首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Ten-day-old embryos were exposed to 28, 18 and 8 degrees C environments and their electrocardiograms (ECG) monitored. Embryos in 28 and 18 degrees C environments maintained a constant heart rate averaging 97 and 25 beats/min, respectively, followed by arrhythmias and cardiac arrest at 101 and 59 hr. Embryos in an 8 degrees C environment went into cardiac arrest after 2-4 hr, but recovered 20 hr later upon rewarming to 38 degrees C. Six to 20-day-old embryos exposed to 8 degrees C were examined for tolerance time after cardiac arrest. The younger the embryo the longer its tolerance to prolonged cardiac arrest.  相似文献   

2.
Zhang T  Liu XH  Rawson DM 《Theriogenology》2003,59(7):1545-1556
Stage-dependent chilling sensitivity has been reported for many species of fish embryos. Most of these studies reveal that developmental stages beyond 50% epiboly are less sensitive to chilling, but the chilling sensitivity accelerates rapidly at subzero temperatures. In this study, the effects of methanol and developmental arrest on chilling injury were studied using zebrafish (Danio rerio) embryos at 64-cell, 50% epiboly, 6-somite, prim-6 and long-bud stages. Embryos were exposed to methanol or anoxic conditions before they were cooled to 0 or -5 degrees C with slow (1 degrees C/min), medium (30 degrees C/min) or fast ( approximately 300 degrees C/min) cooling rates and were held at these temperatures for different time periods. Embryo survival was evaluated in terms of the percentage of treated embryos with normal developmental appearance after 3-day culture. Experiments on the effect of methanol on chilling sensitivity of the embryos showed that the addition of methanol to embryo medium increased embryo survival significantly at all developmental stages and under all cooling conditions. Higher concentration of methanol treatment generally improved embryo survival when embryos were cooled at a fast cooling rate of 300 degrees C/min. Experiments on the effect of developmental arrest on chilling sensitivity of embryos showed that embryos at 50% epiboly and prim-6 stages underwent developmental arrest almost immediately after 15 min oxygen deprivation. After 4h in anoxia, the survival rates of the embryos were not significantly different from their respective aerobic controls. Anoxia and developmental arrest had no effect on the chilling sensitivity of zebrafish embryos.  相似文献   

3.
The effects of anoxic exposure and the post-anoxia aerobic recovery period on carbohydrate metabolism in the central nervous system (CNS) of the land snail Megalobulimus oblongus, an anoxia-tolerant land gastropod, were studied. The snails were exposed to anoxia for periods of 1.5, 3, 6, 12, 18, or 24 hr. In order to study the post-anoxia recovery phase, snails exposed to a 3-hr period of anoxia were returned to aerobic conditions for 1.5, 3, 6, or 15 hr. Glycogen and glucose concentrations in the CNS, hemolymph glucose concentration, and glycogen phosphorylase (active form, GPa) activity in the CNS were analyzed. Anoxia does not significantly affect the concentration of CNS glucose but induces hyperglycemia and a reduction of CNS GPa activity. The glycogen concentration was decreased at 12 hr of anoxia; however, by 18 and 24 hr in anoxia, the glycogen content was not significantly different from basal control values. During the post-anoxia period, the reduction in GPa activity and the increased hemolymph glucose concentration induced by anoxia returned to control values. These results suggest that the CNS of M. oblongus may use hemolymph glucose to fulfill the metabolic demands during anoxia. However, the hypothesis of tissue metabolic arrest cannot be excluded.  相似文献   

4.
The developing cardiovascular system is known to operate normally in a hypoxic environment. However, the functional and ultrastructural recovery of embryonic/fetal hearts subjected to anoxia lasting as long as hypoxia/ischemia performed in adult animal models remains to be investigated. Isolated spontaneously beating hearts from Hamburger-Hamilton developmental stages 14 (14HH), 20HH, 24HH, and 27HH chick embryos were subjected in vitro to 30 or 60 min of anoxia followed by 60 min of reoxygenation. Morphological alterations and apoptosis were assessed histologically and by transmission electron microscopy. Anoxia provoked an initial tachycardia followed by bradycardia leading to complete cardiac arrest, except for in the youngest heart, which kept beating. Complete atrioventricular block appeared after 9.4 +/- 1.1, 1.7 +/- 0.2, and 1.6 +/- 0.3 min at stages 20HH, 24HH, and 27HH, respectively. At reoxygenation, sinoatrial activity resumed first in the form of irregular bursts, and one-to-one atrioventricular conduction resumed after 8, 17, and 35 min at stages 20HH, 24HH, and 27HH, respectively. Ventricular shortening recovered within 30 min except at stage 27HH. After 60 min of anoxia, stage 27HH hearts did not retrieve their baseline activity. Whatever the stage and anoxia duration, nuclear and mitochondrial swelling observed at the end of anoxia were reversible with no apoptosis. Thus the embryonic heart is able to fully recover from anoxia/reoxygenation although its anoxic tolerance declines with age. Changes in cellular homeostatic mechanisms rather than in energy metabolism may account for these developmental variations.  相似文献   

5.
Embryos of the annual killifish Austrofundulus limnaeus acquire extreme tolerance to anoxia during embryonic development. These embryos can survive environmental and cellular conditions that would likely result in death in the majority of vertebrate cells, despite experiencing a massive loss of ATP. It is highly likely that the initial response to anoxia must quickly alter cellular physiology to reprogram cell signaling and metabolic pathways to support anaerobiosis. Covalent protein modifications are a mechanism that can quickly act to effect large-scale changes in protein structure and function and have been suggested by others to play a key role in mammalian ischemia tolerance. Using Western blot analysis, we explored patterns of protein ubiquitylation and SUMOylation in embryos of A. limnaeus exposed to anoxia and anoxic preconditioning. Surprisingly, we report stage-specific protein ubiquitylation patterns that suggest different mechanisms for altering protein turnover in dormant and actively developing embryos that both survive long-term anoxia. Anoxic preconditioning does not appear to alter levels of ubiquitin conjugates in a unique manner. Global SUMOylation of proteins does not change in response to anoxia, but there are stage-specific changes in SUMOylation of specific protein bands. Contrary to other systems, global changes in protein SUMOylation may not be required to support long-term tolerance to anoxia in embryos of A. limnaeus. These data lead us to conclude that embryos of A. limnaeus respond to anoxia in a unique manner compared to other vertebrate models of anoxia tolerance and may provide novel mechanisms for engineering vertebrate tissues to survive long-term anoxia.  相似文献   

6.
Embryos of Austrofundulus limnaeus are exceptional in their ability to tolerate prolonged bouts of complete anoxia. Hypoxia and anoxia are a normal part of their developmental environment. Here, we exposed embryos to a range of PO2 levels at two different temperatures (25 and 30 °C) to study the combined effects of reduced oxygen and increased temperature on developmental rate, heart rate, and metabolic enzyme capacity. Hypoxia decreased overall developmental rate and caused a stage-specific decline in heart rate. However, the rate of early development prior to the onset of organogenesis is insensitive to PO2. Increased incubation temperature caused an increase in the developmental rate at high PO2s, but hindered developmental progression under severe hypoxia. Embryonic DNA content in pre-hatching embryos was positively correlated with PO2. Citrate synthase, lactate dehydrogenase, and phosphoenolpyruvate carboxykinase capacity were all reduced in embryos developing under hypoxic conditions. Embryos of A. limnaeus are able to develop normally across a wide range of PO2s and contrary to most other vertebrates severe hypoxia is not a teratogen. Embryos of A. limnaeus do not respond to hypoxia through an increase in the capacity for enzymatic activity of the metabolic enzymes lactate dehydrogenase, citrate synthase, or phosphoenolpyruvate carboxykinase. Instead they appear to adjust whole-embryo metabolic capacity to match oxygen availability. However, decreased DNA content in hypoxia-reared embryos suggests that cellular enzymatic capacity may remain unchanged in response to hypoxia, and the reduced capacity may rather indicate reduced cell number in hypoxic embryos.  相似文献   

7.
8.
Encysted embryos of the brine shrimp, Artemia franciscana, exhibit extraordinary longevity when exposed to continuous anoxia. To explore the metabolic basis of this ability, the post-anoxic respiration of embryos exposed to anoxia for periods exceeding 1 year was measured. Since anoxic metabolism might result in the accumulation of metabolic end products, an O2 debt would be expected. Contrary to that expectation, post-anoxic embryos exhibited a marked depression in respiration rate whether embryos were hydrated under anoxic conditions or were exposed to a previous aerobic incubation and then placed under anoxia. These results, and those of previous studies, suggest that extended anoxia may bring the metabolism of these embryos to a reversible standstill.  相似文献   

9.
Isolated 3- and 5-day chick embryo hearts contain sufficient endogenous substrates to maintain their pulsatile activity for several hours under aerobic conditions, and even after five hours in substrate-free medium the rates are 40 to 50% of the original rates. Carbohydrate appears to be an important component of the endogenous substrates since 1 mM 2-deoxyglucose causes rapid failure of rate, and glycolysis appears to be a major energy pathway since the rate is depressed only about 50% by 2-hour's exposure to 10 mM fluoroacetate. In nitrogen the hearts rapidly become asystolic in the absence of added substrate. Recovery of the rate occurs if oxygen is reintroduced within one hour, but longer periods of anoxia result in progressively less recovery, especially with the 3-day hearts which appear to be particularly susceptible to irreversible damage. With 5.55 mM glucose as substrate there is little decrease in the original aerobic heart rate during five hours, and the hearts can tolerate total anoxia for five hours with rates only slightly less than the aerobic rates. The hypothesis of a preferential pentose phosphate pathway of glucose catabolism in the very young chick embryo heart is discussed, but no direct evidence in support of its existence is revealed in this study.  相似文献   

10.
Encysted embryos (cysts) of the brine shrimp, Artemia franciscana, are arguably the most stress-resistant of all animal life-history stages. One of their many adaptations is the ability to tolerate anoxia for periods of years, while fully hydrated and at physiological temperatures. Previous work indicated that the overall metabolism of anoxic embryos is brought to a reversible standstill, including the transduction of free energy and the turnover of macromolecules. But the issue of protein stability at the level of tertiary and quaternary structure was not examined. Here I provide evidence that the great majority of proteins do not irreversibly lose their native conformation during years of anoxia, despite the absence of detectable protein turnover. Although a modest degree of protein denaturation and aggregation occurs, that is quickly reversed by a brief post-anoxic aerobic incubation. I consider how such extraordinary stability is achieved and suggest that at least part of the answer involves massive amounts of a small heat shock protein (p26) that acts as a molecular chaperone, the function of which does not appear to require ribonucleoside di- or tri-phosphates.  相似文献   

11.
Numerous genetically engineered rat strains have been produced via genome editing. Although freezing of embryos is helpful for the production and storage of these valuable strains, the tolerance to freezing of embryos varies at each developmental stage of the embryo. This study examined the tolerance to freezing of rat embryos at various developmental stages, particularly at the pronuclear stage. Embryos that had developed to the pronuclear, 2-cell, and morula stages were frozen via vitrification using ethylene glycol- and propylene glycol-based solutions. More than 90% of the embryos at all developmental stages survived after warming. The developmental rates to offspring of thawed embryos at the pronuclear, 2-cell, and morula stages were 19%, 41%, and 52%, respectively. Pronuclear stage embryos between the early and late developmental stages were then vitrified. The developmental rates to offspring of the thawed pronuclear stage embryos collected at 24, 28, and 31 h after the induction of ovulation were 17%, 21%, and 23%, respectively. These results indicated that the tolerance to vitrification of rat embryos increased with the development of embryos. The establishment of vitrification method of rat embryos at various developmental stages is helpful for improving the production and storage of valuable rat strains used for biomedical science.  相似文献   

12.
When individuals of Drosophila subobscura at 0 hr prepupa are submitted to anoxia (4 hr and 24 hr, respectively), their puffing pattern is very similar to that shown by individuals at the moment of development in which treatment began. The same expression of genes (the same puffing pattern and the same protein pattern) is induced in this species by recovery from anoxia as well as by heat shock treatment at 31 degrees C.  相似文献   

13.
Studies with the isolated perfused working rat heart were carried out to investigate factors that may enable the heart to recover after periods of anoxia. It was found that the presence of glucose in the perfusion fluid during anoxia was essential for complete post-anoxic recovery and the presence of a high concentration of K(+) increased not only the rate of recovery but also the final extent of recovery. In an attempt to clarify the roles played by glucose and K(+) in aiding the survival and recovery of the anoxic myocardium the concentrations of parameters associated with energy liberation and anaerobic glycolysis (ATP, ADP, AMP, P(i), creatine phosphate, glycogen and lactate) were measured in the presence and absence of glucose during the anoxic phase. Determinations of these parameters were carried out during the working aerobic control period, the anoxic period (K(+) arrest) and the recovery period. The results demonstrated that glucose acted as an energy source during anoxia and thus maintained myocardial concentrations of high-energy phosphates, particularly ATP. These studies have also shown a direct relationship between the ability of the heart to recover and the concentration of myocardial ATP at the time of reoxygenation.  相似文献   

14.

Background  

The soil nematode C. elegans survives oxygen-deprived conditions (anoxia; <.001 kPa O2) by entering into a state of suspended animation in which cell cycle progression reversibly arrests. The majority of blastomeres of embryos exposed to anoxia arrest at interphase, prophase and metaphase. The spindle checkpoint proteins SAN-1 and MDF-2 are required for embryos to survive 24 hours of anoxia. To further investigate the mechanism of cell-cycle arrest we examined and compared sub-nuclear changes such as chromatin localization pattern, post-translational modification of histone H3, spindle microtubules, and localization of the spindle checkpoint protein SAN-1 with respect to various anoxia exposure time points. To ensure analysis of embryos exposed to anoxia and not post-anoxic recovery we fixed all embryos in an anoxia glove box chamber.  相似文献   

15.
Cells of encysted embryos of Artemia franciscana, the brine shrimp, are among the most resistant of all animal cells to extremes of environmental stress. We focus here on their ability to survive continuous anoxia for periods of years, during which their metabolic rate is undetectable. We asked whether their impressive tolerance was reflected in changes at the ultrastructural level. The ultrastructure of encysted embryos previously experiencing 38 days and 3.3 years of anoxia was compared with those not undergoing anoxia (controls). Rough endoplasmic reticulum was abundant in anoxic embryos, in spite of the absence of protein biosynthesis in their cells. Other cytoplasmic changes had occurred in the anoxic cells, but overall their structure was remarkably intact, in view of their 3 years of continuous anoxia. A major difference was the presence of abundant electron-dense granules in the nuclei of anoxic embryos; these were present but rare in nuclei of controls. Biochemical fractionation and Western immunoblotting confirmed previous observations that substantial amounts of the small heat shock/alpha-crystallin protein (p26) translocated into nuclei of anoxic embryos. We have no evidence that the dense granules contain this protein, but that remains a possibility. In contrast, and contrary to expectation, proteins of the hsp70 and 90 families did not undergo anoxia-induced nuclear translocation, an unusual result since such translocations have been widely observed in cells from a variety of organisms.  相似文献   

16.
Physiological and metabolic responses to anoxia and reaeration were compared for 4–7-day-old seedlings of 11 genotypes of wheat (Triticum aestivum) with reputed differences in waterlogging tolerance. Genotypes differed in seminal root elongation, and recovery of root tissue K+ concentration, during reaeration following 72 h anoxia. Post-anoxic recovery ranged from complete (100% retention of seminal root elongation potential) to almost nil (death of all seminal root apices and inability to recover K+ concentration). The anoxia tolerance ranking of the genotypes based on these parameters corresponded with that of their reputed waterlogging tolerance, but with some exceptions. However, the differences in anoxia tolerance of the seedlings could not be explained by differences in capacity for ethanol production. A decreased ability to utilise seed starch reserves under anoxia, due to inadequate levels of -amylase activity at the time anoxia was imposed, was apparent in all genotypes.  相似文献   

17.
The effect of anoxia on the energy economy of root cells was studied by measuring heat production, ethanol and ATP production, K(+) fluxes and electrical activity in two Vitis species, V. riparia and V. rupestris, that differ in their tolerance to anoxia. Anoxia triggered a marked decrease of metabolic activity (measured by microcalorimetry) and of ATP levels in both species. In V. riparia after the first 2 h of anoxia, the decrease in the rate of heat production was not associated with a further significant decrease in ATP content, whereas in V. rupestris the ATP level continued to decrease until very low values were reached. The concomitant increase in the rate of ethanol production did not compensate for the decreased aerobic ATP supply. In V. rupestris, anoxia typically led to energy deficit and ATP imbalance, together with the subsequent disruption of ion homeostasis and cell death. In V. riparia, the strong decrease in K(+) membrane permeability together with the fast down-regulation of the electrical signals allowed the cells to avoid severe ion imbalances during prolonged anoxic episodes.  相似文献   

18.
The indigenous North American Cranberry ( Vaccinium macrocarpon ), when cultivated in specially constructed cranberry bogs, is normally flooded in winter to prevent frost injury. This protection under ice can give rise to prolonged periods of anoxia, which depending on the state of the vines and environmental conditions, can cause severe oxygen-deprivation injury. An experimental study of the tolerance of cranberry vines to controlled total anoxia reveals that mature dark-green perennating leaves with high carbohydrate levels are able to survive prolonged periods of total oxygen-deprivation while younger newly formed leaves are readily damaged. During the anoxic treatment the mature leaves exhibit a marked downregulation of metabolism. Carbohydrate consumption and energy metabolism stabilize at low levels soon after the switch from aerobic to anaerobic pathways. Pathways such as TCA cycle or photosynthesis, which are non-operating during the anoxia treatment, are severely affected but still measurable after 28 days anoxia. In the post-anoxic period the perennating leaves rapidly re-establish their capacity for aerobic respiration and photosynthesis.  相似文献   

19.
Chen SL  Tian YS 《Theriogenology》2005,63(4):1207-1219
Conventional cryopreservation of complex teleost embryos has been unsuccessful, possibly because their large size (1-7 mm diameter), multi-compartmental structure and low water permeability lead to intracellular ice formation and chilling injury. To overcome these obstacles, we have developed a vitrification procedure for cryopreservation of flounder (Paralichthys olivaceus) embryos. In initial toxicity tests, propylene glycol (PG) and methanol (MeOH) were less toxic to embryos than dimethylformamide (DMF) or dimethyl sulfoxide (Me2SO), whereas ethylene glycol (EG) and glycerol (Gly) were toxic to all tested embryos. Embryos between four-somite and tail bud stages were more tolerant to vitrifying solutions than embryos in other developmental stages. Four vitrifying solutions (FVS1-FVS4) were prepared by combining a basic saline solution (BS2) and cryoprotectants PG and MeOH in different proportions (FVS1: 67, 20 and 13%; FVS2: 60, 24 and 16%; FVS3: 55, 27 and 18%; FVS4: 50, 30 and 20% of BS2, PG and MeOH, respectively). Their impact on flounder embryos was then compared. FVS1 produced the highest survival rate; whereas deformation rate was highest for FVS4. Five-step equilibration of embryos in FVS2 resulted in higher survival rates than equilibration in 4, 3, 2 or 1 steps. Flounder embryos varying from the 14-somite to the pre-hatching stage were cryopreserved in the four vitrifying solutions in liquid nitrogen for 1-7 h. From eight experiments, 20 viable thawed embryos were recovered from 292 cryopreserved embryos. Fourteen larvae with normal morphology hatched successfully from the 20 surviving frozen-thawed embryos from five experiments. Embryos at the tail bud stage exhibited greater tolerance to vitrification than embryos at other stages. These results establish that cryopreservation of flounder embryos by vitrification is possible. The technology has many potential applications in teleost germplasm resource conservation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号