首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rhizosphere microorganisms play an important role in soil carbon flow, through turnover of root exudates, but there is little information on which organisms are actively involved or on the influence of environmental conditions on active communities. In this study, a 13CO2 pulse labelling field experiment was performed in an upland grassland soil, followed by RNA-stable isotope probing (SIP) analysis, to determine the effect of liming on the structure of the rhizosphere microbial community metabolizing root exudates. The lower limit of detection for SIP was determined in soil samples inoculated with a range of concentrations of 13C-labelled Pseudomonas fluorescens and was found to lie between 10(5) and 10(6) cells per gram of soil. The technique was capable of detecting microbial communities actively assimilating root exudates derived from recent photo-assimilate in the field. Denaturing gradient gel electrophoresis (DGGE) profiles of bacteria, archaea and fungi derived from fractions obtained from caesium trifluoroacetate (CsTFA) density gradient ultracentrifugation indicated that active communities in limed soils were more complex than those in unlimed soils and were more active in utilization of recently exuded 13C compounds. In limed soils, the majority of the community detected by standard RNA-DGGE analysis appeared to be utilizing root exudates. In unlimed soils, DGGE profiles from 12C and 13C RNA fractions differed, suggesting that a proportion of the active community was utilizing other sources of organic carbon. These differences may reflect differences in the amount of root exudation under the different conditions.  相似文献   

3.
Recently developed 13CO2 pulse labelling and stable isotope probing (SIP) methods offer the potential to track 13C-labelled plant photosynthate into phylogenetic groups of microbial taxa in the rhizosphere, permitting an examination of the link between soil microbial diversity and carbon flow in situ. We tested the feasibility of this approach to detect functional differences in microbial communities utilising recently fixed plant photosynthate in moisture perturbed grassland turfs. Specifically, we addressed two questions: (1) How does moisture perturbation (three treatments; continual wetting, drying, and drying followed by rewetting) affect the assimilation of 13C-labelled exudates carbon into the soil microbial community?; (2) Can 13C deposited in soil from pulse-labelled plants be used to identify microbes utilising plant exudates using SIP methodologies? Net CO2 fluxes showed that prior to 13CO2 pulse labelling, all treatments were photosynthetically active, but differences were observed in night time respiration, indicating moisture treatments had impacted on net CO2 efflux. Measurements of pulse-derived 13C incorporated into soil RNA over 2 months showed that there was only evidence of 13C enrichment in the continuously wetted treatments. However, isotopic values represented only a 0.1-0.2 13C at.% increase over natural abundance levels and were found to be insufficient for the application of RNA-SIP. These findings reveal that in this experimental system, the microbial uptake of labelled carbon from plant exudates is low, and further optimisation of methodologies may be required for application of SIP to natural plant-soil systems where 13C tracer dilution is a consideration.  相似文献   

4.
大豆根际土壤中氢氧化细菌的分离、筛选和基本特征   总被引:2,自引:0,他引:2  
土壤中的氢氧化细菌能够利用土壤中的H2为能源并同化CO2,增加其种群数量并促进作物生长.采用气体循环培养体系(持续通氢气装置),通过电解水的方式产生H2,与通入的空气混合,形成流速为280ml.min-1、含H2量为41.6~125μmol.L-1的混合气体.采用矿质盐固体培养基,在适当的H2、O2和CO2下以H2作为唯一能源分离氢氧化细菌.采用此方法从大豆根际土壤样品中分离出40余株细菌,对其进行耗氢能力测定表明,有20株菌具有氧化氢功能和自养生长能力,初步判断这20株菌为氢氧化细菌,并测定了菌落形态及生理生化特征.  相似文献   

5.
Microorganisms associated with the roots of plants have an important function in plant growth and in soil carbon sequestration. Rice cultivation is the second largest anthropogenic source of atmospheric CH4, which is a significant greenhouse gas. Up to 60% of fixed carbon formed by photosynthesis in plants is transported below ground, much of it as root exudates that are consumed by microorganisms. A stable isotope probing (SIP) approach was used to identify microorganisms using plant carbon in association with the roots and rhizosphere of rice plants. Rice plants grown in Italian paddy soil were labeled with 13CO2 for 10 days. RNA was extracted from root material and rhizosphere soil and subjected to cesium gradient centrifugation followed by 16S rRNA amplicon pyrosequencing to identify microorganisms enriched with 13C. Thirty operational taxonomic units (OTUs) were labeled and mostly corresponded to Proteobacteria (13 OTUs) and Verrucomicrobia (8 OTUs). These OTUs were affiliated with the Alphaproteobacteria, Betaproteobacteria, and Deltaproteobacteria classes of Proteobacteria and the “Spartobacteria” and Opitutae classes of Verrucomicrobia. In general, different bacterial groups were labeled in the root and rhizosphere, reflecting different physicochemical characteristics of these locations. The labeled OTUs in the root compartment corresponded to a greater proportion of the 16S rRNA sequences (∼20%) than did those in the rhizosphere (∼4%), indicating that a proportion of the active microbial community on the roots greater than that in the rhizosphere incorporated plant-derived carbon within the time frame of the experiment.  相似文献   

6.
Thlaspi goesingense is able to hyperaccumulate extremely high concentrations of Ni when grown in ultramafic soils. Recently it has been shown that rhizosphere bacteria may increase the heavy metal concentrations in hyperaccumulator plants significantly, whereas the role of endophytes has not been investigated yet. In this study the rhizosphere and shoot-associated (endophytic) bacteria colonizing T. goesingense were characterized in detail by using both cultivation and cultivation-independent techniques. Bacteria were identified by 16S rRNA sequence analysis, and isolates were further characterized regarding characteristics that may be relevant for a beneficial plant-microbe interaction-Ni tolerance, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and siderophore production. In the rhizosphere a high percentage of bacteria belonging to the Holophaga/Acidobacterium division and alpha-Proteobacteria were found. In addition, high-G+C gram-positive bacteria, Verrucomicrobia, and microbes of the Cytophaga/Flexibacter/Bacteroides division colonized the rhizosphere. The community structure of shoot-associated bacteria was highly different. The majority of clones affiliated with the Proteobacteria, but also bacteria belonging to the Cytophaga/Flexibacter/Bacteroides division, the Holophaga/Acidobacterium division, and the low-G+C gram-positive bacteria, were frequently found. A high number of highly related Sphingomonas 16S rRNA gene sequences were detected, which were also obtained by the cultivation of endophytes. Rhizosphere isolates belonged mainly to the genera Methylobacterium, Rhodococcus, and Okibacterium, whereas the majority of endophytes showed high levels of similarity to Methylobacterium mesophilicum. Additionally, Sphingomonas spp. were abundant. Isolates were resistant to Ni concentrations between 5 and 12 mM; however, endophytes generally tolerated higher Ni levels than rhizosphere bacteria. Almost all bacteria were able to produce siderophores. Various strains, particularly endophytes, were able to grow on ACC as the sole nitrogen source.  相似文献   

7.
Saprotrophic fungi play an important role in ecosystem functioning and plant performance, but their abundance in intensively managed arable soils is low. Saprotrophic fungal biomass in arable soils can be enhanced with amendments of cellulose-rich materials. Here, we examined if sawdust-stimulated saprotrophic fungi extend their activity to the rhizosphere of crop seedlings and influence the composition and activity of other rhizosphere and root inhabitants. After growing carrot seedlings in sawdust-amended arable soil, we determined fungal and bacterial biomass and community structure in roots, rhizosphere and soil. Utilization of root exudates was assessed by stable isotope probing (SIP) following 13CO2-pulse-labelling of seedlings. This was combined with analysis of lipid fatty acids (PLFA/NLFA-SIP) and nucleic acids (DNA-SIP). Sawdust-stimulated Sordariomycetes colonized the seedling's rhizosphere and roots and actively consumed root exudates. This did not reduce the abundance and activity of bacteria, yet higher proportions of α-Proteobacteria and Bacteroidia were seen. Biomass and activity of mycorrhizal fungi increased with sawdust amendments, whereas exudate consumption and root colonization by functional groups containing plant pathogens did not change. Sawdust amendment of arable soil enhanced abundance and exudate-consuming activity of saprotrophic fungi in the rhizosphere of crop seedlings and promoted potential beneficial microbial groups in root-associated microbiomes.  相似文献   

8.
姚艳红  戈峰  沈佐锐 《生态学报》2010,30(1):272-277
采用田间开顶式CO2控制气室(OTC),研究了375μL/L、750μL/L两个CO2浓度和CK、LC50、LC903种吡虫啉浓度处理条件下,甘蓝根际土壤细菌与非根际土壤微生物生物量C的变化。750μL/L CO2处理对甘蓝根际细菌数量显著增加(P0.01),而在同一CO2水平下各农药处理间并无显著差异;根区土壤微生物生物量C只有在750μL/L CO2且无吡虫啉处理的条件下显著(P0.05)下降,在LC50、LC90处理的影响下并不显著。同一CO2水平下,根区土壤微生物生物量C受农药处理的影响不明显。  相似文献   

9.
We used a combination of stable isotope probing (SIP), gas chromatography-mass spectrometry-based respiration, isolation/cultivation, and quantitative PCR procedures to discover the identity and in situ growth of soil microorganisms that metabolize benzoic acid. We added [(13)C]benzoic acid or [(12)C]benzoic acid (100 microg) once, four times, or five times at 2-day intervals to agricultural field plots. After monitoring (13)CO(2) evolution from the benzoic acid-dosed soil, field soils were harvested and used for nucleic acid extraction and for cultivation of benzoate-degrading bacteria. Exposure of soil to benzoate increased the number of culturable benzoate degraders compared to unamended soil, and exposure to benzoate shifted the dominant culturable benzoate degraders from Pseudomonas species to Burkholderia species. Isopycnic separation of heavy [(13)C]DNA from the unlabeled fraction allowed terminal restriction fragment length polymorphism (T-RFLP) analyses to confirm that distinct 16S rRNA genes were localized in the heavy fraction. Phylogenetic analysis of sequenced 16S rRNA genes revealed a predominance (15 of 58 clones) of Burkholderia species in the heavy fraction. Burkholderia sp. strain EBA09 shared 99.5% 16S rRNA sequence similarity with a group of clones representing the dominant RFLP pattern, and the T-RFLP fragment for strain EBA09 and a clone from that cluster matched the fragment enriched in the [(13)C]DNA fraction. Growth of the population represented by EBA09 during the field-dosing experiment was demonstrated by using most-probable-number-PCR and primers targeting EBA09 and the closely related species Burkholderia hospita. Thus, the target population identified by SIP not only actively metabolized benzoic acid but reproduced in the field upon the addition of the substrate.  相似文献   

10.
 在盆栽种植条件下,比较研究了两个转Bt基因棉(Gossypium hirsutum)与对照棉对根际土壤细菌、放线菌、真菌和主要功能类群及多样性的影 响差异。结果表明:两个转Bt基因棉根际土壤均可检测到Bt蛋白,且不同转Bt基因棉根系分泌Bt蛋白量以及Bt蛋白在根际土壤中的降解率不同 。与各自对照相比,转Bt基因棉对细菌和真菌生长繁殖有促进作用,对放线菌、好气固氮菌和钾细菌数量没有显著影响。苗期和花期转Bt基因 棉均可显著提高氨化细菌、显著降低无机溶磷菌数量,花期均可显著提高好气纤维分解菌、显著降低有机溶磷菌数量,‘Bt冀668’苗期也可显 著提高好气纤维分解菌数量。转Bt基因棉根际土壤好气纤维分解菌、有机和无机溶磷菌多度发生了变化。尽管功能类群总数转Bt基因棉高于各 自对照常规棉,但群落多样性和均匀度都有所下降,优势集中性表现明显,且花期转Bt基因棉多样性参数值以及功能类群数量的变化幅度大于 苗期。  相似文献   

11.
Dimethylsulphide (DMS) has an important role in the global sulphur cycle and atmospheric chemistry. Microorganisms using DMS as sole carbon, sulphur or energy source, contribute to the cycling of DMS in a wide variety of ecosystems. The diversity of microbial populations degrading DMS in terrestrial environments is poorly understood. Based on cultivation studies, a wide range of bacteria isolated from terrestrial ecosystems were shown to be able to degrade DMS, yet it remains unknown whether any of these have important roles in situ. In this study, we identified bacteria using DMS as a carbon and energy source in terrestrial environments, an agricultural soil and a lake sediment, by DNA stable isotope probing (SIP). Microbial communities involved in DMS degradation were analysed by denaturing gradient gel electrophoresis, high-throughput sequencing of SIP gradient fractions and metagenomic sequencing of phi29-amplified community DNA. Labelling patterns of time course SIP experiments identified members of the Methylophilaceae family, not previously implicated in DMS degradation, as dominant DMS-degrading populations in soil and lake sediment. Thiobacillus spp. were also detected in 13C-DNA from SIP incubations. Metagenomic sequencing also suggested involvement of Methylophilaceae in DMS degradation and further indicated shifts in the functional profile of the DMS-assimilating communities in line with methylotrophy and oxidation of inorganic sulphur compounds. Overall, these data suggest that unlike in the marine environment where gammaproteobacterial populations were identified by SIP as DMS degraders, betaproteobacterial Methylophilaceae may have a key role in DMS cycling in terrestrial environments.  相似文献   

12.
Thlaspi goesingense is able to hyperaccumulate extremely high concentrations of Ni when grown in ultramafic soils. Recently it has been shown that rhizosphere bacteria may increase the heavy metal concentrations in hyperaccumulator plants significantly, whereas the role of endophytes has not been investigated yet. In this study the rhizosphere and shoot-associated (endophytic) bacteria colonizing T. goesingense were characterized in detail by using both cultivation and cultivation-independent techniques. Bacteria were identified by 16S rRNA sequence analysis, and isolates were further characterized regarding characteristics that may be relevant for a beneficial plant-microbe interaction—Ni tolerance, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and siderophore production. In the rhizosphere a high percentage of bacteria belonging to the Holophaga/Acidobacterium division and α-Proteobacteria were found. In addition, high-G+C gram-positive bacteria, Verrucomicrobia, and microbes of the Cytophaga/Flexibacter/Bacteroides division colonized the rhizosphere. The community structure of shoot-associated bacteria was highly different. The majority of clones affiliated with the Proteobacteria, but also bacteria belonging to the Cytophaga/Flexibacter/Bacteroides division, the Holophaga/Acidobacterium division, and the low-G+C gram-positive bacteria, were frequently found. A high number of highly related Sphingomonas 16S rRNA gene sequences were detected, which were also obtained by the cultivation of endophytes. Rhizosphere isolates belonged mainly to the genera Methylobacterium, Rhodococcus, and Okibacterium, whereas the majority of endophytes showed high levels of similarity to Methylobacterium mesophilicum. Additionally, Sphingomonas spp. were abundant. Isolates were resistant to Ni concentrations between 5 and 12 mM; however, endophytes generally tolerated higher Ni levels than rhizosphere bacteria. Almost all bacteria were able to produce siderophores. Various strains, particularly endophytes, were able to grow on ACC as the sole nitrogen source.  相似文献   

13.
The impact of multiple-year (0–5 years) cultivation of transgenic Bacillus thuringiensis (Bt) cotton on the functional bacterial populations in rhizosphere soil was investigated. The transgenic Bt + CpTI cotton line SGK321 and a non-Bt cotton line Shiyuan321 were planted in four fields in which Bt cotton had been continuously cultivated for 0, 1, 3, and 5 years. Rhizosphere soil samples were collected at the seedling, squaring, flower and boll, and boll-opening stages of cotton. Numbers of bacteria involved in nitrogen-fixing, organic phosphate-dissolving, inorganic phosphate-dissolving, and potassium-dissolving were measured with cultivation-dependent approaches. The data presented here showed no consistent statistically significant differences in the numbers of different groups of functional bacteria between rhizosphere soil of Bt and non-Bt cotton in the same field, and no obvious trends in the numbers of the various group of functional bacteria with the increasing duration of Bt cotton cultivation. These studies suggest that multiple-year cultivation of transgenic Bt cotton may not affect the functional bacterial populations in rhizosphere soil.  相似文献   

14.
从大豆植物根际分离的氢氧化细菌对植物的生长有促进作用,但是关于其他的豆科植物根际分离的氢氧化细菌是否也有促生作用的研究甚少。从紫花苜蓿根际土壤分离氢氧化细菌,并进行其对小麦种子促生实验的研究,判断氢氧化细菌是否有促生作用,从而丰富具有促生作用的根际微生物资源。采用MSA培养基,从铜川新区紫花苜蓿根际土壤中分离得到氢氧化细菌疑似菌株,对其进行TTC法检测菌株氢化酶活性和自养能力的特性,以获得氢氧化细菌;通过小麦种子的萌发进行促生实验验证。结果表明,16株菌株处理过的小麦根长分别增加25%~128%,芽长增长27%~73%,鲜重增加48%~103%。从苜蓿根际土壤分离出的氢氧化细菌均具有较明显的促生作用。  相似文献   

15.
To determine whether the diversity of pyrene-degrading bacteria in an aged polycyclic aromatic hydrocarbon-contaminated soil is affected by the addition of inorganic nutrients or by slurrying the soil, various incubation conditions (all including phosphate buffer) were examined by mineralization studies and stable-isotope probing (SIP). The addition of nitrogen to either continuously mixed slurry or static field-wet soil incubations increased the rate and extent of mineralization of [(14)C]pyrene, with the most rapid mineralization observed in slurried, nitrogen-amended soil. Microcosms of slurry and static field-wet soil amended with nitrogen were also examined by SIP with [U-(13)C]pyrene. Recovered (13)C-enriched deoxyribonucleic acid (DNA) was analyzed by denaturing-gradient gel electrophoresis (DGGE) and 16S ribosomal ribonucleic acid (rRNA) gene clone libraries. DGGE profiles of (13)C-enriched DNA fractions from both incubation conditions were similar, suggesting that pyrene-degrading bacterial community diversity may be independent of treatment method. The vast majority (67 of 71) of the partial sequences recovered from clone libraries were greater than or equal to 97% similar to one another, 98% similar to sequences of pyrene-degrading bacteria previously detected by SIP with pyrene in different soil, and only 89% similar to the closest cultivated genus. All of the sequences recovered from the field-wet incubation and most of the sequences recovered from the slurry incubation were in this clade. Of the four sequences from slurry incubations not within this clade, three possessed greater than 99% similarity to the 16S rRNA gene sequences of phylogenetically dissimilar Caulobacter spp.  相似文献   

16.
细菌是土壤最重要的组成部分,土壤细菌的群落结构对土壤的健康至关重要,可以直接影响植物的生长。胡萝卜的长年连作导致其产量低、质量差等一系列问题的发生,连作问题已成为不可忽视的问题。本研究通过HiSeq PE250高通量测序和生物信息学方法获得了玉米胡萝卜轮作种植和胡萝卜连作种植中胡萝卜根际和非根际土壤细菌的组成结构。研究结果表明,相较于胡萝卜连作,玉米胡萝卜轮作种植改变了胡萝卜根际土壤细菌的组成和群落多样性。RM.M (玉米胡萝卜轮作根际土壤样品)样品中的优势菌门为放线菌门和厚壁菌门,RM.R (胡萝卜连作根际土壤样品)的优势菌门是变形菌门;有益菌如芽孢杆菌属和根瘤菌属在玉米胡萝卜轮作种植中的胡萝卜根际富集。RM.M与RM.R的细菌类群差异显著,群落多样性较低;NRM.M(玉米胡萝卜轮作非根际土壤样品)和NRM.R (胡萝卜连作非根际土壤样)的细菌类群差异不明显,群落多样性较高。与连作根际土壤相比,轮作根际土壤中有益菌的相对丰度较大,细菌相对丰度明显增加。本研究结果对通过调节根际土壤细菌组成来保证胡萝卜产量和质量的稳定,解决连作问题具有重要的意义。  相似文献   

17.
通过培养的方法研究了土霉素暴露和小麦根际抗性细菌的数量、种类、分布特征及土壤酶活性之间的剂量效应关系。结果表明,土霉素暴露下小麦根际单一抗生素抗性细菌数量和抗土霉素—链霉素双重抗性细菌数都明显增加,且与暴露剂量呈正效应关系;同时,土壤磷酸酶、脱氢酶活性下降,但与土霉素的剂量效应关系不明显。从土霉素暴露的土壤中分离到50株抗性细菌,经形态观察、RFLP分组和16S rDNA序列测定与分析,将它们聚集在Actinobacteria、Bacilli、Alphaproteobacteria、Gammaproteobacteria 和Sphingobacteria类群。其中放线菌最多(15株),占抗性菌总数的30 %;其次是Bacillus属细菌(9株)和Pseudomonas属细菌(8株),分别占18 %和16 %。同时,具有抗性的人类机会致病菌Pseudomonas、Sphingomonas和Stenotrophomonas属细菌在土霉素暴露的样品中均被分离到,分别占抗性菌株总数的16 %、8 %和4 %。值得注意的是,随着土霉素暴露剂量的增加,小麦根际优势促生菌Bacillus属细菌的抗性检出率逐步降低;但具有抗生素抗性的人类机会致病菌Pseudomonas、Sphingomonas和Stenotrophomonas属细菌的检出率却明显增加,提示可能会进一步增大其机会致病性。  相似文献   

18.
Propionate is an important intermediate of the degradation of organic matter in many anoxic environments. In methanogenic environments, due to thermodynamic constraints, the oxidation of propionate requires syntrophic cooperation of propionate-fermenting proton-reducing bacteria and H(2)-consuming methanogens. We have identified here microorganisms that were active in syntrophic propionate oxidation in anoxic paddy soil by rRNA-based stable-isotope probing (SIP). After 7 weeks of incubation with [(13)C]propionate (<10 mM) and the oxidation of approximately 30 micromol of (13)C-labeled substrate per g dry weight of soil, we found that archaeal nucleic acids were (13)C labeled to a larger extent than those of the bacterial partners. Nevertheless, both terminal restriction fragment length polymorphism and cloning analyses revealed Syntrophobacter spp., Smithella spp., and the novel Pelotomaculum spp. to predominate in "heavy" (13)C-labeled bacterial rRNA, clearly showing that these were active in situ in syntrophic propionate oxidation. Among the Archaea, mostly Methanobacterium and Methanosarcina spp. and also members of the yet-uncultured "rice cluster I" lineage had incorporated substantial amounts of (13)C label, suggesting that these methanogens were directly involved in syntrophic associations and/or thriving on the [(13)C]acetate released by the syntrophs. With this first application of SIP in an anoxic soil environment, we were able to clearly demonstrate that even guilds of microorganisms growing under thermodynamic constraints, as well as phylogenetically diverse syntrophic associations, can be identified by using SIP. This approach holds great promise for determining the structure and function relationships of further syntrophic or other nutritional associations in natural environments and for defining metabolic functions of yet-uncultivated microorganisms.  相似文献   

19.
目的研究三七重茬根际土壤中化感物质的组成及其对病原微生物的化感作用。方法采用乙酸乙酯提取三七重茬根际土壤中的化感物质,利用GC-MS对萃取液进行物质组成分析,并研究检测中出现的特征性化感物质对羟基苯甲酸、邻苯二甲酸二异丁酯对三七根腐病菌(F.oxysporum Schlecht)的化感作用。结果采集的三七重茬土壤中共检测到29种化感物质,其中2种特征性化感物质对羟基苯甲酸、邻苯二甲酸二异丁酯对三七病原菌的生长呈现低促高抑的现象,且当对羟基苯甲酸浓度为5mmol/L时能促进病菌小孢子的产生。结论检测到的化感物质组分为苯甲酸及其衍生物类、酚类、酯类、饱和烃类等物质。这些物质在低浓度时有利于病原菌的生长,对病害的发生具有促进作用。  相似文献   

20.
Transfer of plasmid RP4 to indigenous bacteria in bulk soil could only be detected in soil with nutrient amendment. Lack of physiological active donor and recipient cells was apparently one of the limiting factors in un-amended bulk soil. Plasmid transfer was detected both in the spermosphere and rhizosphere of barley seedlings. Transfer occured from seed coated donor bacteria (i) to introduced recipient bacteria and (ii) to indigenous bacteria present in soil. Plasmid transfer was also detected from donor bacteria introduced to the soil to seed coated recipient bacteria. Transfer efficiencies in the rhizosphere were significantly below the transfer efficiencies obtained in the spermosphere. The transfer efficiencies detected in the barley spermosphere were among the highest reported from any natural environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号