首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: The reliability of the O157:H7 ID agar (O157 H7 ID-F) to detect verocytotoxigenic strains of Escherichia coli (VTEC) of serogroup O157 was investigated. METHODS AND RESULTS: This medium, designed to detect strains belonging to the clone of VTEC O157:H7/H-, contains carbohydrates and two chromogenic substrates to detect beta-d-galactosidase and beta-d-glucuronidase and sodium desoxycholate to increase selectivity for Gram-negative rods. A total of 347 strains of E. coli including a variety of serotypes, verocytotoxigenicity of human and animal sources were tested. The green VTEC O157 colonies were easy to detect among the other dark purple to black E. coli colonies. Of 63 O157:H7/H- strains, 59 (93.7%) gave the characteristic green colour. Three of the failed four strains of O157:H- were not verocytotoxigenic, missing only one VTEC O157. Three non-O157 strains gave the characteristic green colour on the medium and were VTEC OR:H- (2) and Ont:H- (1), possibly being degraded variants of the O157 enterohaemorrhagic E. coli clone. CONCLUSIONS: The O157:H7 ID agar (O157 H7 ID-F) was largely successful in isolating VTEC belonging to the O157:H7/H- clone. SIGNIFICANCE AND IMPACT OF THE STUDY: A medium, suitable for isolating strains of VTEC O157 was successfully evaluated and should be useful for the isolation of these pathogens.  相似文献   

2.
AIMS: Combinations of PCR primer sets were evaluated to establish a multiplex PCR method to specifically detect Escherichia coli O157:H7 genes in bovine faecal samples. METHODS AND RESULTS: A multiplex PCR method combining three primer sets for the E. coli O157:H7 genes rfbE, uidA and E. coli H7 fliC was developed and tested for sensitivity and specificity with pure cultures of 27 E. coli serotype O157 strains, 88 non-O157 E. coli strains, predominantly bovine in origin and five bacterial strains other than E. coli. The PCR method was very specific in the detection of E. coli O157:H7 and O157:H- strains, and the detection limit in seeded bovine faecal samples was <10 CFU g(-1) faeces, following an 18-h enrichment at 37 degrees C, and could be performed using crude DNA extracts as template. CONCLUSIONS: A new multiplex PCR method was developed to detect E. coli O157:H7 and O157:H-, and was shown to be highly specific and sensitive for these strains both in pure culture and in crude DNA extracts prepared from inoculated bovine faecal samples. SIGNIFICANCE AND IMPACT OF THE STUDY: This new multiplex PCR method is suitable for the rapid detection of E. coli O157:H7 and O157:H- genes in ruminant faecal samples.  相似文献   

3.
In Spain, as in many other countries, verotoxin-producing Escherichia coli (VTEC) strains have been frequently isolated from cattle, sheep, and foods. VTEC strains have caused seven outbreaks in Spain (six caused by E. coli O157:H7 and one by E. coli O111:H- [nonmotile]) in recent years. An analysis of the serotypes indicated serological diversity. Among the strains isolated from humans, serotypes O26:H11, O111:H-, and O157:H7 were found to be more prevalent. The most frequently detected serotypes in cattle were O20:H19, O22:H8, O26:H11, O77:H41, O105:H18, O113:H21, O157:H7, O171:H2, and OUT (O untypeable):H19. Different VTEC serotypes (e.g., O5:H-, O6:H10, O91:H-, O117:H-, O128:H-, O128:H2, O146:H8, O146:H21, O156:H-, and OUT:H21) were found more frequently in sheep. These observations suggest a host serotype specificity for some VTEC. Numerous bovine and ovine VTEC serotypes detected in Spain were associated with human illnesses, confirming that ruminants are important reservoirs of pathogenic VTEC. VTEC can produce one or two toxins (VT1 and VT2) that cause human illnesses. These toxins are different proteins encoded by different genes. Another virulence factor expressed by VTEC is the protein intimin that is responsible for intimate attachment of VTEC and effacing lesions in the intestinal mucosa. This virulence factor is encoded by the chromosomal gene eae. The eae gene was found at a much less frequency in bovine (17%) and ovine (5%) than in human (45%) non-O157 VTEC strains. This may support the evidence that the eae gene contributes significantly to the virulence of human VTEC strains and that many animal non-O157 VTEC strains are less pathogenic to humans.  相似文献   

4.
IS1(SB) and its two variants were identified as the major and minor IS1 elements in Shigella boydii. The nucleotide sequences of IS1(SB), IS1(O157:H7) from Escherichia coli O157:H7 and IS1F from E. coli K12 suggest that these IS1 elements had been horizontally transferred among S. boydii and E. coli O157:H7 and K12. The two IS1(SB) variants and IS1(O157:H7) have transposition activities 7- to 86-fold less than that of IS1(SB), whereas IS1F has little transposition activity. Analysis of the flanking sequences of IS1(SB) and its two variants in S. boydii revealed the nature of regional specificity of the target sites and the sequence dependence of 8 and 9 bp target duplications, for which a model is presented.  相似文献   

5.
The study was undertaken to determine the clonal relationship and the genetic diversity among Escherichia coli isolates by comparing a non-motile O157 variant with three O157:H7 EHEC isolates and one O55:H7 enteropathogenic E. coli (EPEC) strain. E. coli strains were characterized by sorbitol phenotype, multilocus enzyme electrophoresis, pulsed-field gel electrophoresis, random amplification polymorphic DNA, and the presence of specific virulence genes (stx, E-hly and LEE genes). Sorbitol fermentation was observed in O157:H- (strain 116I), O55:H7 and O157:H7 (strain GC148) serotypes. stx1 or stx2 and E-hly genes were only detected among O157:H7 isolates. LEE typing revealed specific allele distribution: eaegamma, tirgamma, espAgamma, espBgamma associated with EPEC O55:H7 and EHEC O157:H7 strains (B1/1 and EDL 933), eaealpha, tiralpha, espAalpha, espBalpha related to the 116I O157:H- strain and the GC148 strain presented non-typable LEE sequences. Multilocus enzyme profiles revealed two main clusters associated with specific LEE pathotypes. E. coli strains were discriminated by random amplification of polymorphic DNA-polymerase chain reaction and pulsed-field gel electrophoresis methodologies. The molecular approaches used in this study allowed the determination of the genetic relatedness among E. coli strains as well as the detection of lineage specific group markers.  相似文献   

6.
A novel sequence of 2.9 kb in the intergenic region between the mutS and rpoS genes of Escherichia coli O157:H7 and closely related strains replaces a sequence of 6.1 kb in E. coli K-12 strains. At the same locus in Shigella dysenteriae type 1, a sequence identical to that in O157:H7 is bounded by the IS1 insertion sequence element. Extensive polymorphism in the mutS-rpoS chromosomal region is indicative of horizontal transfer events.  相似文献   

7.
Verotoxin-producing Escherichia coli (VTEC) have emerged in the past two decades as food-borne pathogens that can cause major outbreaks of human illnesses worldwide. The number of outbreaks has increased in recent years due to changes in food production and processing systems, eating habits, microbial adaptation, and methods of VTEC transmission. The human illnesses range from mild diarrhea to hemolytic uremic syndrome (HUS) that can lead to death. The VTEC outbreaks have been attributed to O157:H7 and non-O157:H7 serotypes of E. coli. These E. coli serotypes include motile (e.g., O26:H11 and O104:H21) and nonmotile (e.g., O111:H-, O145:H-, and O157:H-) strains. In the United States, E. coli O157:H7 has been the major cause of VTEC outbreaks. Worldwide, however, non-O157:H7 VTEC (e.g., members of the O26, O103, O111, O118, O145, and O166 serogroups) have caused approximately 30% of the HUS cases in the past decade. Because large numbers of the VTEC outbreaks have been attributed to consumption of ruminant products (e.g., ground beef), cattle and sheep are considered reservoirs of these food-borne pathogens. Because of the food safety concern of VTEC, a global perspective on this problem is addressed (Exp Biol Med Vol. 228, No. 4). The first objective was to evaluate the known non-O157:H7 VTEC strains and the limitations associated with their detection and characterization. The second objective was to identify the VTEC serotypes associated with outbreaks of human illnesses and to provide critical evaluation of their virulence. The third objective was to determine the rumen effect on survival of E. coli O157:H7 as a VTEC model. The fourth objective was to explore the role of intimins in promoting attaching and effacing lesions in humans. Finally, the ability of VTEC to cause persistent infections in cattle was evaluated.  相似文献   

8.
Insertion sequences (ISs) are the simplest transposable elements and are widely distributed in bacteria; however, they also play important roles in genome evolution. We recently identified a protein called IS excision enhancer (IEE) in enterohemorrhagic Escherichia coli (EHEC) O157. IEE promotes the excision of IS elements belonging to the IS3 family, such as IS629, as well as several other families. IEE-mediated IS excision generates various genomic deletions that lead to the diversification of the bacterial genome. IEE has been found in a broad range of bacterial species; however, among sequenced E. coli strains, IEE is primarily found in EHEC isolates. In this study, we investigated non-EHEC pathogenic E. coli strains isolated from domestic animals and found that IEE is distributed in specific lineages of enterotoxigenic E. coli (ETEC) strains of serotypes O139 or O149 isolated from swine. The iee gene is located within integrative elements that are similar to SpLE1 of EHEC O157. All iee-positive ETEC lineages also contained multiple copies of IS629, a preferred substrate of IEE, and their genomic locations varied significantly between strains, as observed in O157. These data suggest that IEE may have been transferred among EHEC and ETEC in swine via SpLE1 or SpLE1-like integrative elements. In addition, IS629 is actively moving in the ETEC O139 and O149 genomes and, as in EHEC O157, is promoting the diversification of these genomes in combination with IEE.  相似文献   

9.
The enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain RIMD 0509952, derived from an outbreak in Sakai city, Japan, in 1996, produces two kinds of verotoxins, VT1 and VT2, encoded by the stx1 and stx2 genes. In the EHEC strains, as well as in other VT-producing E. coli strains, the toxins are encoded by lysogenic bacteriophages. The EHEC O157:H7 strain RIMD 0509952 did not produce plaque-forming phage particles upon inducing treatments. We have determined the complete nucleotide sequence of a prophage, VT2-Sakai, carrying the stx2A and stx2B genes on the chromosome, and presumed the putative functions of the encoded proteins and the cis-acting DNA elements based on sequence homology data. To our surprise, the sequences in the regions of VT2-Sakai corresponding to the early gene regulators and replication proteins, and the DNA sequences recognized by the regulators share very limited homology to those of the VT2-encoding 933W phage carried by the EHEC O157:H7 strain EDL933 reported by Plunkett et al. (J. Bacteriol., p1767-1778, 181, 1999), although the sequences corresponding to the structural components are almost identical. These data suggest that these two phages were derived from a common ancestral phage and that either or both of them underwent multiple genetic rearrangements. An IS629 insertion was found downstream of the stx2B gene and upstream of the lysis gene S, and this might be responsible for the absence of plaque-forming activity in the lysate obtained after inducing treatments.  相似文献   

10.
Twenty-four Escherichia coli strains producing standard colicins were evaluated for inhibitory activity against 27 diarrheagenic E. coli strains of serotypes O15:H-, O26:(H11, H-), and O111:(H8, H11, H-), including O157:H7, representing diarrheagenic E. coli clones, 3, 4, 8, 9, and 10. Overlay techniques were used to assess inhibition on Luria agar and Luria agar supplemented with 0.25 micrograms of mitomycin C per ml to induce colicin production. As a group, the A colicins (Col) E1 to E8, K, and N inhibited 23 to 25 (85.2 to 92.6%) of the 27 diarrheagenic strains on mitomycin C-containing agar, whereas the most active group B colicins, Col D and Ia, inhibited 9 and 12 (33.3 and 44.4%), of the diarrheagenic strains, respectively. Col G and H and Mcc B17 inhibited 22 to 27 (81.5 to 100%) of the diarrheagenic strains on Luria agar but were suppressed on mitomycin C-containing agar medium. All O157:H7 strains evaluated were sensitive to Col E1 to E8, K, and N on mitomycin C-containing agar and to Col G and H and Mcc B17 on Luria agar. Sensitivity to colicins of the selected set of diarrheagenic strains was in the order diarrheagenic E. coli clone 9 > 4 > 3 > 10 > 8 and was not restricted to strains of a single clone or serotype. Strain 8C from clone 8 was resistant to most test colicins. There is potential for using colicins in foods and agriculture to inhibit sensitive diarrheagenic E. coli strains, including serotype O157:H7.  相似文献   

11.
Escherichia coli O104:H4 was associated with a severe foodborne disease outbreak originating in Germany in May 2011. More than 4000 illnesses and 50 deaths were reported. The outbreak strain was a typical enteroaggregative E. coli (EAEC) that acquired an antibiotic resistance plasmid and a Shiga-toxin 2 (Stx2)-encoding bacteriophage. Based on whole-genome phylogenies, the O104:H4 strain was most closely related to other EAEC strains; however, Stx2-bacteriophage are mobile, and do not necessarily share an evolutionary history with their bacterial host. In this study, we analyzed Stx2-bacteriophage from the E. coli O104:H4 outbreak isolates and compared them to all available Stx2-bacteriophage sequences. We also compared Stx2 production by an E. coli O104:H4 outbreak-associated isolate (ON-2011) to that of E. coli O157:H7 strains EDL933 and Sakai. Among the E. coli Stx2-phage sequences studied, that from O111:H- strain JB1-95 was most closely related phylogenetically to the Stx2-phage from the O104:H4 outbreak isolates. The phylogeny of most other Stx2-phage was largely concordant with their bacterial host genomes. Finally, O104:H4 strain ON-2011 produced less Stx2 than E. coli O157:H7 strains EDL933 and Sakai in culture; however, when mitomycin C was added, ON-2011 produced significantly more toxin than the E. coli O157:H7 strains. The Stx2-phage from the E. coli O104:H4 outbreak strain and the Stx2-phage from O111:H- strain JB1-95 likely share a common ancestor. Incongruence between the phylogenies of the Stx2-phage and their host genomes suggest the recent Stx2-phage acquisition by E. coli O104:H4. The increase in Stx2-production by ON-2011 following mitomycin C treatment may or may not be related to the high rates of hemolytic uremic syndrome associated with the German outbreak strain. Further studies are required to determine whether the elevated Stx2-production levels are due to bacteriophage or E. coli O104:H4 host related factors.  相似文献   

12.
Enteropathogenic Escherichia coli (EPEC) continues to be a leading cause of mortality and morbidity in children around the world. Two EPEC genomes have been fully sequenced: those of EPEC O127:H6 strain E2348/69 (United Kingdom, 1969) and EPEC O55:H7 strain CB9615 (Germany, 2003). The O55:H7 serotype is a recent precursor to the virulent enterohemorrhagic E. coli O157:H7. To explore the diversity of O55:H7 and better understand the clonal evolution of O157:H7, we fully sequenced EPEC O55:H7 strain RM12579 (California, 1974), which was collected 1 year before the first U.S. isolate of O157:H7 was identified in California. Phage-related sequences accounted for nearly all differences between the two O55:H7 strains. Additionally, O55:H7 and O157:H7 strains were tested for the presence and insertion sites of Shiga toxin gene (stx)-containing bacteriophages. Analysis of non-phage-associated genes supported core elements of previous O157:H7 stepwise evolutionary models, whereas phage composition and insertion analyses suggested a key refinement. Specifically, the placement and presence of lambda-like bacteriophages (including those containing stx) should not be considered stable evolutionary markers or be required in placing O55:H7 and O157:H7 strains within the stepwise evolutionary models. Additionally, we suggest that a 10.9-kb region (block 172) previously believed unique to O55:H7 strains can be used to identify early O157:H7 strains. Finally, we defined two subsets of O55:H7 strains that share an as-yet-unobserved or extinct common ancestor with O157:H7 strains. Exploration of O55:H7 diversity improved our understanding of the evolution of E. coli O157:H7 and suggested a key revision to accommodate existing and future configurations of stx-containing bacteriophages into current models.  相似文献   

13.
AIMS: To assess a collection of 96 Escherichia coli O157:H7 strains for their resistance potential against a set of colicinogenic E. coli developed as a probiotic for use in cattle. METHODS AND RESULTS: Escherichia coli O157:H7 strains were screened for colicin production, types of colicins produced, presence of colicin resistance and potential for resistance development. Thirteen of 14 previously characterized colicinogenic E. coli strains were able to inhibit 74 serotype O157:H7 strains. Thirteen E. coli O157:H7 strains were found to be colicinogenic and 11 had colicin D genes. PCR products for colicins B, E-type, Ia/Ib and M were also detected. During in vitro experiments, the ability to develop colicin resistance against single-colicin producing E. coli strains was observed, but rarely against multiple-colicinogenic strains. The ability of serotype O157:H7 strains to acquire colicin plasmids or resistance was not observed during a cattle experiment. CONCLUSIONS: Escherichia coli O157:H7 has the potential to develop single-colicin resistance, but simultaneous resistance against multiple colicins appears to be unlikely. Colicin D is the predominant colicin produced by colicinogenic E. coli O157:H7 strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The potential for resistance development against colicin-based strategies for E. coli O157:H7 control may be very limited if more than one colicin type is used.  相似文献   

14.
The problems associated with identification and characterization of non-O157 verotoxin-producing Escherichia coli (VTEC) are discussed. The paradox of VTEC is that most reports of human illnesses are associated with serotypes such as O157:H7, O111:H- (nonmotile), O26:H11, and O113:H21, which are rarely found in domestic animals. However, those VTEC serotypes commonly found in domestic animals, especially ruminants, rarely cause human illnesses. When they cause human illnesses, the symptoms are similar to those caused by the serotypes E. coli O157:H7, O111:H-, O26:H11, and O113:H21. The impact of VTEC on human and animal health is also addressed. The VTEC and their toxicity are considered as a paradigm for emerging pathogens. The question on how such pathogens could arise from a basic commensal population is also addressed.  相似文献   

15.
The rfb region specifies the structure of lipopolysaccharide side chains that comprise the diverse gram-negative bacterial somatic (O) antigens. The rfb locus is adjacent to gnd, which is a polymorphic gene encoding 6-phosphogluconate dehydrogenase. To determine if rfb and gnd cotransfer, we sequenced gnd in five O55 and 13 O157 strains of Escherichia coli. E. coli O157:H7 has a gnd allele (allele A) that is only 82% identical to the gnd allele (allele D) of closely related E. coli O55:H7. In contrast, gnd alleles of E. coli O55 in distant lineages are >99.9% identical to gnd allele D. Though gnd alleles B and C in E. coli O157 that are distantly related to E. coli O157:H7 are more similar to allele A than to allele D, there are nucleotide differences at 4 to 6% of their sites. Alleles B and C can be found in E. coli O157 in different lineages, but we have found allele A only in E. coli O157 belonging to the DEC5 lineage. DNA 3' to the O55 gnd allele in diverse E. coli lineages has sequences homologous to tnpA of the Salmonella enterica serovar Typhimurium IS200 element, E. coli Rhs elements (including an H-rpt gene), and portions of the O111 and O157 rfb regions. We conclude that rfb and gnd cotransferred into E. coli O55 and O157 in widely separated lineages and that recombination was responsible for recent antigenic shifts in the emergence of pathogenic E. coli O55 and O157.  相似文献   

16.
Sorbitol-fermenting Escherichia coli O157:NM (SF O157) is an emerging pathogen suggested to be more virulent than nonsorbitol-fermenting Escherichia coli O157:H7 (NSF O157). Important virulence factors are the Shiga toxins (stx), encoded by stx1 and/or stx2 located within prophages integrated in the bacterial genome. The stx genes are expressed from p(R) (') as a late protein, and anti-terminator activity from the Q protein is necessary for read through of the late terminator t(R) (') and activation of p(R) (') . We investigated the regulation of stx2(EDL933) expression at the genomic level in 17 Norwegian SF O157. Sequencing of three selected SF O157 strains revealed that the anti-terminator q gene and genes upstream of stx2(EDL933) were identical or similar to the ones observed in the E.?coli O111:H- strain AP010960, but different from the ones observed in the NSF O157 strain EDL933 (AE005174). This suggested divergent stx2(EDL933) -encoding bacteriophages between NSF O157 and the SF O157 strains (FR874039-41). Furthermore, different DNA structures were detected in the SF O157 strains, suggesting diversity among bacteriophages also within the SF O157 group. Further investigations are needed to elucidate whether the q(O111:H) (-) gene observed in all our SF O157 contributes to the increased virulence seen in SF O157 compared to NSF O157. An assay for detecting q(O111:H) (-) was developed.  相似文献   

17.
Human intestinal in vitro organ culture was used to assess the tissue tropism of human isolates of Escherichia coli O103:H2 and O103:H- that express intimin epsilon. Both strains showed tropism for follicle associated epithelium and limited adhesion to other regions of the small and large intestine. This is similar to the tissue tropism shown by intimin gamma enterohaemorrhagic (EHEC) O157:H7, but distinct from that of intimin alpha enteropathogenic (EPEC) O127:H6.  相似文献   

18.
Escherichia coli O157:H7 is a major food-borne infectious pathogen that causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Here we report the complete chromosome sequence of an O157:H7 strain isolated from the Sakai outbreak, and the results of genomic comparison with a benign laboratory strain, K-12 MG1655. The chromosome is 5.5 Mb in size, 859 Kb larger than that of K-12. We identified a 4.1-Mb sequence highly conserved between the two strains, which may represent the fundamental backbone of the E. coli chromosome. The remaining 1.4-Mb sequence comprises of O157:H7-specific sequences, most of which are horizontally transferred foreign DNAs. The predominant roles of bacteriophages in the emergence of O157:H7 is evident by the presence of 24 prophages and prophage-like elements that occupy more than half of the O157:H7-specific sequences. The O157:H7 chromosome encodes 1632 proteins and 20 tRNAs that are not present in K-12. Among these, at least 131 proteins are assumed to have virulence-related functions. Genome-wide codon usage analysis suggested that the O157:H7-specific tRNAs are involved in the efficient expression of the strain-specific genes. A complete set of the genes specific to O157:H7 presented here sheds new insight into the pathogenicity and the physiology of O157:H7, and will open a way to fully understand the molecular mechanisms underlying the O157:H7 infection.  相似文献   

19.
Enterohemorrhagic Escherichia coli (EHEC) of serotype O157:H7 has been implicated in food-borne illnesses worldwide. An evolutionary model was proposed in which the highly pathogenic EHEC O157:H7 serotype arose from its ancestor, enteropathogenic E. coli (EPEC) O55:H7 (sorbitol fermenting [SOR(+)] and β-glucuronidase positive [GUD(+)]), through sequential gain of virulence, phenotypic traits, and serotype change. Here we report six draft genomes of strains belonging to this evolutionary model: two EPEC O55:H7 (SOR(+) GUD(+)) strains, two nonmotile EHEC O157:H(-) strains (SOR(+) GUD(+)) containing plasmid pSFO157, one EHEC O157:H7 (SOR(-) GUD(+)) strain, and one O157:H7 strain containing plasmid pSFO157 (SOR(+) GUD(+)).  相似文献   

20.
Human disease caused by Escherichia coli O157:H7 is a function of the number of cells that are present at potential sites of infection and host susceptibility. Such infectious doses are a result, in part, of the quantity of cells that are ingested and that survive human host defenses, such as the low-pH environment of the stomach. To more fully understand the kinetics of E. coli O157:H7 survival in gastric fluid, individual E. coli O157:H7 strains were suspended in various media (i.e., saline, cooked ground beef [CGB], and CGB containing a commercial antacid product [CGB+A]), mixed at various proportions with simulated human gastric fluid (SGF), and then incubated at 37 degrees C for up to 4 h. The highest inactivation rate among nine E. coli O157:H7 strains was observed in saline. Specifically, the average survival rates in 100:1 and 10:1 proportions of SGF-saline were -1.344 +/- 0.564 and -0.997 +/- 0.388 log(10) CFU/h, respectively. In contrast, the average inactivation rate for 10 E. coli O157:H7 strains suspended in 10:1 SGF-CGB was -0.081 +/- 0.068, a rate that was 12-fold lower than that observed for SGF-saline. In comparison, the average inactivation rate for Shigella flexneri strain 5348 in 100:1 and 10:1 SGF-saline was -8.784 and -17.310, respectively. These latter inactivation rates were 7- to 17-fold higher than those for E. coli O157:H7 strains in SGF-saline and were 4-fold higher than those for E. coli O157:H7 strains in SGF-CGB. The survival rate of E. coli O157:H7 strain GFP80EC increased as the dose of antacid increased from one-half to twice the prescribed dose. A similar trend was observed for the matrix pH over the range of pH 1.6 to 5.7, indicating that pH is a primary factor affecting E. coli O157:H7 survival in SGF-CGB+A. These results can be used in risk assessment to define dose-response relationships for E. coli O157:H7 and to evaluate potential surrogate organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号