 《The Journal of biological chemistry》2000,275(23):17249-17255
6.
7.
Serial regulation of transcriptional regulators in the yeast cell cycle 总被引:44,自引:0,他引:44
Simon I Barnett J Hannett N Harbison CT Rinaldi NJ Volkert TL Wyrick JJ Zeitlinger J Gifford DK Jaakkola TS Young RA 《Cell》2001,106(6):697-708
8.
9.
10.
11.
12.
Hui Yu Kang Tu Yi-Jie Wang Jun-Zhe Mao Lu Xie Yuan-Yuan Li Yi-Xue Li 《BMC systems biology》2012,6(1):1-11
Background
In order to reduce time and efforts to develop microbial strains with better capability of producing desired bioproducts, genome-scale metabolic simulations have proven useful in identifying gene knockout and amplification targets. Constraints-based flux analysis has successfully been employed for such simulation, but is limited in its ability to properly describe the complex nature of biological systems. Gene knockout simulations are relatively straightforward to implement, simply by constraining the flux values of the target reaction to zero, but the identification of reliable gene amplification targets is rather difficult. Here, we report a new algorithm which incorporates physiological data into a model to improve the model??s prediction capabilities and to capitalize on the relationships between genes and metabolic fluxes.Results
We developed an algorithm, flux variability scanning based on enforced objective flux (FVSEOF) with grouping reaction (GR) constraints, in an effort to identify gene amplification targets by considering reactions that co-carry flux values based on physiological omics data via ??GR constraints??. This method scans changes in the variabilities of metabolic fluxes in response to an artificially enforced objective flux of product formation. The gene amplification targets predicted using this method were validated by comparing the predicted effects with the previous experimental results obtained for the production of shikimic acid and putrescine in Escherichia coli. Moreover, new gene amplification targets for further enhancing putrescine production were validated through experiments involving the overexpression of each identified targeted gene under condition-controlled batch cultivation.Conclusions
FVSEOF with GR constraints allows identification of gene amplification targets for metabolic engineering of microbial strains in order to enhance the production of desired bioproducts. The algorithm was validated through the experiments on the enhanced production of putrescine in E. coli, in addition to the comparison with the previously reported experimental data. The FVSEOF strategy with GR constraints will be generally useful for developing industrially important microbial strains having enhanced capabilities of producing chemicals of interest. 相似文献13.
Pierre R Bushel Nicholas A Heard Roee Gutman Liwen Liu Shyamal D Peddada Saumyadipta Pyne 《BMC systems biology》2009,3(1):93-21
Background
Fission yeast Schizosaccharomyces pombe and budding yeast Saccharomyces cerevisiae are among the original model organisms in the study of the cell-division cycle. Unlike budding yeast, no large-scale regulatory network has been constructed for fission yeast. It has only been partially characterized. As a result, important regulatory cascades in budding yeast have no known or complete counterpart in fission yeast. 相似文献14.
15.
16.
17.
18.
19.