首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Substitution matrices have been useful for sequence alignment and protein sequence comparisons. The BLOSUM series of matrices, which had been derived from a database of alignments of protein blocks, improved the accuracy of alignments previously obtained from the PAM-type matrices estimated from only closely related sequences. Although BLOSUM matrices are scoring matrices now widely used for protein sequence alignments, they do not describe an evolutionary model. BLOSUM matrices do not permit the estimation of the actual number of amino acid substitutions between sequences by correcting for multiple hits. The method presented here uses the Blocks database of protein alignments, along with the additivity of evolutionary distances, to approximate the amino acid substitution probabilities as a function of actual evolutionary distance. The PMB (Probability Matrix from Blocks) defines a new evolutionary model for protein evolution that can be used for evolutionary analyses of protein sequences. Our model is directly derived from, and thus compatible with, the BLOSUM matrices. The model has the additional advantage of being easily implemented.  相似文献   

2.
Standard protein substitution models use a single amino acid replacement rate matrix that summarizes the biological, chemical and physical properties of amino acids. However, site evolution is highly heterogeneous and depends on many factors: genetic code; solvent exposure; secondary and tertiary structure; protein function; etc. These impact the substitution pattern and, in most cases, a single replacement matrix is not enough to represent all the complexity of the evolutionary processes. This paper explores in maximum-likelihood framework phylogenetic mixture models that combine several amino acid replacement matrices to better fit protein evolution.We learn these mixture models from a large alignment database extracted from HSSP, and test the performance using independent alignments from TREEBASE.We compare unsupervised learning approaches, where the site categories are unknown, to supervised ones, where in estimations we use the known category of each site, based on its exposure or its secondary structure. All our models are combined with gamma-distributed rates across sites. Results show that highly significant likelihood gains are obtained when using mixture models compared with the best available single replacement matrices. Mixtures of matrices also improve over mixtures of profiles in the manner of the CAT model. The unsupervised approach tends to be better than the supervised one, but it appears difficult to implement and highly sensitive to the starting values of the parameters, meaning that the supervised approach is still of interest for initialization and model comparison. Using an unsupervised model involving three matrices, the average AIC gain per site with TREEBASE test alignments is 0.31, 0.49 and 0.61 compared with LG (named after Le & Gascuel 2008 Mol. Biol. Evol. 25, 1307-1320), WAG and JTT, respectively. This three-matrix model is significantly better than LG for 34 alignments (among 57), and significantly worse for 1 alignment only. Moreover, tree topologies inferred with our mixture models frequently differ from those obtained with single matrices, indicating that using these mixtures impacts not only the likelihood value but also the output tree. All our models and a PhyML implementation are available from http://atgc.lirmm.fr/mixtures.  相似文献   

3.
Phylogenetic tree reconstruction is traditionally based on multiple sequence alignments (MSAs) and heavily depends on the validity of this information bottleneck. With increasing sequence divergence, the quality of MSAs decays quickly. Alignment-free methods, on the other hand, are based on abstract string comparisons and avoid potential alignment problems. However, in general they are not biologically motivated and ignore our knowledge about the evolution of sequences. Thus, it is still a major open question how to define an evolutionary distance metric between divergent sequences that makes use of indel information and known substitution models without the need for a multiple alignment. Here we propose a new evolutionary distance metric to close this gap. It uses finite-state transducers to create a biologically motivated similarity score which models substitutions and indels, and does not depend on a multiple sequence alignment. The sequence similarity score is defined in analogy to pairwise alignments and additionally has the positive semi-definite property. We describe its derivation and show in simulation studies and real-world examples that it is more accurate in reconstructing phylogenies than competing methods. The result is a new and accurate way of determining evolutionary distances in and beyond the twilight zone of sequence alignments that is suitable for large datasets.  相似文献   

4.

Background  

While the pairwise alignments produced by sequence similarity searches are a powerful tool for identifying homologous proteins - proteins that share a common ancestor and a similar structure; pairwise sequence alignments often fail to represent accurately the structural alignments inferred from three-dimensional coordinates. Since sequence alignment algorithms produce optimal alignments, the best structural alignments must reflect suboptimal sequence alignment scores. Thus, we have examined a range of suboptimal sequence alignments and a range of scoring parameters to understand better which sequence alignments are likely to be more structurally accurate.  相似文献   

5.
MOTIVATION: A large, high-quality database of homologous sequence alignments with good estimates of their corresponding phylogenetic trees will be a valuable resource to those studying phylogenetics. It will allow researchers to compare current and new models of sequence evolution across a large variety of sequences. The large quantity of data may provide inspiration for new models and methodology to study sequence evolution and may allow general statements about the relative effect of different molecular processes on evolution. RESULTS: The Pandit 7.6 database contains 4341 families of sequences derived from the seed alignments of the Pfam database of amino acid alignments of families of homologous protein domains (Bateman et al., 2002). Each family in Pandit includes an alignment of amino acid sequences that matches the corresponding Pfam family seed alignment, an alignment of DNA sequences that contain the coding sequence of the Pfam alignment when they can be recovered (overall, 82.9% of sequences taken from Pfam) and the alignment of amino acid sequences restricted to only those sequences for which a DNA sequence could be recovered. Each of the alignments has an estimate of the phylogenetic tree associated with it. The tree topologies were obtained using the neighbor joining method based on maximum likelihood estimates of the evolutionary distances, with branch lengths then calculated using a standard maximum likelihood approach.  相似文献   

6.
A fundamental task in sequence analysis is to calculate the probability of a multiple alignment given a phylogenetic tree relating the sequences and an evolutionary model describing how sequences change over time. However, the most widely used phylogenetic models only account for residue substitution events. We describe a probabilistic model of a multiple sequence alignment that accounts for insertion and deletion events in addition to substitutions, given a phylogenetic tree, using a rate matrix augmented by the gap character. Starting from a continuous Markov process, we construct a non-reversible generative (birth-death) evolutionary model for insertions and deletions. The model assumes that insertion and deletion events occur one residue at a time. We apply this model to phylogenetic tree inference by extending the program dnaml in phylip. Using standard benchmarking methods on simulated data and a new "concordance test" benchmark on real ribosomal RNA alignments, we show that the extended program dnamlepsilon improves accuracy relative to the usual approach of ignoring gaps, while retaining the computational efficiency of the Felsenstein peeling algorithm.  相似文献   

7.
Empirical models of substitution are often used in protein sequence analysis because the large alphabet of amino acids requires that many parameters be estimated in all but the simplest parametric models. When information about structure is used in the analysis of substitutions in structured RNA, a similar situation occurs. The number of parameters necessary to adequately describe the substitution process increases in order to model the substitution of paired bases. We have developed a method to obtain substitution rate matrices empirically from RNA alignments that include structural information in the form of base pairs. Our data consisted of alignments from the European Ribosomal RNA Database of Bacterial and Eukaryotic Small Subunit and Large Subunit Ribosomal RNA ( Wuyts et al. 2001. Nucleic Acids Res. 29:175-177; Wuyts et al. 2002. Nucleic Acids Res. 30:183-185). Using secondary structural information, we converted each sequence in the alignments into a sequence over a 20-symbol code: one symbol for each of the four individual bases, and one symbol for each of the 16 ordered pairs. Substitutions in the coded sequences are defined in the natural way, as observed changes between two sequences at any particular site. For given ranges (windows) of sequence divergence, we obtained substitution frequency matrices for the coded sequences. Using a technique originally developed for modeling amino acid substitutions ( Veerassamy, Smith, and Tillier. 2003. J. Comput. Biol. 10:997-1010), we were able to estimate the actual evolutionary distance for each window. The actual evolutionary distances were used to derive instantaneous rate matrices, and from these we selected a universal rate matrix. The universal rate matrices were incorporated into the Phylip Software package ( Felsenstein 2002. http://evolution.genetics.washington.edu/phylip.html), and we analyzed the ribosomal RNA alignments using both distance and maximum likelihood methods. The empirical substitution models performed well on simulated data, and produced reasonable evolutionary trees for 16S ribosomal RNA sequences from sequenced Bacterial genomes. Empirical models have the advantage of being easily implemented, and the fact that the code consists of 20 symbols makes the models easily incorporated into existing programs for protein sequence analysis. In addition, the models are useful for simulating the evolution of RNA sequence and structure simultaneously.  相似文献   

8.
9.
The biological role, biochemical function, and structure of uncharacterized protein sequences is often inferred from their similarity to known proteins. A constant goal is to increase the reliability, sensitivity, and accuracy of alignment techniques to enable the detection of increasingly distant relationships. Development, tuning, and testing of these methods benefit from appropriate benchmarks for the assessment of alignment accuracy.Here, we describe a benchmark protocol to estimate sequence-to-sequence and sequence-to-structure alignment accuracy. The protocol consists of structurally related pairs of proteins and procedures to evaluate alignment accuracy over the whole set. The set of protein pairs covers all the currently known fold types. The benchmark is challenging in the sense that it consists of proteins lacking clear sequence similarity.Correct target alignments are derived from the three-dimensional structures of these pairs by rigid body superposition. An evaluation engine computes the accuracy of alignments obtained from a particular algorithm in terms of alignment shifts with respect to the structure derived alignments. Using this benchmark we estimate that the best results can be obtained from a combination of amino acid residue substitution matrices and knowledge-based potentials.  相似文献   

10.
Phylogenetic analyses frequently rely on models of sequence evolution that detail nucleotide substitution rates, nucleotide frequencies, and site-to-site rate heterogeneity. These models can influence hypothesis testing and can affect the accuracy of phylogenetic inferences. Maximum likelihood methods of simultaneously constructing phylogenetic tree topologies and estimating model parameters are computationally intensive, and are not feasible for sample sizes of 25 or greater using personal computers. Techniques that initially construct a tree topology and then use this non-maximized topology to estimate ML substitution rates, however, can quickly arrive at a model of sequence evolution. The accuracy of this two-step estimation technique was tested using simulated data sets with known model parameters. The results showed that for a star-like topology, as is often seen in human immunodeficiency virus type 1 (HIV-1) subtype B sequences, a random starting topology could produce nucleotide substitution rates that were not statistically different than the true rates. Samples were isolated from 100 HIV-1 subtype B infected individuals from the United States and a 620 nt region of the env gene was sequenced for each sample. The sequence data were used to obtain a substitution model of sequence evolution specific for HIV-1 subtype B env by estimating nucleotide substitution rates and the site-to-site heterogeneity in 100 individuals from the United States. The method of estimating the model should provide users of large data sets with a way to quickly compute a model of sequence evolution, while the nucleotide substitution model we identified should prove useful in the phylogenetic analysis of HIV-1 subtype B env sequences. Received: 4 October 2000 / Accepted: 1 March 2001  相似文献   

11.
Codon models of evolution have facilitated the interpretation of selective forces operating on genomes. These models, however, assume a single rate of non-synonymous substitution irrespective of the nature of amino acids being exchanged. Recent developments have shown that models which allow for amino acid pairs to have independent rates of substitution offer improved fit over single rate models. However, these approaches have been limited by the necessity for large alignments in their estimation. An alternative approach is to assume that substitution rates between amino acid pairs can be subdivided into rate classes, dependent on the information content of the alignment. However, given the combinatorially large number of such models, an efficient model search strategy is needed. Here we develop a Genetic Algorithm (GA) method for the estimation of such models. A GA is used to assign amino acid substitution pairs to a series of rate classes, where is estimated from the alignment. Other parameters of the phylogenetic Markov model, including substitution rates, character frequencies and branch lengths are estimated using standard maximum likelihood optimization procedures. We apply the GA to empirical alignments and show improved model fit over existing models of codon evolution. Our results suggest that current models are poor approximations of protein evolution and thus gene and organism specific multi-rate models that incorporate amino acid substitution biases are preferred. We further anticipate that the clustering of amino acid substitution rates into classes will be biologically informative, such that genes with similar functions exhibit similar clustering, and hence this clustering will be useful for the evolutionary fingerprinting of genes.  相似文献   

12.
Models of protein evolution currently come in two flavors: generalist and specialist. Generalist models (e.g. PAM, JTT, WAG) adopt a one-size-fits-all approach, where a single model is estimated from a number of different protein alignments. Specialist models (e.g. mtREV, rtREV, HIVbetween) can be estimated when a large quantity of data are available for a single organism or gene, and are intended for use on that organism or gene only. Unsurprisingly, specialist models outperform generalist models, but in most instances there simply are not enough data available to estimate them. We propose a method for estimating alignment-specific models of protein evolution in which the complexity of the model is adapted to suit the richness of the data. Our method uses non-negative matrix factorization (NNMF) to learn a set of basis matrices from a general dataset containing a large number of alignments of different proteins, thus capturing the dimensions of important variation. It then learns a set of weights that are specific to the organism or gene of interest and for which only a smaller dataset is available. Thus the alignment-specific model is obtained as a weighted sum of the basis matrices. Having been constrained to vary along only as many dimensions as the data justify, the model has far fewer parameters than would be required to estimate a specialist model. We show that our NNMF procedure produces models that outperform existing methods on all but one of 50 test alignments. The basis matrices we obtain confirm the expectation that amino acid properties tend to be conserved, and allow us to quantify, on specific alignments, how the strength of conservation varies across different properties. We also apply our new models to phylogeny inference and show that the resulting phylogenies are different from, and have improved likelihood over, those inferred under standard models.  相似文献   

13.
In phylogenetic inference, an evolutionary model describes the substitution processes along each edge of a phylogenetic tree. Misspecification of the model has important implications for the analysis of phylogenetic data. Conventionally, however, the selection of a suitable evolutionary model is based on heuristics or relies on the choice of an approximate input tree. We introduce a method for model Selection in Phylogenetics based on linear INvariants (SPIn), which uses recent insights on linear invariants to characterize a model of nucleotide evolution for phylogenetic mixtures on any number of components. Linear invariants are constraints among the joint probabilities of the bases in the operational taxonomic units that hold irrespective of the tree topologies appearing in the mixtures. SPIn therefore requires no input tree and is designed to deal with nonhomogeneous phylogenetic data consisting of multiple sequence alignments showing different patterns of evolution, for example, concatenated genes, exons, and/or introns. Here, we report on the results of the proposed method evaluated on multiple sequence alignments simulated under a variety of single-tree and mixture settings for both continuous- and discrete-time models. In the simulations, SPIn successfully recovers the underlying evolutionary model and is shown to perform better than existing approaches.  相似文献   

14.
The estimation of amino acid replacement frequencies during molecular evolution is crucial for many applications in sequence analysis. Score matrices for database search programs or phylogenetic analysis rely on such models of protein evolution. Pioneering work was done by Dayhoff et al. (1978) who formulated a Markov model of evolution and derived the famous PAM score matrices. Her estimation procedure for amino acid exchange frequencies is restricted to pairs of proteins that have a constant and small degree of divergence. Here we present an improved estimator, called the resolvent method, that is not subject to these limitations. This extension of Dayhoff's approach enables us to estimate an amino acid substitution model from alignments of varying degree of divergence. Extensive simulations show the capability of the new estimator to recover accurately the exchange frequencies among amino acids. Based on the SYSTERS database of aligned protein families (Krause and Vingron, 1998) we recompute a series of score matrices.  相似文献   

15.
We study to what degree patterns of amino acid substitution vary between genes using two models of protein-coding gene evolution. The first divides the amino acids into groups, with one substitution rate for pairs of residues in the same group and a second for those in differing groups. Unlike previous applications of this model, the groups themselves are estimated from data by simulated annealing. The second model makes substitution rates a function of the physical and chemical similarity between two residues. Because we model the evolution of coding DNA sequences as opposed to protein sequences, artifacts arising from the differing numbers of nucleotide substitutions required to bring about various amino acid substitutions are avoided. Using 10 alignments of related sequences (five of orthologous genes and five gene families), we do find differences in substitution patterns. We also find that, although patterns of amino acid substitution vary temporally within the history of a gene, variation is not greater in paralogous than in orthologous genes. Improved understanding of such gene-specific variation in substitution patterns may have implications for applications such as sequence alignment and phylogenetic inference.  相似文献   

16.
Sequence alignment is a standard method to infer evolutionary, structural, and functional relationships among sequences. The quality of alignments depends on the substitution matrix used. Here we derive matrices based on superimpositions from protein pairs of similar structure, but of low or no sequence similarity. In a performance test the matrices are compared with 12 other previously published matrices. It is found that the structure-derived matrices are applicable for comparisons of distantly related sequences. We investigate the influence of evolutionary relationships of protein pairs on the alignment accuracy.  相似文献   

17.
Highly divergent sites in multiple sequence alignments (MSAs), which can stem from erroneous inference of homology and saturation of substitutions, are thought to negatively impact phylogenetic inference. Thus, several different trimming strategies have been developed for identifying and removing these sites prior to phylogenetic inference. However, a recent study reported that doing so can worsen inference, underscoring the need for alternative alignment trimming strategies. Here, we introduce ClipKIT, an alignment trimming software that, rather than identifying and removing putatively phylogenetically uninformative sites, instead aims to identify and retain parsimony-informative sites, which are known to be phylogenetically informative. To test the efficacy of ClipKIT, we examined the accuracy and support of phylogenies inferred from 14 different alignment trimming strategies, including those implemented in ClipKIT, across nearly 140,000 alignments from a broad sampling of evolutionary histories. Phylogenies inferred from ClipKIT-trimmed alignments are accurate, robust, and time saving. Furthermore, ClipKIT consistently outperformed other trimming methods across diverse datasets, suggesting that strategies based on identifying and retaining parsimony-informative sites provide a robust framework for alignment trimming.

Highly divergent sites in multiple sequence alignments are thought to negatively impact phylogenetic inference; trimming methods aim to remove these sites, but recent analysis suggests that doing so can worsen inference. This study introduces ClipKIT, a trimming method that instead aims to retain parsimony-informative sites; phylogenetic inference using ClipKIT-trimmed alignments is accurate, robust and time-saving.  相似文献   

18.
Position-specific substitution matrices, known as profiles,derived from multiple sequence alignments are currently usedto search sequence databases for distantly related members ofprotein families. The performance of the database searches isenhanced by using (i) a sequence weighting scheme which assignshigher weights to more distantly related sequences based onbranch lengths derived from phylogenetic trees, (ii) exclusionof positions with mainly padding characters at sites of insertionsor deletions and (iii) the BLOSUM62 residue comparison matrix.A natural consequence of these modifications is an improvementin the alignment of new sequences to the profiles. However,the accuracy of the alignments can be further increased by employinga similarity residue comparison matrix. These developments areimplemented in a program called PROFILEWEIGHT which runs onUnix and Vax computers. The only input required by the programis the multiple sequence alignment. The output from PROFILEWEIGHTis a profile designed to be used by existing searching and alignmentprograms. Test results from database searches with four differentfamilies of proteins show the improved sensitivity of the weightedprofiles.  相似文献   

19.
There has been considerable interest in the problem of making maximum likelihood (ML) evolutionary trees which allow insertions and deletions. This problem is partly one of formulation: how does one define a probabilistic model for such trees which treats insertion and deletion in a biologically plausible manner? A possible answer to this question is proposed here by extending the concept of a hidden Markov model (HMM) to evolutionary trees. The model, called a tree-HMM, allows what may be loosely regarded as learnable affine-type gap penalties for alignments. These penalties are expressed in HMMs as probabilities of transitions between states. In the tree-HMM, this idea is given an evolutionary embodiment by defining trees of transitions. Just as the probability of a tree composed of ungapped sequences is computed, by Felsenstein's method, using matrices representing the probabilities of substitutions of residues along the edges of the tree, so the probabilities in a tree-HMM are computed by substitution matrices for both residues and transitions. How to define these matrices by a ML procedure using an algorithm that learns from a database of protein sequences is shown here. Given these matrices, one can define a tree-HMM likelihood for a set of sequences, assuming a particular tree topology and an alignment of the sequences to the model. If one could efficiently find the alignment which maximizes (or comes close to maximizing) this likelihood, then one could search for the optimal tree topology for the sequences. An alignment algorithm is defined here which, given a particular tree topology, is guaranteed to increase the likelihood of the model. Unfortunately, it fails to find global optima for realistic sequence sets. Thus further research is needed to turn the tree-HMM into a practical phylogenetic tool.  相似文献   

20.
Despite the potential model role of the green algal genus Codium for studies of marine speciation and evolution, there have been difficulties with species delimitation and a molecular phylogenetic framework was lacking. In the present study, 74 evolutionarily significant units (ESUs) are delimited using 227 rbcL exon 1 sequences obtained from specimens collected throughout the genus' range. Several morpho-species were shown to be poorly defined, with some clearly in need of lumping and others containing pseudo-cryptic diversity. A phylogenetic hypothesis of 72 Codium ESUs is inferred from rbcL exon 1 and rps3-rpl16 sequence data using a conventional nucleotide substitution model (GTR+Gamma+I), a codon position model and a covariotide (covarion) model, and the fit of a multitude of substitution models and alignment partitioning strategies to the sequence data is reported. Molecular clock tree rooting was carried out because outgroup rooting was probably affected by phylogenetic bias. Several aspects of the evolution of morphological features of Codium are discussed and the inferred phylogenetic hypothesis is used as a framework to study the biogeography of the genus, both at a global scale and within the Indian Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号