首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we explore the role of multiple predators on the transient and long-term dynamic outcomes of biological control. Consistent with previous theory, our results suggest that specialist predators ought to promote less stable long-term biological control than generalists, while generalists readily drive suppression of nontarget prey species. Interestingly, our results show that the combination of specialists and generalists act synergistically to promote well-behaved biological control. This occurs because generalists do not as readily drive nontarget suppression in the presence of specialist, as specialists shunt energy away from generalists, lowering generalists’ growth rates and so lessening their impact on nontarget species. Similarly, specialists have a less destabilizing (i.e., less variable) influence in the presence of generalists, as generalists shunt energy away from specialists, reducing their growth rates and muting boom and bust dynamics. Finally, our results suggest the intriguing potential that endemic generalist predators, not introduced generalist predators, may often be responsible for the suppression and elimination of nontarget species. This final result demands empirical attention.  相似文献   

2.
Climate change is likely to impact multiple dimensions of biodiversity. Species range shifts are expected and may drive changes in the composition of species assemblages. In some regions, changes in climate may precipitate the loss of geographically restricted, niche specialists and facilitate their replacement by more widespread, niche generalists, leading to decreases in β-diversity and biotic homogenization. However, in other regions climate change may drive local extinctions and range contraction, leading to increases in β-diversity and biotic heterogenization. Regional topography should be a strong determinant of such changes as mountainous areas often are home to many geographically restricted species, whereas lowlands and plains are more often inhabited by widespread generalists. Climate warming, therefore, may simultaneously bring about opposite trends in β-diversity in mountainous highlands versus relatively flat lowlands. To test this hypothesis, we used species distribution modelling to map the present-day distributions of 2669 Neotropical anuran species, and then generated projections of their future distributions assuming future climate change scenarios. Using traditional metrics of β-diversity, we mapped shifts in biotic homogenization across the entire Neotropical region. We used generalized additive models to then evaluate how changes in β-diversity were associated with shifts in species richness, phylogenetic diversity and one measure of ecological generalism. Consistent with our hypothesis, we find increasing biotic homogenization in most highlands, associated with increased numbers of generalists and, to a lesser extent, losses of specialists, leading to an overall increase in alpha diversity, but lower mean phylogenetic diversity. In the lowlands, biotic heterogenization was more common, and primarily driven by local extinctions of generalists, leading to lower α-diversity, but higher mean phylogenetic diversity. Our results suggest that impacts of climate change on β-diversity are likely to vary regionally, but will generally lead to lower diversity, with increases in β-diversity offset by decreases in α-diversity.  相似文献   

3.
How differences in niche breadth evolve and are maintained remains largely unknown. The 'jack of all trades is master of none' model of resource specialization has been widely considered, but, to our knowledge, never before supported empirically. It invokes performance trade-offs associated with specialization. Specialists should outperform generalists on a subset of resources, but be unable to maintain high performance over a broader range of resources. By contrast, generalists should perform less well, on average, using a greater diversity of resources. We report such trade-offs among four coral goby species in the wild. Habitat specialists grew faster than generalists in one of two habitats. Average growth rates of generalists were less than that of specialists, but more consistent between habitats. Performance trade-offs associated with resource specialization could influence the evolution and maintenance of narrow niche breadth.  相似文献   

4.
Habitat specialists are considered to be more sensitive to anthropogenic disturbance than habitat generalists. However, a number of studies have shown that habitat specialists can be tolerant to or even benefit from environmental degradation, suggesting that the effect of disturbance on distributions and abundances of habitat generalists and specialists can be unpredictable. In this study, we assessed the effects of anthropogenic disturbance on the degree of specialization of stream macroinvertebrates in boreal streams. We first measured the niche width for each macroinvertebrate species using the Outlying Mean Index (OMI) analysis and then, using independent data sets of near-pristine and anthropogenically altered streams, we examined the effects of human disturbances on stream macroinvertebrates with different tolerances to environmental conditions. As expected, human disturbance significantly decreased the level of the specialization in stream macroinvertebrate assemblages, and taxa with narrow environmental tolerances were more sensitive to disturbance than taxa with wide tolerances. Despite being more sensitive to disturbance, taxa with narrow environmental tolerances were locally more abundant than tolerant taxa in near-pristine streams, indicating their better performance in their optimal environments. However, many tolerant taxa decreased in their occurrence in disturbed streams, suggesting that habitat generalists also tend to negatively respond to disturbance. Species-rich assemblages harboured more taxa with narrow tolerances compared with species poor assemblages, suggesting a high conservation value of streams with diverse macroinvertebrate assemblages. Consistent with findings for many biological groups, our results indicate that macroinvertebrate species specialised in certain habitats are more sensitive to environmental degradation than habitat generalists. However, contrary to many previous studies, our results suggest that only a few species are likely to benefit from anthropogenic disturbance and, therefore, environmental degradation does not necessary result in macroinvertebrate assemblages composed of a few tolerant taxa.  相似文献   

5.
Many researchers have surveyed damages caused by natural enemies of invasive plants in both native and introduced ranges to test the enemy release hypothesis. In this study, we report our findings on the physiological and morphological impacts of a co-evolved specialist insect (Agasicles hygrophila) and two generalist insects (Atractomorpha sinensis and Hymenia recurvalis) in introduced ranges on an invasive plant, Alternanthera philoxeroides, in both field trials and controlled environments. The resistance of A. philoxeroides against the generalists and the specialist was also studied. We obtained consistent results in both the field trials and the controlled treatments: both the generalists and the specialist decreased leaf biomass, photosynthesis, leaf nitrogen content, and total leaf non-structural carbohydrate content in A. philoxeroides. However, the specialist decreased leaf mass, photosynthesis, and leaf nitrogen content more acutely than the generalists. Moreover, A. philoxeroides increased both leaf lignin and cellulose concentrations upon the generalists’ attack but only increased cellulose concentration in response to the specialist. Our results showed that even under the same population density, the co-evolved specialists from original ranges caused more severe morphological and physiological damage to A. philoxeroides than the generalists in introduced ranges. This revealed that invasive plants released some herbivory stress before their co-evolved specialists were introduced, which may contribute to the superior performance of invasive plants in introduced regions.  相似文献   

6.
We hypothesize that the continuum between generalist and specialist adaptations is an important general trade-off axis in the maintenance of local diversity, and we explore this idea with a simple model in which there are patch types to which species arrive as propagules and compete. Each patch type is defined by a competitive ranking of all species. A highly specialist species is the top competitor in one patch type but has a relatively low average ranking across different patch types, while a generalist species has a high average rank across patch types but is not the top competitor in any patch type. We use random dispersal and vary the fecundity of all species together to vary total propagule density and therefore recruitment limitation and density-dependent mortality. When fecundity is very high, each patch becomes occupied by its specialist species and generalists go extinct, so the number of species at equilibrium is equal to the number of patch types. If fecundity is very low, generalists dominate and specialists go extinct. There is a range of fecundity levels in which specialists, generalists, and intermediates coexist, and the number of species is substantially greater than the number of patch types. While coexistence of specialists and generalists has been considered a problem in evolutionary ecology, our results suggest to the contrary that this trade-off contributes to the maintenance of local diversity.  相似文献   

7.
A frequent observation in plant–animal mutualistic networks is that abundant species tend to be more generalised, interacting with a broader range of interaction partners than rare species. Uncovering the causal relationship between abundance and generalisation has been hindered by a chicken‐and‐egg dilemma: is generalisation a by‐product of being abundant, or does high abundance result from generalisation? Here, we analyse a database of plant–pollinator and plant–seed disperser networks, and provide strong evidence that the causal link between abundance and generalisation is uni‐directional. Specifically, species appear to be generalists because they are more abundant, but the converse, that is that species become more abundant because they are generalists, is not supported by our analysis. Furthermore, null model analyses suggest that abundant species interact with many other species simply because they are more likely to encounter potential interaction partners.  相似文献   

8.
Several ecosystem services directly depend on mutualistic interactions. In species rich communities, these interactions can be studied using network theory. Current knowledge of mutualistic networks is based mainly on binary links; however, little is known about the role played by the weights of the interactions between species. What new information can be extracted by analyzing weighted mutualistic networks? In performing an exhaustive analysis of the topological properties of 29 weighted mutualistic networks, our results show that the generalist species, defined as those with a larger number of interactions in a network, also have the strongest interactions. Though most interactions of generalists are with specialists, the strongest interactions occur between generalists. As a result and by defining binary and weighted clustering coefficients for bipartite networks, we demonstrate that generalists form strongly‐interconnected groups of species. The existence of these strong clusters reinforces the idea that generalist species govern the coevolution of the whole community.  相似文献   

9.
The enemy release hypothesis (ERH) of plant invasion asserts that natural enemies limit populations of invasive plants more strongly in native ranges than in non‐native ranges. Despite considerable empirical attention, few studies have directly tested this idea, especially with respect to generalist herbivores. This knowledge gap is important because escaping the effects of generalists is a critical aspect of the ERH that may help explain successful plant invasions. Here, we used consumer exclosures and seed addition experiments to contrast the effects of granivorous rodents (an important guild of generalists) on the establishment of cheatgrass (Bromus tectorum) in western Asia, where cheatgrass is native, versus the Great Basin Desert, USA, where cheatgrass is exotic and highly invasive. Consistent with the ERH, rodent foraging reduced cheatgrass establishment by nearly 60% in western Asia but had no effect in the Great Basin. This main result corresponded with a region‐specific foraging pattern: rodents in the Great Basin but not western Asia generally avoided seeds from cheatgrass relative to seeds from native competitors. Our results suggest that enemy release from the effects of an important guild of generalists may contribute to the explosive success of cheatgrass in the Great Basin. These findings corroborate classic theory on enemy release and expand our understanding of how generalists can influence the trajectory of exotic plant invasions.  相似文献   

10.
One of the main functions of exploratory behaviour is to gain information about the environment. The adaptive value of such behaviour should vary with ecological conditions influencing the diversity and stability of resources, as well as with the costs associated with gathering information. Consequently, predictions can be made about environmental factors influencing the evolution of exploration. We used comparative methods, combining a field experiment with literature data, to study correlated evolution between explorative behaviour and ecology among 13 species of Darwin’s finches. Controlling for phylogenetic influences, we found that exploration (measured as the proportion of individuals responding in the experiment) increased with diet diversity and the amount of fruit in diet, consistent with theories stating that exploration aimed at finding new food types should be more beneficial for generalists than for specialists. However, our study is the first to demonstrate a correlation between neophilia and food diversity. Contrary to our prediction, species with a high percentage of concealed food in their diet were less explorative. A possible explanation for this novel finding is that in our study system concealed food may be a stable resource, and species using such resources should be less dependent on the discovery of new food types.  相似文献   

11.
Plant community biomass and composition on low-productivity soils, such as serpentine, may be more resistant to climate change because they host stress-tolerant species that may respond slowly to change. These communities also host a number of endemic taxa that are of special interest because of their narrow distributions. In a 3-year study, we experimentally tested the response of serpentine and non-serpentine communities to water addition in spring. We also compared the responses of endemics and generalists to water addition, with and without biomass (competitor) removal. In the non-serpentine grassland, peak biomass was significantly greater in the water addition plots compared with control plots, but this effect depended on the year. In the serpentine grassland, there was no effect of water addition on biomass. Survival, biomass, growth rates, and seed production of soil endemics and generalists were all significantly reduced by competition, but were unaffected by water addition. Overall, endemics tended to perform better in serpentine soil and generalists in non-serpentine soil, suggesting that soil is an important factor for the establishment and survival of endemics and generalists. For endemics, the effect of biomass removal was stronger on non-serpentine soil, but for generalists this effect was similar on both soils, indicating that competition can be important in low-resource habitats. In conclusion, our results suggest that low-fertility plant communities may be slow to respond to changes in precipitation compared to communities on more fertile soil.  相似文献   

12.
The assembly processes of generalists and specialists and their driving mechanisms during spatiotemporal succession is a central issue in microbial ecology but a poorly researched subject in the plastisphere. We investigated the composition variation, spatiotemporal succession, and assembly processes of bacterial generalists and specialists in the plastisphere, including non-biodegradable (NBMPs) and biodegradable microplastics (BMPs). Although the composition of generalists and specialists on NBMPs differed from that of BMPs, colonization time mainly mediated the composition variation. The relative abundance of generalists and the relative contribution of species replacement were initially increased and then decreased with colonization time, while the specialists initially decreased and then increased. Besides, the richness differences also affected the composition variation of generalists and specialists in the plastisphere, and the generalists were more susceptible to richness differences than corresponding specialists. Furthermore, the assembly of generalists in the plastisphere was dominated by deterministic processes, while stochastic processes dominated the assembly of specialists. The network stability test showed that the community stability of generalists on NBMPs and BMPs was lower than corresponding specialists. Our results suggested that different ecological assembly processes shaped the spatiotemporal succession of bacterial generalists and specialists in the plastisphere, but were less influenced by polymer types.  相似文献   

13.
Habitat loss poses a major threat to biodiversity, and species-specific extinction risks are inextricably linked to life-history characteristics. This relationship is still poorly documented for many functionally important taxa, and at larger continental scales. With data from five replicated field studies from three countries, we examined how species richness of wild bees varies with habitat patch size. We hypothesized that the form of this relationship is affected by body size, degree of host plant specialization and sociality. Across all species, we found a positive species–area slope (z = 0.19), and species traits modified this relationship. Large-bodied generalists had a lower z value than small generalists. Contrary to predictions, small specialists had similar or slightly lower z value compared with large specialists, and small generalists also tended to be more strongly affected by habitat loss as compared with small specialists. Social bees were negatively affected by habitat loss (z = 0.11) irrespective of body size. We conclude that habitat loss leads to clear shifts in the species composition of wild bee communities.  相似文献   

14.
The difficulties specialized phytophagous insects face in finding habitats with an appropriate host should constrain their dispersal. Within the concept of metacommunities, this leads to the prediction that host-plant specialists should sort into local assemblages according to the local environmental conditions, i.e. habitat conditions, whereas assemblages of host-plant generalists should depend also on regional processes. Our study aimed at ranking the importance of local environmental factors and species composition of the vegetation for predicting the species composition of phytophagous moth assemblages with either a narrow or a broad host range. Our database consists of 351,506 specimens representing 820 species of nocturnal Macrolepidoptera sampled between 1980 and 2006 using light traps in 96 strict forest reserves in southern Germany. Species were grouped as specialists or generalists according to the food plants of the larvae; specialists use host plants belonging to one genus. We used predictive canonical correspondence and co-correspondence analyses to rank the importance of local environmental factors, the species composition of the vegetation and the role of host plants for predicting the species composition of host-plant specialists and generalists. The cross-validatory fit for predicting the species composition of phytophagous moths was higher for host-plant specialists than for host-plant generalists using environmental factors as well as the composition of the vegetation. As expected for host-plant specialists, the species composition of the vegetation was a better predictor of the composition of these assemblages than the environmental variables. But surprisingly, this difference for specialized insects was not due to the occurrence of their host plants. Overall, our study supports the idea that owing to evolutionary constraints in finding a host, host-plant specialists and host-plant generalists follow two different models of metacommunities: the species-sorting and the mass-effect model.  相似文献   

15.
According to the escalation–radiation model of co-evolution, insect herbivores that acquire the ability to circumvent a plant defence enter a new adaptive zone and increase in species. How herbivore counter-adaptations to plant defences might lead to speciation is poorly understood. Studies of nymphalid butterflies suggest that the evolution of a broadened host range may be a critical step. This paper examines if leaf-feeding insects capable of deactivating defensive plant canals with canal cutting often have broad host ranges. A total of 94 species of canal-cutting insects were identified from the literature, including eight new canal cutters described in this paper. Only 27% of canal cutters with known host ranges are generalists that feed on plants in multiple families. The proportion of generalist canal cutters is similar or lower than estimates of generalists among phytophagous insects overall. Only five species, at most, of the canal-cutting generalists feed exclusively on plants with secretory canals. The paucity of generalists can be attributed in part to the considerable taxonomic distance separating canal-bearing plant families and to their corresponding chemical distinctiveness. The dependence of many canal-cutting species on host chemicals for defence would also favour specialization.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 715–731.  相似文献   

16.
Evidence from insects and vertebrates suggests that cooperation may have enabled species to expand their niches, becoming ecological generalists and dominating the ecosystems in which they occur. Consistent with this idea, eusocial species of sponge‐dwelling Synalpheus shrimps from Belize are ecological generalists with a broader host breadth and higher abundance than non‐eusocial species. We evaluate whether sociality promotes ecological generalism (social conquest hypothesis) or whether ecological generalism facilitates the transition to sociality (social transition hypothesis) in 38 Synalpheus shrimp species. We find that sociality evolves primarily from host generalists, and almost exclusively so for transitions to eusociality. Additionally, sponge volume is more important for explaining social transitions towards communal breeding than to eusociality, suggesting that different ecological factors may influence the independent evolutionary origins of sociality in Synalpheus shrimps. Ultimately, our results are consistent with the social transition hypothesis and the idea that ecological generalism facilitates the transition to sociality.  相似文献   

17.
Aim Studies on habitat fragmentation of insect communities mostly ignore the impact of the surrounding landscape matrix and treat all species equally. In our study, on habitat fragmentation and the importance of landscape context, we expected that habitat specialists are more affected by area and isolation, and habitat generalists more by landscape context. Location and methods The study was conducted in the vicinity of the city of Göttingen in Germany in the year 2000. We analysed butterfly communities by transect counts on thirty‐two calcareous grasslands differing in size (0.03–5.14 ha), isolation index (2100–86,000/edge‐to‐edge distance 55–1894 m), and landscape diversity (Shannon–Wiener: 0.09–1.56), which is correlated to percentage grassland in the landscape. Results A total of 15,185 butterfly specimens belonging to fifty‐four species are recorded. In multiple regression analysis, the number of habitat specialist (n = 20) and habitat generalist (n = 34) butterfly species increased with habitat area, but z‐values (slopes) of the species–area relationships for specialists (z = 0.399) were significantly steeper compared with generalists (z = 0.096). Generalists, but not specialists, showed a marginally significant increase with landscape diversity. Effects of landscape diversity were scale‐dependent and significant only at the smallest scale (landscape context within a 250 m radius around the habitat). Habitat isolation was not related to specialist and generalist species numbers. In multiple regression analysis the density of specialists increased significantly with habitat area, whereas generalist density increased only marginally. Habitat isolation and landscape diversity did not show any effects. Main conclusions Habitat area was the most important predictor of butterfly community structure and influenced habitat specialists more than habitat generalists. In contrast to our expectations, habitat isolation had no effect as most butterflies could cope with the degree of isolation in our study region. Landscape diversity appeared to be important for generalist butterflies only.  相似文献   

18.
Coastal vegetation comprises a number of coastal specialists and terrestrial generalists. It remains unclear how they persist on disturbed and undisturbed coastal conditions. We tested the hypothesis that coastal specialists may be superior to terrestrial generalists on supratidal zones of coasts, but their superiority can be influenced by human disturbances. Eight separate sandy coasts of the Shandong Peninsula were sampled, representing for disturbed and undisturbed sandy coasts. Plants growing on their supratidal zones were surveyed. On this basis, we compared the relative dominances, niche widths, and commonness of all species, and also analyzed species diversities of the coasts. Coastal specialists were found to be more common and widespread on supratidal zones of the sandy coasts than terrestrial generalists haphazardly invading from hinterlands. Coastal specialists exhibited lower Sørensen dissimilarities than terrestrial generalists among the coasts. Tourist trampling seemed more detrimental than pond fishery to coastal vegetation. Relative to terrestrial generalists, coastal specialists responded to human disturbances more deterministically, with steady decreases in species diversities. These evidences verify that coastal specialists are intrinsically superior to terrestrial generalists on supratidal zones of coasts, especially of undisturbed coasts, because their dispersal among coasts adapts well to local storm surge regime. They also validate that human disturbances can depress the superiority of coastal specialists, partly by inducing invasion of terrestrial generalists.  相似文献   

19.
Understanding how evolution promotes pathogen emergence would aid disease management, and prediction of future host shifts. Increased pathogen infectiousness of different hosts may occur through direct selection, or fortuitously via indirect selection. However, it is unclear which type of selection tends to produce host breadth promoting pathogen emergence. We predicted that direct selection for host breadth should foster emergence by causing higher population growth on new hosts, lower among‐population variance in growth on new hosts, and lower population variance in growth across new hosts. We tested the predictions using experimentally evolved vesicular stomatitis virus populations, containing groups of host‐use specialists, directly selected generalists, and indirectly selected generalists. In novel‐host challenges, viruses directly selected for generalism showed relatively higher or equivalent host growth, lower among‐population variance in host growth, and lower population variance in growth across hosts. Thus, two of three outcomes supported our prediction that directly selected host breadth should favor host colonization. Also, we observed that indirectly selected generalists were advantaged over specialist viruses, indicating that fortuitous changes in host breadth may also promote emergence. We discuss evolution of phenotypic plasticity versus environmental robustness in viruses, virus avoidance of extinction, and surveillance of pathogen niche breadth to predict future likelihood of emergence.  相似文献   

20.
Microbial generalists and specialists coexist in the soil environment while having distinctive impacts on microbial community dynamics. In microbial ecology, the underlying mechanisms as to why a species is a generalist or a specialist remain ambiguous. Herein, we collected soils across a national scale and identified bacterial generalists and specialists according to niche breadth at the species level (OTU level), and the single-nucleotide differences in each species were measured to investigate intraspecific variation (at zero-radius OTU level). Compared with that of the specialists, the intraspecific variation of the generalists was much higher, which ensured their wider niche breadth and lower variability. The higher asynchrony and different niche preferences of conspecific individuals and the higher dormancy potential within the generalists further contributed to their stability in varying environments. Besides, generalists were less controlled by environmental filtering, which was indicated by the stronger signature of stochastic processes in their assembly, and had higher diversification and transition rates that allowed them to adapt to environmental changes to a greater extent than specialists. Overall, this study provides a new comprehensive understanding of the rules of assembly and the evolutionary roles of bacterial generalists and specialists. It also highlights the importance of intraspecific variation and the dormancy potential in the stability of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号