首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During an early step in the evolution of life, RNA served both as genome and as catalyst, according to the RNA world hypothesis. For self-replication, the RNA organisms must have contained an RNA that catalyzes RNA polymerization. As a first step toward recapitulating an RNA world in the laboratory, a polymerase ribozyme was generated previously by in vitro evolution and design. However, the efficiency of this ribozyme is about 100-fold too low for self-replication because of a low affinity of the ribozyme to its primer/template substrate. To improve the substrate interactions by colocalizing ribozyme and substrate on micelles, we attached hydrophobic anchors to both RNAs. We show here that the hydrophobic anchors led to aggregates with the expected size of the corresponding micelles. The micelle formation increased the polymerization yield of full-length products by 3- to 20-fold, depending on substrates and reaction conditions. With the best-characterized substrate, the improvement in polymerization efficiency was primarily due to reduced sequence-specific stalling on partially extended substrates. We discuss how, during the origin of life, micellar ribozyme aggregates could have acted as precursors to membrane-encapsulated life forms.  相似文献   

2.
The RNA world hypothesis states that the early evolution of life went through a stage in which RNA served both as genome and as catalyst. The central catalyst in an RNA world organism would have been a ribozyme that catalyzed RNA polymerization to facilitate self-replication. An RNA polymerase ribozyme was developed previously in the lab but it is not efficient enough for self-replication. The factor that limits its polymerization efficiency is its weak sequence-independent binding of the primer/template substrate. Here we tested whether RNA polymerization could be improved by a cationic arginine cofactor, to improve the interaction with the substrate. In an RNA world, amino acid-nucleic acid conjugates could have facilitated the emergence of the translation apparatus and the transition to an RNP world. We chose the amino acid arginine for our study because this is the amino acid most adept to interact with RNA. An arginine cofactor was positioned at ten different sites on the ribozyme, using conjugates of arginine with short DNA or RNA oligonucleotides. However, polymerization efficiency was not increased in any of the ten positions. In five of the ten positions the arginine reduced or modulated polymerization efficiency, which gives insight into the substrate-binding site on the ribozyme. These results suggest that the existing polymerase ribozyme is not well suited to using an arginine cofactor.  相似文献   

3.
All models of the RNA world era invoke the presence of ribozymes that can catalyse RNA polymerization. The class I ligase ribozyme selected in vitro 15 years ago from a pool of random RNA sequences catalyses formation of a 3',5'-phosphodiester linkage analogous to a single step of RNA polymerization. Recently, the three-dimensional structure of the ligase was solved in complex with U1A RNA-binding protein and independently in complex with an antibody fragment. The RNA adopts a tripod arrangement and appears to use a two-metal ion mechanism similar to protein polymerases. Here, we discuss structural implications for engineering a true polymerase ribozyme and describe the use of the antibody framework both as a portable chaperone for crystallization of other RNAs and as a platform for exploring steps in evolution from the RNA world to the RNA-protein world.  相似文献   

4.
The initiation of new DNA strands at origins of replication in animal cells requires de novo synthesis of RNA primers by primase and subsequent elongation from RNA primers by DNA polymerase alpha. To study the specificity of primer site selection by the DNA polymerase alpha-primase complex (pol alpha-primase), a natural DNA template containing a site for replication initiation was constructed. Two single-stranded DNA (ssDNA) molecules were hybridized to each other generating a duplex DNA molecule with an open helix replication 'bubble' to serve as an initiation zone. Pol alpha-primase recognizes the open helix region and initiates RNA-primed DNA synthesis at four specific sites that are rich in pyrimidine nucleotides. The priming site positioned nearest the ssDNA-dsDNA junction in the replication 'bubble' template is the preferred site for initiation. Using a 40 base oligonucleotide template containing the sequence of the preferred priming site, primase synthesizes RNA primers of 9 and 10 nt in length with the sequence 5'-(G)GAAGAAAGC-3'. These studies demonstrate that pol alpha-primase selects specific nucleotide sequences for RNA primer formation and suggest that the open helix structure of the replication 'bubble' directs pol alpha-primase to initiate RNA primer synthesis near the ssDNA-dsDNA junction.  相似文献   

5.
6.
The "RNA world" hypothesis rests on the assumption that RNA polymerase ribozymes can replicate RNA without the use of protein. In the laboratory, in vitro selection has been used to create primitive versions of such polymerases. The best variant to date is a ribozyme called B6.61 that can extend a RNA primer template by 20 nucleotides (nt). This polymerase has two domains: the recently crystallized Class I ligase core, responsible for phosphodiester bond formation, and the poorly characterized accessory domain that makes polymerization possible. Here we find that the accessory domain is specified by a 37-nt bulged stem-loop structure. The accessory domain is positioned by a tertiary interaction between the terminal AL4 loop of the accessory and the J3/4 triloop found within the ligase core. This docking interaction is associated with an unwinding of the A3 and A4 helixes that appear to facilitate the correct positioning of an essential 8-nt purine bulge found between the two helices. This, together with other constraints inferred from tethering the accessory domain to a range of sites on the ligase core, indicates that the accessory domain is draped over the vertex of the ligase core tripod structure. This geometry suggests how the purine bulge in the polymerase replaces the P2 helix in the Class I ligase with a new structure that may facilitate the stabilization of incoming nucleotide triphosphates.  相似文献   

7.
邹正升  王升启 《病毒学报》1995,11(3):262-265
  相似文献   

8.
In the ternary substrate complex of DNA polymerase (pol) beta, the nascent base pair (templating and incoming nucleotides) is sandwiched between the duplex DNA terminus and polymerase. To probe molecular interactions in the dNTP-binding pocket, we analyzed the kinetic behavior of wild-type pol beta on modified DNA substrates that alter the structure of the DNA terminus and represent mutagenic intermediates. The DNA substrates were modified to 1) alter the sequence of the duplex terminus (matched and mismatched), 2) introduce abasic sites near the nascent base pair, and 3) insert extra bases in the primer or template strands to mimic frameshift intermediates. The results indicate that the nucleotide insertion efficiency (k(cat)/K(m), dGTP-dC) is highly dependent on the sequence identity of the matched (i.e. Watson-Crick base pair) DNA terminus (template/primer, G/C approximately A/T > T/A approximately C/G). Mismatches at the primer terminus strongly diminish correct nucleotide insertion efficiency but do not affect DNA binding affinity. Transition intermediates are generally extended more easily than transversions. Most mismatched primer termini decrease the rate of insertion and binding affinity of the incoming nucleotide. In contrast, the loss of catalytic efficiency with homopurine mismatches at the duplex DNA terminus is entirely due to the inability to insert the incoming nucleotide, since K(d)((dGTP)) is not affected. Abasic sites and extra nucleotides in and around the duplex terminus decrease catalytic efficiency and are more detrimental to the nascent base pair binding pocket when situated in the primer strand than the equivalent position in the template strand.  相似文献   

9.
10.
11.
The interactions of calf thymus DNA polymerase alpha (pol alpha) with primer/templates were examined. Simply changing the primer from DNA to RNA had little effect on primer/template binding or dNTP polymerization (Km, Vmax and processivity). Surprisingly, however, adding a 5'-triphosphate to the primer greatly changed its interactions with pol alpha (binding, Vmax and Km and processivity). While changing the primer from DNA to RNA greatly altered the abilit of pol alpha to discriminate against nucleotide analogs, it did not compromise the ability of pol alpha to discriminate against non-cognate dNTPs. Thus the nature of the primer appears to affect 'sugar fidelity', without altering 'base fidelity'. DNase protection assays showed that pol alpha strongly protected 9 nt of the primer strand, 13 nt of the duplex template strand and 14 nt of the single-stranded template from hydrolysis by DNase I and weakly protected several bases outside this core region. This large DNA binding domain may account for the ability of a 5'-triphosphate on RNA primers to alter the catalytic properties of pol alpha.  相似文献   

12.
DNA primases are template-dependent RNA polymerases that synthesize oligoribonucleotide primers that can be extended by DNA polymerase. The bacterial primases consist of zinc binding and RNA polymerase domains that polymerize ribonucleotides at templating sequences of single-stranded DNA. We report a crystal structure of bacteriophage T7 primase that reveals its two domains and the presence of two Mg(2+) ions bound to the active site. NMR and biochemical data show that the two domains remain separated until the primase binds to DNA and nucleotide. The zinc binding domain alone can stimulate primer extension by T7 DNA polymerase. These findings suggest that the zinc binding domain couples primer synthesis with primer utilization by securing the DNA template in the primase active site and then delivering the primed DNA template to DNA polymerase. The modular architecture of the primase and a similar mechanism of priming DNA synthesis are likely to apply broadly to prokaryotic primases.  相似文献   

13.
The class I ligase was among the first ribozymes to have been isolated from random sequences and represents the catalytic core of several RNA-directed RNA polymerase ribozymes. The ligase is also notable for its catalytic efficiency and structural complexity. Here, we report an improved version of this ribozyme, arising from selection that targeted the kinetics of the chemical step. Compared with the parent ribozyme, the improved ligase achieves a modest increase in rate enhancement under the selective conditions and shows a sharp reduction in [Mg2+] dependence. Analysis of the sequences and kinetics of successful clones suggests which mutations play the greatest part in these improvements. Moreover, backbone and nucleobase interference maps of the parent and improved ligase ribozymes complement the newly solved crystal structure of the improved ligase to identify the functionally significant interactions underlying the catalytic ability and structural complexity of the ligase ribozyme.  相似文献   

14.
15.
16.
17.
18.
We have utilized an electrophoretic assay of misincorporation to investigate the possibility that ionization of 5-bromouracil (BU) may play a role in its mispairing during DNA synthesis in vitro. We examined the effects of increasing pH on the relative rates of formation of BU.G and T.G mispairs during chain elongation catalyzed by various DNA polymerases. For the Klenow fragment of Escherichia coli DNA polymerase I, increasing pH facilitated BU.G mispair formation (relative to T.G mispairing) when BU was present in the template strand. This effect showed a strong dependence on sequence context. Increasing pH had little effect on the relative rate of misincorporation of BrdUMP versus dTMP (at template G) by the Klenow polymerase. Misincorporation opposite template BU residues catalyzed by Maloney murine leukemia virus DNA polymerase and DNA polymerase beta (Novikoff hepatoma) also increased with pH, but for these two enzymes, there was no apparent dependence on sequence context. With T4 DNA polymerase and E. coli DNA polymerase III holoenzyme, a similar occurrence of BU.G and T.G mispairing during polymerization was observed, whether BU was present in the template or in the incoming nucleotide, and there was little effect of pH. The results reported here are consistent with a mispairing mechanism for template BU wherein the anionic form of the base mispairs with G.  相似文献   

19.
J. G. de-Boer  L. S. Ripley 《Genetics》1988,118(2):181-191
The fidelity of in vitro DNA synthesis catalyzed by the large fragment of DNA polymerase I was examined. The templates, specifically designed to detect shifts to the +1 or to the -1 reading frame, are composites of M13mp8 and bacteriophage T4 rIIB DNA and were designed to assist in the identification of the types of frameshifts that are the specific consequence of DNA polymerization errors. In vitro polymerization by the Klenow fragment produced only deletions, rather than the mixture of duplications and deletions characteristic of in vivo frameshifts. The most frequent frameshifts were deletions of 1 bp opposite a template purine base. Hotspots for these deletions occurred when the template purine immediately preceded the template sequence TT. The highest mutation frequencies were seen when the TTPu consensus sequence was adjacent to G:C rich sequences in the 3' direction. The nature of the consensus sequence itself distinguishes this 1-bp deletion mechanism from those operating in DNA repeats and attributed to the misalignment of DNA primers during synthesis. Deletions that were larger than 1 or 2 bp isolated after in vitro replication were consistent with the misalignment of the primer. Deletions of 2 bp and complex frameshifts (the replacement of AA by C) were also found. Mechanisms that may account for these mutations are discussed.  相似文献   

20.
Despite extensive studies on oligonucleotide-forming triple helices, which were discovered in 1957, their possible relevance in the initiation of DNA replication remains unknown. Using sequences forming triple helices, we have developed a DNA polymerisation assay by using hairpin DNA templates with a 3′ dideoxynucleotide end and an unpaired 5′-end extension to be replicated. The T7 DNA polymerase successfully elongated nucleotides to the expected size of the template from the primers forming triple helices composed of 9–14 deoxyguanosine-rich residues. The triple helix-forming primer required for this reaction has to be oriented parallel to the homologous sequence of the hairpin DNA template. Substitution of the deoxyguanosine residues by N7 deazadeoxyguanosines in the hairpin of the template prevented primer elongation, suggesting that the formation of a triple helix is a prerequisite for primer elongation. Furthermore, DNA sequencing could be achieved with the hairpin template through partial elongation of the third DNA strand forming primer. The T4 DNA polymerase and the Klenow fragment of DNA polymerase I provided similar DNA elongation to the T7 polymerase–thioredoxin complex. On the basis of published crystallographic data, we show that the third DNA strand primer fits within the catalytic centre of the T7 DNA polymerase, thus underlying this new property of several DNA polymerases which may be relevant to genome rearrangements and to the evolution of the genetic apparatus, namely the DNA structure and replication processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号