首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dihydroxyacetone (dha) regulon of bacteria encodes genes for the anaerobic metabolism of glycerol. In this work, genomic data are used to analyze and compare the dha regulon and related genes in different organisms in silico with respect to gene organization, sequence similarity, and possible functions. Database searches showed that among the organisms, the genomes of which have been sequenced so far, only two, i.e., Klebsiella pneumoniae MGH 78578 and Clostridium perfringens contain a complete dha regulon bearing all known enzymes. The components and their organization in the dha regulon of these two organisms differ considerably from each other and also from the previously partially sequenced dha regulons in Citrobacter freundii, Clostridium pasteurianum, and Clostridium butyricum. Unlike all of the other organisms, genes for the oxidative and reductive pathways of anaerobic glycerol metabolism in C. perfringens are located in two separate organization units on the chromosome. Comparisons of deduced protein sequences of genes with similar functions showed that the dha regulon components in K. pneumoniae and C. freundii have high similarities (80-95%) but lower similarities to those of the Clostridium species (30-80%). Interestingly, the protein sequence similarities among the dha genes of the Clostridium species are in many cases even lower than those between the Clostridium species and K. pneumoniae or C. freundii, suggesting two different types of dha regulon in the Clostridium species studied. The in silico reconstruction and comparison of dha regulons revealed several new genes in the microorganisms studied. In particular, a novel dha kinase that is phosphoenolpyruvate-dependent is identified and experimentally confirmed for K. pneumoniae in addition to the known ATP-dependent dha kinase. This finding gives new insights into the regulation of glycerol metabolism in K. pneumoniae and explains some hitherto not well understood experimental observations.  相似文献   

2.
Jung CH  Wong CE  Singh MB  Bhalla PL 《PloS one》2012,7(6):e38250
Flowering is an important agronomic trait that determines crop yield. Soybean is a major oilseed legume crop used for human and animal feed. Legumes have unique vegetative and floral complexities. Our understanding of the molecular basis of flower initiation and development in legumes is limited. Here, we address this by using a computational approach to examine flowering regulatory genes in the soybean genome in comparison to the most studied model plant, Arabidopsis. For this comparison, a genome-wide analysis of orthologue groups was performed, followed by an in silico gene expression analysis of the identified soybean flowering genes. Phylogenetic analyses of the gene families highlighted the evolutionary relationships among these candidates. Our study identified key flowering genes in soybean and indicates that the vernalisation and the ambient-temperature pathways seem to be the most variant in soybean. A comparison of the orthologue groups containing flowering genes indicated that, on average, each Arabidopsis flowering gene has 2-3 orthologous copies in soybean. Our analysis highlighted that the CDF3, VRN1, SVP, AP3 and PIF3 genes are paralogue-rich genes in soybean. Furthermore, the genome mapping of the soybean flowering genes showed that these genes are scattered randomly across the genome. A paralogue comparison indicated that the soybean genes comprising the largest orthologue group are clustered in a 1.4 Mb region on chromosome 16 of soybean. Furthermore, a comparison with the undomesticated soybean (Glycine soja) revealed that there are hundreds of SNPs that are associated with putative soybean flowering genes and that there are structural variants that may affect the genes of the light-signalling and ambient-temperature pathways in soybean. Our study provides a framework for the soybean flowering pathway and insights into the relationship and evolution of flowering genes between a short-day soybean and the long-day plant, Arabidopsis.  相似文献   

3.
4.
5.
6.
7.
8.
9.
The present study made attempts to update comprehensive eutherian Mas-related G protein-coupled receptor gene data sets, using public eutherian genomic sequence data sets and new genomics and molecular evolution tests. Among 254 potential coding sequences, the most comprehensive gene data set of eutherian Mas-related G protein-coupled receptor genes included 119 complete coding sequences that described eight major gene clusters. The present analysis integrated gene annotations, phylogenetic analysis and protein molecular evolution analysis and first explained differential gene expansion patterns of eutherian Mas-related G protein-coupled receptor genes. The updated classification and nomenclature of eutherian Mas-related G protein-coupled receptor genes were proposed as new framework of future experiments.  相似文献   

10.
11.
NKG2D is a major activating receptor of natural killer cells. Its ligands are major histocompatibility complex (MHC) class I-like molecules whose expression is induced by cellular stresses such as infections and tumorigenesis. Humans have two families of NKG2D ligands (NKG2DL): MHC class I-related chains (MIC) encoded in the MHC and UL16-binding proteins (ULBP) encoded outside the MHC. By contrast, mice have only the latter family of ligands; instead, they have non-MHC-encoded MILL molecules that are closely related to MIC, but do not function as NKG2DL. To gain insights into the origin and evolution of MIC, ULBP, and MILL gene families, we conducted comparative genomic analysis of NKG2DL family genes in five mammalian species. In the opossum MHC, we identified a ULBP-like gene adjacent to a previously described MIC-like gene, suggesting that ULBP genes were originally encoded in the MHC. The opossum genome also contained a transcribed MILL-like gene in a region syntenic to the rodent regions encoding MILL molecules. These observations indicate that MIC-, ULBP-, and MILL-like genes emerged before the divergence of placental and marsupial mammals. Comparison of the human, cattle, rat, mouse, and opossum genomes indicates that after emigration from the MHC, ULBP genes underwent extensive duplications in each species. In mice, some of the ULBP genes appear to have been translocated telomerically on the same chromosome, forming a major cluster of existent NKG2DL genes.  相似文献   

12.
Kwon JY  Hong M  Choi MS  Kang S  Duke K  Kim S  Lee S  Lee J 《Genomics》2004,83(4):600-614
The nematode shows responses to acute ethanol exposure that are similar to those observed in humans, mice, and Drosophila, namely hyperactivity followed by uncoordination and sedation. We used in this report the nematode Caenorhabditis elegans as a model system to identify and characterize the genes that are affected by ethanol exposure and to link those genes functionally into an ethanol-induced gene network. By analyzing the expression profiles of all C. elegans ORFs using microarrays, we identified 230 genes affected by ethanol. While the ethanol response of some of the identified genes was significant at early time points, that of the majority was at late time points, indicating that the genes in the latter case might represent the physiological consequence of the ethanol exposure. We further characterized the early response genes that may represent those involved directly in the ethanol response. These genes included many heat shock protein genes, indicating that high concentration of ethanol acts as a strong stress to the animal. Interestingly, we identified two non-heat-shock protein genes that were specifically responsive to ethanol. glr-2 was the only glutamate receptor gene to be induced by ethanol. T28C12.4, which encodes a protein with limited homology to human neuroligin, was also specific to ethanol stress. Finally, by analyzing the promoter regions of the early response genes, we identified a regulatory element, TCTGCGTCTCT, that was necessary for the expression of subsets of ethanol response genes.  相似文献   

13.
Individual rates of metabolism of the sulfur, methyl, and 4-carbon moieties of methionine were estimated in Lemna paucicostata Hegelm. 6746 growing under standard conditions, and used to quantitate pathways of methionine metabolism. Synthesis of S-adenosylmethionine (AdoMet) is the major pathway for methionine metabolism, with over 4 times as much methionine metabolized by this route as accumulates in protein. More than 90% of AdoMet is used for transmethylation. Methyl groups of choline, phosphatidylcholine, and phosphorylcholine are major end products of this pathway. Flux through methylthio recycling is about one-third the amount of methionine accumulating in protein. Spermidine synthesis accounts for at least 60% of the flux through methylthio recycling. The results obtained here, together with those reported for methionine-supplemented plants (Giovanelli, Mudd, Datko 1981 Biochem Biophys Res Commun 100: 831-839), indicate that methionine supplementation reduced methylneogenesis by no more than the small amount expected from the reduced entry of sulfate sulfur into methionine (Giovanelli, Mudd, Datko, 1985 Plant Physiol 77: 450-455). Methionine supplementation had no significant effect on transmethylation or methylthio recycling. The combined data provide the first comprehensive estimates of the quantitative relationships of major pathways for methionine metabolism and their control in plants.  相似文献   

14.

Background

Ralstonia solanacearum is a vascular soil-borne plant pathogen with an unusually broad host range. This economically destructive and globally distributed bacterium has thousands of distinct lineages within a heterogeneous and taxonomically disputed species complex. Some lineages include highly host-adapted strains (ecotypes), such as the banana Moko disease-causing strains, the cold-tolerant potato brown rot strains (also known as R3bv2) and the recently emerged Not Pathogenic to Banana (NPB) strains.

Results

These distinct ecotypes offer a robust model to study host adaptation and the emergence of ecotypes because the polyphyletic Moko strains include lineages that are phylogenetically close to the monophyletic brown rot and NPB strains. Draft genomes of eight new strains belonging to these three model ecotypes were produced to complement the eleven publicly available R. solanacearum genomes. Using a suite of bioinformatics methods, we searched for genetic and evolutionary features that distinguish ecotypes and propose specific hypotheses concerning mechanisms of host adaptation in the R. solanacearum species complex. Genome-wide, few differences were identified, but gene loss events, non-synonymous polymorphisms, and horizontal gene transfer were identified among type III effectors and were associated with host range differences.

Conclusions

This extensive comparative genomics analysis uncovered relatively few divergent features among closely related strains with contrasting biological characteristics; however, several virulence factors were associated with the emergence of Moko, NPB and brown rot and could explain host adaptation.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1474-8) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
17.
18.
19.
20.

Background  

Formation of alternative structures in mRNA in response to external stimuli, either direct or mediated by proteins or other RNAs, is a major mechanism of regulation of gene expression in bacteria. This mechanism has been studied in detail using experimental and computational approaches in proteobacteria and Firmicutes, but not in other groups of bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号