首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Niemann–Pick C1 Like 1 (NPC1L1) has been identified and characterized as an essential protein in the intestinal cholesterol absorption process. NPC1L1 localizes to the brush border membrane of absorptive enterocytes in the small intestine. Intestinal expression of NPC1L1 is down regulated by diets containing high levels of cholesterol. While otherwise phenotypically normal, Npc1l1 null mice exhibit a significant reduction in the intestinal uptake and absorption of cholesterol and phytosterols. Characterization of the NPC1L1 pathway revealed that cholesterol absorption inhibitor ezetimibe specifically binds to an extracellular loop of NPC1L1 and inhibits its sterol transport function. Npc1l1 null mice are resistant to diet-induced hypercholesterolemia, and when crossed with apo E null mice, are completely resistant to the development of atherosclerosis. Intestinal gene expression studies in Npc1l1 null mice indicated that no exogenous cholesterol was entering enterocytes lacking NPC1L1, which resulted in an upregulation of intestinal and hepatic LDL receptor and cholesterol biosynthetic gene expression. Polymorphisms in the human NPC1L1 gene have been found to influence cholesterol absorption and plasma low density lipoprotein levels. Therefore, NPC1L1 is a critical intestinal sterol uptake transporter which influences whole body cholesterol homeostasis.  相似文献   

2.
Recent studies have indicated that intestinal cholesterol absorption is a multistep process, which is regulated by multiple genes at the enterocyte level. However, the molecular mechanisms whereby there are gender differences in intestinal cholesterol absorption efficiency and the efficiency of cholesterol absorption increases with age have not yet been fully understood. To explore whether aging increases cholesterol absorption via intestinal sterol transporters, we studied the higher cholesterol-absorbing C57L/J vs. the lower cholesterol-absorbing AKR/J mice at 8 (young adult), 36 (older adult), and 50 (aged) wk of age. To test the hypothesis that estrogen receptor (ER )alpha plays an important regulatory role in cholesterol absorption, we investigated the gonadectomized mice of both genders treated with 17beta-estradiol-releasing pellets at 0, 3, or 6 mug/day and antiestrogenic ICI 182,780 at 125 microg/day. We found that hepatic outputs of biliary cholesterol were significantly increased with age and in response to high levels of estrogen. Aging significantly enhances cholesterol absorption by suppressing expression of the jejunal and ileal sterol efflux transporters [ATP-binding cassette (Abc)g5 and Abcg8] and upregulating expression of the putative duodenal and jejunal sterol influx transporter Npc1l1. Estrogen significantly augmented cholesterol absorption mostly due to an upregulated expression of intestinal Npc1l1, Abcg5, and Abcg8 via the intestinal ERalpha pathway, which can be fully abolished by the antagonist. We conclude that ERalpha activated by estrogen and aging enhances cholesterol absorption by increasing biliary lipid output and mediating intestinal sterol transporters favoring influx of intraluminal cholesterol molecules across the apical membrane of the enterocyte.  相似文献   

3.
Niemann-Pick C (NPC) disease is a fatal inherited disorder characterized by an accumulation of cholesterol and other lipids in late endosomes/lysosomes. Although this disease is considered to be primarily a neurodegenerative disorder, many NPC patients suffer from liver disease. We have investigated alterations that occur in hepatic lipid homeostasis using primary hepatocytes isolated from NPC1-deficient mice. The cholesterol content of Npc1(-/-) hepatocytes was 5-fold higher than that of Npc1(+/+) hepatocytes; phospholipids and cholesteryl esters also accumulated. In contrast, the triacylglycerol content of Npc1(-/-) hepatocytes was 50% lower than of Npc1(+/+) hepatocytes. We hypothesized that the cholesterol sequestration induced by NPC1 deficiency might inhibit very low density lipoprotein secretion. However, this process was enhanced by NPC1 deficiency and the secreted particles were enriched in cholesteryl esters. We investigated the mechanisms responsible for these changes. The synthesis of phosphatidylcholine, cholesteryl esters, and cholesterol in hepatocytes was increased by NPC1 deficiency and the amount of the mature form of sterol response element-binding protein-1 was also increased. These observations indicate that the enhanced secretion of lipoproteins from NPC1-deficient hepatocytes is due, at least in part, to increased lipid synthesis.  相似文献   

4.
Recent evidence suggests that NPC1L1 (Niemann-Pick C1-like 1) is critical for intestinal sterol absorption in mice, yet mechanisms by which NPC1L1 regulates cellular sterol transport are lacking. In the study we used a McArdle-RH7777 rat hepatoma cell line stably expressing NPC1L1 to examine the sterol-specificity and directionality of NPC1L1-mediated sterol transport. As previously described, cholesterol-depletion-driven recycling of NPC1L1 to the cell surface facilitates cellular uptake of non-esterified (free) cholesterol. However, it has no impact on the uptake of esterified cholesterol, indicating free sterol specificity. Interestingly, the endocytic recycling of NPC1L1 was also without effect on beta-sitosterol uptake, indicating that NPC1L1 can differentiate between free sterols of animal and plant origin in hepatoma cells. Furthermore, NPC1L1-driven free cholesterol transport was unidirectional, since cellular cholesterol efflux to apolipoprotein A-I, high-density lipoprotein or serum was unaffected by NPC1L1 expression or localization. Additionally, NPC1L1 facilitates mass non-esterified-cholesterol uptake only when it is located on the cell surface and not when it resides intracellularly. Finally, NPC1L1-dependent cholesterol uptake required adequate intracellular K(+), yet did not rely on intracellular Ca(2+), the cytoskeleton or signalling downstream of protein kinase A, protein kinase C or pertussis-toxin-sensitive G-protein-coupled receptors. Collectively, these findings support the notion that NPC1L1 can selectively recognize non-esterified cholesterol and promote its unidirectional transport into hepatoma cells.  相似文献   

5.
The impact of NPC1L1 and ezetimibe on cholesterol absorption are well documented. However, their potential consequences relative to absorption and metabolism of other nutrients have been only minimally investigated. Thus studies were undertaken to investigate the possible effects of this protein and drug on fat absorption, weight gain, and glucose metabolism by using Npc1l1(-/-) and ezetimibe-treated mice fed control and high-fat, high-sucrose diets. Results show that lack of NPC1L1 or treatment with ezetimibe reduces weight gain when animals are fed a diabetogenic diet. This resistance to diet-induced obesity results, at least in part, from significantly reduced absorption of dietary saturated fatty acids, particularly stearate and palmitate, since food intake did not differ between groups. Expression analysis showed less fatty acid transport protein 4 (FATP4) in intestinal scrapings of Npc1l1(-/-) and ezetimibe-treated mice, suggesting an important role for FATP4 in intestinal absorption of long-chain fatty acids. Concomitant with resistance to weight gain, lack of NPC1L1 or treatment with ezetimibe also conferred protection against diet-induced hyperglycemia and insulin resistance. These unexpected beneficial results may be clinically important, given the focus on NPC1L1 as a target for the treatment of hypercholesterolemia.  相似文献   

6.
7.
Niemann-Pick Type C (NPC) disease is an autosomal recessive disorder that results in accumulation of cholesterol and other lipids in late endosomes/lysosomes and leads to progressive neurodegeneration and premature death. The mechanism by which lipid accumulation causes neurodegeneration remains unclear. Inappropriate activation of microglia, the resident immune cells of the central nervous system, has been implicated in several neurodegenerative disorders including NPC disease. Immunohistochemical analysis demonstrates that NPC1 deficiency in mouse brains alters microglial morphology and increases the number of microglia. In primary cultures of microglia from Npc1(-/-) mice cholesterol is sequestered intracellularly, as occurs in other NPC-deficient cells. Activated microglia secrete potentially neurotoxic molecules such as tumor necrosis factor-α (TNFα). However, NPC1 deficiency in isolated microglia did not increase TNFα mRNA or TNFα secretion in vitro. In addition, qPCR analysis shows that expression of pro-inflammatory and oxidative stress genes is the same in Npc1(+/+) and Npc1(-/-) microglia, whereas the mRNA encoding the anti-inflammatory cytokine, interleukin-10 in Npc1(-/-) microglia is ~60% lower than in Npc1(+/+) microglia. The survival of cultured neurons was not impaired by NPC1 deficiency, nor was death of Npc1(-/-) and Npc1(+/+) neurons in microglia-neuron co-cultures increased by NPC1 deficiency in microglia. However, a high concentration of Npc1(-/-) microglia appeared to promote neuron survival. Thus, although microglia exhibit an active morphology in NPC1-deficient brains, lack of NPC1 in microglia does not promote neuron death in vitro in microglia-neuron co-cultures, supporting the view that microglial NPC1 deficiency is not the primary cause of neuron death in NPC disease.  相似文献   

8.
The transmembrane protein Niemann-Pick C1 Like 1 (NPC1L1) belongs to the Niemann-Pick C1 (NPC1) family of cholesterol transporters and is mainly expressed in the liver and the small intestine. NPC1L1 is believed to be the main transporter responsible for the absorption of dietary cholesterol. Like NPC1, NPC1L1 contains a sterol sensing domain, suggesting that it might be sensitive to dietary cholesterol. To test this hypothesis, mucosal explants were cultured in the presence or absence of cholesterol. In the absence of cholesterol NPC1L1 was localized mainly in the brush border of the enterocyte, colocalizing with the brush border enzyme aminopeptidase N (APN), and only a minor part was present in intracellular compartments. In contrast, following culture in the presence of cholesterol a major part of NPC1L1 was found in intracellular compartments positive for the early endosomal marker early endosome antigen 1, whereas only a minor fraction was left in the brush border. Neither APN, lactase, nor sucrase-isomaltase was endocytosed in parallel, demonstrating that this is a selective cholesterol-induced endocytosis of NPC1L1. Conceivably either the induced internalization could be due to NPC1L1 acting as an endocytic cholesterol receptor or it could be a mechanism to reduce the cholesterol uptake. The fluorescent cholesterol analog NBD-cholesterol readily labeled the cytoplasm also under conditions nonpermissible for endocytosis, arguing against a receptor-mediated uptake. We therefore propose that cholesterol is absorbed by NPC1L1 acting as a membrane transporter and that NPC1L1 is internalized to an endosomal compartment to reduce the absorption of cholesterol.  相似文献   

9.
Niemann-Pick C (NPC) disease is an inherited, progressive neurodegenerative disorder caused by mutations in the NPC1 or NPC2 gene that result in an accumulation of unesterified cholesterol in late endosomes/lysosomes (LE/L) and impaired export of cholesterol from LE/L to the endoplasmic reticulum (ER). Recent studies demonstrate that administration of cyclodextrin (CD) to Npc1(-/-) mice eliminates cholesterol sequestration in LE/L of many tissues, including the brain, delays neurodegeneration, and increases lifespan of the mice. We have now investigated cholesterol homeostasis in NPC1-deficient cells of the brain in response to CD. Primary cultures of neurons and glial cells from Npc1(-/-) mice were incubated for 24 h with 0.1 to 10 mm CD after which survival and cholesterol homeostasis were monitored. Although 10 mm CD was profoundly neurotoxic, and altered astrocyte morphology, 0.1 and 1 mm CD were not toxic but effectively mobilized stored cholesterol from the LE/L as indicated by filipin staining. However, 0.1 and 1 mm CD altered cholesterol homeostasis in opposite directions. The data suggest that 0.1 mm CD releases cholesterol trapped in LE/L of neurons and astrocytes and increases cholesterol availability at the ER, whereas 1 mm CD primarily extracts cholesterol from the plasma membrane and reduces ER cholesterol. These studies in Npc1(-/-) neurons and astrocytes establish a dose of CD (0.1 mm) that would likely be beneficial in NPC disease. The findings are timely because treatment of NPC disease patients with CD is currently being initiated.  相似文献   

10.
11.
The fluorescent cholesterol analog 22-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3beta-ol (fluoresterol) was characterized as a tool for exploring the biochemistry and cell biology of intestinal cholesterol absorption. Hamsters absorbed fluoresterol in a concentration- and time-dependent manner, with an efficiency of about 15-30% that of cholesterol. Fluoresterol absorption was blocked by compounds known to inhibit cholesterol absorption, implying that fluoresterol interacts with those elements of the normal pathway for cholesterol absorption on which the inhibitors act. Confocal microscopy of small intestinal tissue demonstrated that fluoresterol was taken up by absorptive epithelial cells and packaged into lipoprotein particles, suggesting a normal route of intracellular trafficking. Uptake of fluoresterol was confirmed by biochemical analysis of intestinal tissue, and a comparison of [(3)H] cholesterol and fluoresterol content in the mucosa suggested that fluoresterol moved through the enterocytes more rapidly than did cholesterol. This interpretation was supported by measurements of fluoresterol esterification in the mucosa. Four hours after hamsters were given fluoresterol and [(3)H]cholesterol orally, 44% of the fluoresterol in the intestinal mucosa was esterified, compared to 8% of the [(3)H]cholesterol. Caco-2 cells took up 2- to 5-fold more [(3)H]cholesterol than fluoresterol from bile acid micelles, and esterified 21-24% of the fluoresterol but only 1-4% of the [(3)H]cholesterol. Thus fluoresterol apparently interacts with the proteins required for cholesterol uptake, trafficking, and processing in the small intestine.  相似文献   

12.
Defects in Niemann-Pick, Type C-1 protein (NPC1) cause cholesterol, sphingolipids, phospholipids, and glycolipids to accumulate in lysosomes of liver, spleen, and brain. In cultured fibroblasts, NPC1 deficiency causes lysosomal retention of lipoprotein-derived cholesterol after uptake by receptor-mediated endocytosis. NPC1 contains 1278 amino acids that form 13 membrane-spanning helices and three large loops that project into the lumen of lysosomes. We showed earlier that NPC1 binds cholesterol and oxysterols. Here we localize the binding site to luminal loop-1, a 240-amino acid domain with 18 cysteines. When produced in cultured cells, luminal loop-1 was secreted as a soluble dimer. This loop bound [(3)H]cholesterol (K(d), 130 nM) and [(3)H]25-hydroxycholesterol (25-HC, K(d), 10 nM) with one sterol binding site per dimer. Binding of both sterols was competed by oxysterols (24-, 25-, and 27-HC). Unlabeled cholesterol competed strongly for binding of [(3)H]cholesterol, but weakly for [(3)H]25-HC binding. Binding of [(3)H]cholesterol but not [(3)H]25-HC was inhibited by detergents. We also studied NPC2, a soluble protein whose deficiency causes a similar disease phenotype. NPC2 bound cholesterol, but not oxysterols. Epicholesterol and cholesteryl sulfate competed for [(3)H]cholesterol binding to NPC2, but not NPC1. Glutamine 79 in luminal loop-1 of NPC-1 is important for sterol binding; a Q79A mutation abolished binding of [(3)H]cholesterol and [(3)H]25-HC to full-length NPC1. Nevertheless, the Q79A mutant restored cholesterol transport to NPC1-deficient Chinese hamster ovary cells. Thus, the sterol binding site on luminal loop-1 is not essential for NPC1 function in fibroblasts, but it may function in other cells where NPC1 deficiency produces more complicated lipid abnormalities.  相似文献   

13.
14.
Niemann-Pick type C (NPC) disease is a multisystem disorder resulting from mutations in the NPC1 gene that encodes a protein involved in intracellular cholesterol trafficking. Significant liver dysfunction is frequently seen in patients with this disease. The current studies used npc1 mutant mice to investigate the association between liver dysfunction and unesterified cholesterol accumulation, a hallmark of NPC disease. Data from 92 npc1(-/-) mice (age range, 9-56 days) revealed a significant positive correlation between the plasma activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and whole liver cholesterol content. In 56 day old npc1(-/-) mice that had been fed from 35 days of age a rodent diet or the same diet containing either cholesterol (1.0%, w/w) or ezetimibe (a sterol absorption inhibitor; 0.0125%, w/w), whole liver cholesterol content averaged 33.5 +/- 1.1, 87.9 +/- 1.7, and 20.8 +/- 0.9 mg, respectively. Again, plasma ALT and AST activities were positively correlated with hepatic cholesterol content. In contrast, plasma transaminase levels remained in the normal range in npc1(+/+) mice, in which hepatic esterified cholesterol content had been increased by 72-fold by feeding a high-cholesterol, high-fat diet. These studies suggest that the late endosomal/lysosomal content of unesterified cholesterol correlates with cell damage in NPC disease.  相似文献   

15.
The metabolic fate of newly absorbed cholesterol and phytosterol is orchestrated through adenosine triphosphate-binding cassette transporter G5 and G8 heterodimer (G5G8), and acyl CoA:cholesterol acyltransferase 2 (ACAT2). We hypothesized that intestinal G5G8 limits sterol absorption by reducing substrate availability for ACAT2 esterification and have attempted to define the roles of these two factors using gene deletion studies in mice. Male ACAT2(-/-), G5G8(-/-), ACAT2(-/-)G5G8(-/-) (DKO), and wild-type (WT) control mice were fed a diet with 20% of energy as palm oil and 0.2% (w/w) cholesterol. Sterol absorption efficiency was directly measured by monitoring the appearance of [(3)H]sitosterol and [(14)C]cholesterol tracers in lymph after thoracic lymph duct cannulation. The average percentage (± SEM) absorption of [(14)C]cholesterol after 8 h of lymph collection was 40.55 ± 0.76%, 19.41 ± 1.52%, 32.13 ± 1.60%, and 21.27 ± 1.35% for WT, ACAT2(-/-), G5G8(-/-), and DKO mice, respectively. [(3)H]sitosterol absorption was <2% in WT and ACAT2(-/-) mice, whereas it was up to 6.8% in G5G8(-/-) and DKO mice. G5G8(-/-) mice also produced chylomicrons with ~70% less cholesterol ester mass than WT mice. In contrast to expectations, the data demonstrated that the absence of G5G8 led to decreased intestinal cholesterol esterification and reduced cholesterol transport efficiency. Intestinal G5G8 appeared to limit the absorption of phytosterols; ACAT2 more efficiently esterified cholesterol than phytosterols. The data indicate that handling of sterols by the intestine involves both G5G8 and ACAT2 but that an additional factor (possibly Niemann-Pick C1-like 1) may be key in determining absorption efficiency.  相似文献   

16.
Liver X receptor (LXR) agonists increase both total fecal sterol excretion and macrophage-specific reverse cholesterol transport (RCT) in vivo. In this study, we assessed the effects of ABCG5/G8 deficiency as well as those of LXR agonist-induction of RCT from macrophages to feces in vivo. A [(3)H]cholesterol-labeled macrophage cell line was injected intraperitoneally into ABCG5/G8-deficient (G5/G8(-/-)), heterozygous (G5G8(+/-)), and wild-type G5/G8(+/+) mice. G5/G8(-/-)mice presented increased radiolabeled HDL-bound [(3)H]cholesterol 24 h after the label injection. However, the magnitude of macrophage-derived [(3)H]cholesterol in liver and feces did not differ between groups. A separate experiment was conducted in G5G8(+/+) and G5G8(-/-) mice treated with or without the LXR agonist T0901317. Treatment with T0901317 increased liver ABCG5/G8 expression, which was associated with a 2-fold increase in macrophage-derived [(3)H]cholesterol in feces of G5/G8(+/+) mice. However, T0901317 treatment had no effect on fecal [(3)H]cholesterol excretion in G5G8(-/-) mice. Additionally, LXR activation stimulated the fecal excretion of labeled cholesterol after an intravenous injection of HDL-[(3)H]cholesteryl oleate in G5/G8(+/+) mice, but failed to enhance fecal [(3)H]cholesterol in G5/G8(-/-) mice. Our data provide direct in vivo evidence of the crucial role of ABCG5 and ABCG8 in LXR-mediated induction of macrophage-specific RCT.  相似文献   

17.
The structure of the NPC1L1 N-terminal domain in a closed conformation   总被引:1,自引:0,他引:1  

Background

NPC1L1 is the molecular target of the cholesterol lowering drug Ezetimibe and mediates the intestinal absorption of cholesterol. Inhibition or deletion of NPC1L1 reduces intestinal cholesterol absorption, resulting in reduction of plasma cholesterol levels.

Principal Findings

Here we present the 2.8 Å crystal structure of the N-terminal domain (NTD) of NPC1L1 in the absence of cholesterol. The structure, combined with biochemical data, reveals the mechanism of cholesterol selectivity of NPC1L1. Comparison to the cholesterol free and bound structures of NPC1(NTD) reveals that NPC1L1(NTD) is in a closed conformation and the sterol binding pocket is occluded from solvent.

Conclusion

The structure of NPC1L1(NTD) reveals a degree of flexibility surrounding the entrance to the sterol binding pocket, suggesting a gating mechanism that relies on multiple movements around the entrance to the sterol binding pocket.  相似文献   

18.
Caveolin-1 is not required for murine intestinal cholesterol transport   总被引:9,自引:0,他引:9  
Caveolin-1 (CAV1) is the structural protein of the filamentous coat that decorates the cytoplasmic surface of each caveola. Cell culture studies have implicated CAV1 in playing an important role in intracellular cholesterol trafficking. In addition, it has been reported that CAV1 forms a detergent-resistant protein complex with Annexin-2 in enterocytes that can be disrupted by the cholesterol absorption inhibitor ezetimibe, suggesting a possible role for CAV1 in cholesterol absorption. In this report, we have evaluated cholesterol homeostasis in Cav1 knock-out mice. Deletion of CAV1 does not result in either a compensatory increase of CAV2 or CAV3 in intestine. In addition, Cav1 knock-out mice display normal mRNA and protein levels of Annexin-2 or the putative cholesterol transport protein Niemann-Pick C1-like 1 (NPC1L1) in proximal intestinal mucosa. Fractional cholesterol absorption and fecal neutral sterol excretion are statistically similar in Cav1 knock-out mice and their wild-type littermates. Moreover, oral administration of ezetimibe is equally effective in decreasing cholesterol absorption in Cav1 null mice and wild-type controls. The mRNA expression levels of genes sensitive to intracellular cholesterol concentration (ATP-binding cassette transporters ABCA1 and ABCG5, hydroxymethylglutaryl-CoA synthase and the LDL receptor) are similarly altered in the proximal intestinal mucosa of Cav1 null and wild-type mice following ezetimibe treatment. These results demonstrate that CAV1 is not required for cholesterol absorption or ezetimibe sensitivity in the mouse.  相似文献   

19.
Mice lacking Niemann-Pick C1-Like 1 (NPC1L1) (NPC1L1(-/-)mice) exhibit a defect in intestinal absorption of cholesterol and phytosterols. However, wild-type (WT) mice do not efficiently absorb and accumulate phytosterols either. Cell-based studies show that NPC1L1 is a much weaker transporter for phytosterols than cholesterol. In this study, we examined the role of NPC1L1 in phytosterol and cholesterol trafficking in mice lacking ATP-binding cassette (ABC) transporters G5 and G8 (G5/G8(-/-) mice). G5/G8(-/-) mice develop sitosterolemia, a genetic disorder characterized by the accumulation of phytosterols in blood and tissues. We found that mice lacking ABCG5/G8 and NPC1L1 [triple knockout (TKO) mice] did not accumulate phytosterols in plasma and the liver. TKO mice, like G5/G8(-/-) mice, still had a defect in hepatobiliary cholesterol secretion, which was consistent with TKO versus NPC1L1(-/-) mice exhibiting a 52% reduction in fecal cholesterol excretion. Because fractional cholesterol absorption was reduced similarly in NPC1L1(-/-) and TKO mice, by subtracting fecal cholesterol excretion in TKO mice from NPC1L1(-/-) mice, we estimated that a 25g NPC1L1(-/-) mouse may secrete about 4 mumol of cholesterol daily via the G5/G8 pathway. In conclusion, NPC1L1 is essential for phytosterols to enter the body in mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号