首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
When the Ras mitogen-activated protein kinase (MAPK) signaling pathway of quiescent cells is stimulated with growth factors or phorbol esters, the early response genes c-fos and c-myc are rapidly induced, and concurrently there is a rapid phosphorylation of histone H3. Using an antibody specific for phosphorylated Ser-10 of H3, we show that Ser-10 of H3 is phosphorylated, and we provide direct evidence that phosphorylated H3 is associated with c-fos and c-myc genes in stimulated cells. H3 phosphorylation may contribute to proto-oncogene induction by modulating chromatin structure and releasing blocks in elongation. Previously we reported that persistent stimulation of the Ras-MAPK signaling pathway in oncogene-transformed cells resulted in increased amounts of phosphorylated histone H1. Here we show that phosphorylated H3 is elevated in the oncogene-transformed mouse fibroblasts. Further we show that induction of ras expression results in a rapid increase in H3 phosphorylation. H3 phosphatase, identified as PP1, activities in ras-transformed and parental fibroblast cells were similar, suggesting that elevated H3 kinase activity was responsible for the increased level of phosphorylated H3 in the oncogene-transformed cells. Elevated levels of phosphorylated H1 and H3 may be responsible for the less condensed chromatin structure and aberrant gene expression observed in the oncogene-transformed cells.  相似文献   

3.
Abstract: We have characterised the induction of the mitogen-inducible form of cyclooxygenase, COX-2, in the rat cerebral cortex in response to excitotoxin injection into the nucleus basalis. This model is associated with intense stimulation of the ascending pathway to the cerebral cortex, seizure activity, and subsequent ipsilateral cortical induction of various immediate early genes (IEGs), including c-fos, c-jun, and zif268, and ornithine decarboxylase enzyme activity and mRNA, all of which processes are sensitive to treatment with the N-methyl-d -aspartate (NMDA) receptor antagonist MK-801. In this study we show that excitotoxin injection also causes a marked induction of COX-2 mRNA in ipsilateral cortex detectable at 1 h and peaking at 4 h, where COX-2 mRNA levels were 19 times those in unoperated animals. Levels of COX-2 mRNA remained significantly elevated at 24 h. The early induction of COX-2 at 1 h was also seen in sham-operated animals, but at 4 h the COX-2 mRNA level was significantly increased (4.4-fold) in animals injected with excitotoxin compared with sham-operated animals. The induction at this time point (4 h) was explored pharmacologically and found to be significantly attenuated by treatment with MK-801 (1.5 mg/kg), lamotrigine (10 mg/kg), which prevents presynaptic glutamate release by blocking voltage-sensitive Na+ channels, and the glucocorticoid dexamethasone (3 mg/kg), which has an indirect inhibitory effect on phospholipase A2 and COX activity. These results demonstrate that the induction of COX-2 mRNA occurs by two distinct mechanisms: the rapid and transient response to tissue damage and a second delayed and more substantial response, which is initiated by excitotoxin stimulation and is mediated by presynaptic glutamate release, NMDA receptor activation, and subsequent phospholipase A2 activity. We propose a model to demonstrate the similarities between COX-2 and IEG mRNA induction and highlight possible mechanistic differences in the nature of the induction by the phospholipase A2 pathway.  相似文献   

4.
5.
6.
We have investigated possible factors that underlie changes in the production of eicosanoids after prolonged exposure of mast cells to Ag. Ag stimulation of cultured RBL-2H3 mast cells resulted in increased expression of cyclooxygenase (COX-2) protein and message. Other eicosanoid-related enzymes, namely COX-1, 5-lipoxygenase, and cytosolic phospholipase A(2) were not induced. Activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein (MAP) kinase preceded the induction of COX-2, whereas phosphatidylinositol 3' kinase and its substrate, Akt, were constitutively activated in RBL-2H3 cells. Studies with pharmacologic inhibitors indicated that of these kinases, only p38 MAP kinase regulated expression of COX-2. The induction of COX-2 was blocked by the p38 MAP kinase inhibitor SB202190, even when added 12-16 h after stimulation with Ag when p38 MAP kinase activity had returned to near basal, but still minimally elevated, levels. Interestingly, expression of COX-2 as well as cytosolic phospholipase A(2) and 5-lipoxygenase were markedly reduced by SB202190 in unstimulated cells. Collectively, the results imply that p38 MAP kinase regulates expression of eicosanoid-related enzymes, passively or actively, at very low levels of activity in RBL-2H3 cells. Also, comparison with published data suggest that different MAP kinases regulate induction of COX-2 in inflammatory cells of different and even similar phenotype and suggest caution in extrapolating results from one type of cell to another.  相似文献   

7.
Histone modification represents a universal mechanism for regulation of eukaryotic gene expression underlying diverse biological processes from neuronal gene expression in mammals to control of flowering in plants. In animal cells, these chromatin modifications are effected by well-defined multiprotein complexes containing specific histone-modifying activities. In plants, information about the composition of such co-repressor complexes is just beginning to emerge. Here, we report that two Arabidopsis thaliana factors, a SWIRM domain polyamine oxidase protein, AtSWP1, and a plant-specific C2H2 zinc finger-SET domain protein, AtCZS, interact with each other in plant cells and repress expression of a negative regulator of flowering, FLOWERING LOCUS C (FLC) via an autonomous, vernalization-independent pathway. Loss-of-function of either AtSWP1 or AtCZS results in reduced dimethylation of lysine 9 and lysine 27 of histone H3 and hyperacetylation of histone H4 within the FLC locus, in elevated FLC mRNA levels, and in moderately delayed flowering. Thus, AtSWP1 and AtCZS represent two main components of a co-repressor complex that fine tunes flowering and is unique to plants.  相似文献   

8.
Aberrant glycosylation is a common feature of malignant change. Changes in mucin-type O-linked glycosylation in breast cancer can result in the expression of truncated core 1-based sialylated glycans rather than the core 2-based glycans observed in normal mammary epithelium cells. This has been shown, in part, to be due to changes in the expression of glycosyltransferases, including the up-regulation of some sialyltransferases. Using the breast cancer cell line T47D, we have shown that PGE2, one of the final products of the cyclooxygenase-2 (COX-2) pathway, can induce the mRNA expression of the sialyltransferase α-2,3-sialyltransferase-3 (ST3Gal-I), resulting in increased sialyltransferase activity, demonstrated by a reduction in PNA lectin staining. Induction of COX-2 in the MDA-MB-231 breast cancer cell line also results in the increased expression of ST3Gal-I, leading to increased sialylation of the substrate of ST3Gal-I, core 1 Galβ1,3GalNAc. This effect on sialylation could be reversed by the selective COX-2 inhibitor celecoxib. The use of siRNA to knock down COX-2 and overexpression of COX-2 in MDA-MD-231 cells confirmed the involvement of COX-2 in the up-regulation of ST3Gal-I. Moreover, analysis of the expression of ST3Gal-I and COX-2 by 74 primary breast cancers showed a significant correlation between the two enzymes. COX-2 expression has been associated with a number of tumors, including breast cancer, where its expression is associated with poor prognoses. Thus, these results suggest the intriguing possibility that some of the malignant characteristics associated with COX-2 expression may be via the influence that COX-2 exerts on the glycosylation of tumor cells.  相似文献   

9.
10.
Lead (Pb) induces the expression of immediate early genes (IEG) in PC12 cells by a mechanism that involves protein kinase C (PKC). To define the mechanisms, the involvement of two commonly observed lipid activators of PKC, diacylglycerols, and phosphatidylinositols, were examined. A dose-dependent increase in the expression of the IEG zif268 was observed in PC12 cells exposed to Pb. The PKC inhibitor Ro-31-8220 blocked the induction. An increase in levels of diacylglycerols was observed in PC12 cells exposed to Pb, but the increase was inhibited by Ro-31-8220. The phosphatidylinositol 3-kinase inhibitor Wortmannin, but not the inhibitor LY 294002, blocked the induction zif268 in Pb-exposed cells. Small increases in phosphatidylinositol 3-kinase activity were observed after exposure to Pb. In summary, diacylglycerols are elevated in PC12 cells exposed to Pb by a mechanism that requires PKC. It is possible that diacylglycerols contribute to the induction of zif268 by Pb by sustaining PKC activation.  相似文献   

11.
12.
13.
14.
15.
Utrophin is the autosomal homolog of dystrophin, the product of the Duchenne's muscular dystrophy (DMD) locus. Utrophin is of therapeutic interest since its over-expression can compensate dystrophin's absence. Utrophin is enriched at neuromuscular junctions due to heregulin-mediated utrophin-A promoter activation. We demonstrate that heregulin activated MSK1/2 and phosphorylated histone H3 at serine 10 in cultured C2C12 muscle cells, in an ERK-dependent manner. MSK1/2 inhibition suppressed heregulin-mediated utrophin-A activation. MSK1 over-expression potentiated heregulin-mediated utrophin-A activation and chromatin remodeling at the utrophin-A promoter. These results identify MSK1/2 as key effectors modulating utrophin-A expression as well as identify novel targets for DMD therapy.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号