首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dystrophin is an actin binding protein that is thought to stabilize the cardiac and skeletal muscle cell membranes during contraction. Here, we investigated the contributions of each dystrophin domain to actin binding function. Cosedimentation assays and pyrene-actin fluorescence experiments confirmed that a fragment spanning two-thirds of the dystrophin molecule [from N-terminal actin binding domain (ABD) 1 through ABD2] bound actin filaments with high affinity and protected filaments from forced depolymerization, but was less effective in both assays than full-length dystrophin. While a construct encoding the C-terminal third of dystrophin displayed no specific actin binding activity or competition with full-length dystrophin, our data show that it confers an unexpected regulation of actin binding by the N-terminal two-thirds of dystrophin when present in cis. Time-resolved phosphorescence anisotropy experiments demonstrated that the presence of the C-terminal third of dystrophin in cis also influences actin interaction by restricting actin rotational amplitude. We propose that the C-terminal region of dystrophin allosterically stabilizes an optimal actin binding conformation of dystrophin.  相似文献   

2.
Myosin-binding protein C (MyBPC) is proposed to take on a trimeric collar arrangement around the thick filament backbone in cardiac muscle, based on interactions between cardiac MyBPC domains C5 and C8. We have now determined, using yeast two-hybrid and in vitro binding assays, that the C5:C8 interaction is not dependent on the 28-residue cardiac-specific insert in C5. Furthermore, an interaction of similar affinity occurs between domains C5 and C8 of fast skeletal muscle MyBPC, but not between these domains of the slow skeletal muscle protein. These data have implications for the role and quaternary structure of MyBPC in skeletal muscle.  相似文献   

3.
alpha-Actinin is an actin bundling protein that regulates cell adhesion by directly linking actin filaments to integrin adhesion receptors. Phosphatidylinositol (4,5)-diphosphate (PtdIns (4,5)-P(2)) and phosphatidylinositol (3,4,5)-triphosphate (PtdIns (3,4,5)-P(3)) bind to the calponin homology 2 domain of alpha-actinin, regulating its interactions with actin filaments and integrin receptors. In this study, we examine the mechanism by which phosphoinositide binding regulates alpha-actinin function using mass spectrometry to monitor hydrogen-deuterium (H/D) exchange within the calponin homology 2 domain. The overall level of H/D exchange for the entire protein showed that PtdIns (3,4,5)-P(3) binding alters the structure of the calponin homology 2 domain increasing deuterium incorporation, whereas PtdIns (4,5)-P(2) induces changes in the structure decreasing deuterium incorporation. Analysis of peptic fragments from the calponin homology 2 domain showed decreased local H/D exchange within the loop region preceding helix F with both phosphoinositides. However, the binding of PtdIns (3,4,5)-P(3) also induced increased exchange within helix E. This suggests that the phosphate groups on the fourth and fifth position of the inositol head group of the phosphoinositides constrict the calponin homology 2 domain, thereby altering the orientation of actin binding sequence 3 and decreasing the affinity of alpha-actinin for filamentous actin. In contrast, the phosphate group on the third position of the inositol head group of PtdIns (3,4,5)-P(3) perturbs the calponin homology 2 domain, altering the interaction between the N and C terminus of the full-length alpha-actinin antiparallel homodimer, thereby disrupting bundling activity and interaction with integrin receptors.  相似文献   

4.
The muscle protein myosin binding protein C (MyBPC) is a large multi-domain protein whose role in the sarcomere is complex and not yet fully understood. Mutations in MyBPC are strongly associated with the heart disease familial hypertrophic cardiomyopathy (FHC) and these experiments of nature have provided some insight into the intricate workings of this protein in the heart. While some regions of the MyBPC molecule have been assigned a function in the regulation of muscle contraction, the interaction of other regions with various parts of the myosin molecule and the sarcomeric proteins, actin and titin, remain obscure. In addition, several intra-domain interactions between adjacent MyBPC molecules have been identified. Although the basic structure of the molecule (a series of immunoglobulin and fibronectin domains) has been elucidated, the assembly of MyBPC in the sarcomere is a topic for debate. By analysing the MyBPC sequence with respect to FHC-causing mutations it is possible to identify individual residues or regions of each domain that may be important either for binding or regulation. This review looks at the current literature, in concert with alignments and the structural models of MyBPC, in an attempt to understand how FHC mutations may lead to the disease state.  相似文献   

5.
In contrast to skeletal muscle isoforms of myosin binding protein C (MyBP-C), the cardiac isoform has 11 rather than 10 fibronectin or Ig modules (modules are identified as C0 to C10, NH2 to COOH terminus), 3 phosphorylation sites between modules C1 and C2, and 28 additional amino acids rich in proline in C5. Phosphorylation between C1 and C2 increases maximum Ca-activated force (Fmax), alters thick filament structure, and increases the probability of myosin heads on the thick filament binding to actin on the thin filament. Unphosphorylated C1C2 fragment binds to myosin, but phosphorylation inhibits the binding. MyBP-C also binds to actin. Using two types of immunoprecipitation and cosedimentation, we show that fragments of MyBP-C containing C0 bind to actin. In low concentrations C0-containing fragments bind to skinned fibers when the NH2 terminus of endogenous MyBP-C is bound to myosin, but not when MyBP-C is bound to actin. C1C2 fragments bind to skinned fibers when endogenous MyBP-C is bound to actin but not to myosin. Disruption of interactions of endogenous C0 with a high concentration of added C0C2 fragments produces the same effect on contractility as extraction of MyBP-C, namely decrease in Fmax and increase in Ca sensitivity. These results suggest that cardiac contractility can be regulated by shifting the binding of the NH2 terminus of MyBP-C between actin and myosin. This mechanism may have an effect on diastolic filling of the heart.  相似文献   

6.
Vacuolar H(+)-ATPase (V-ATPase) binds actin filaments with high affinity (K(d) = 55 nm; Lee, B. S., Gluck, S. L., and Holliday, L. S. (1999) J. Biol. Chem. 274, 29164-29171). We have proposed that this interaction is an important mechanism controlling transport of V-ATPase from the cytoplasm to the plasma membrane of osteoclasts. Here we show that both the B1 (kidney) and B2 (brain) isoforms of the B subunit of V-ATPase contain a microfilament binding site in their amino-terminal domain. In pelleting assays containing actin filaments and partially disrupted V-ATPase, B subunits were found in greater abundance in actin pellets than were other V-ATPase subunits, suggesting that the B subunit contained an F-actin binding site. In overlay assays, biotinylated actin filaments also bound to the B subunit. A fusion protein containing the amino-terminal half of B1 subunit bound actin filaments tightly, but fusion proteins containing the carboxyl-terminal half of B1 subunit, or the full-length E subunit, did not bind F-actin. Fusion proteins containing the amino-terminal 106 amino acids of the B1 isoform or the amino-terminal 112 amino acids of the B2 isoform bound filamentous actin with K(d) values of 130 and 190 nm, respectively, and approached saturation at 1 mol of fusion protein/mol of filamentous actin. The B1 and B2 amino-terminal fusion proteins competed with V-ATPase for binding to filamentous actin. In summary, binding sites for F-actin are present in the amino-terminal domains of both isoforms of the B subunit, and likely are responsible for the interaction between V-ATPase and actin filaments in vivo.  相似文献   

7.
Cardiac myosin binding protein C (cMyBP-C) modulates cardiac contraction via direct interactions with cardiac thick (myosin) and thin (actin) filaments (cTFs). While its C-terminal domains (e.g. C8-C10) anchor cMyBP-C to the backbone of the thick filament, its N-terminal domains (NTDs) (e.g. C0, C1, M, and C2) bind to both myosin and actin to accomplish its dual roles of inhibiting thick filaments and activating cTFs. While the positions of C0, C1 and C2 on cTF have been reported, the binding site of the M-domain on the surface of the cTF is unknown. Here, we used cryo-EM to reveal that the M-domain interacts with actin via helix 3 of its ordered tri-helix bundle region, while the unstructured part of the M-domain does not maintain extensive interactions with actin. We combined the recently obtained structure of the cTF with the positions of all the four NTDs on its surface to propose a complete model of the NTD binding to the cTF. The model predicts that the interactions of the NTDs with the cTF depend on the activation state of the cTF. At the peak of systole, when bound to the extensively activated cTF, NTDs would inhibit actomyosin interactions. In contrast, at falling Ca2+ levels, NTDs would not compete with the myosin heads for binding to the cTF, but would rather promote formation of active cross-bridges at the adjacent regulatory units located at the opposite cTF strand. Our structural data provides a testable model of the cTF regulation by the cMyBP-C.  相似文献   

8.
The cooperation between the actin and microtubule (MT) cytoskeletons is important for cellular processes such as cell migration and muscle cell development. However, a full understanding of how this cooperation occurs has yet to be sufficiently developed. The MT plus-end tracking protein CLIP-170 has been implicated in this actin–MT coordination by associating with the actin-binding signaling protein IQGAP1 and by promoting actin polymerization through binding with formins. Thus far, the interactions of CLIP-170 with actin were assumed to be indirect. Here, we demonstrate using high-speed cosedimentation assays that CLIP-170 can bind to filamentous actin (F-actin) directly. We found that the affinity of this binding is relatively weak but strong enough to be significant in the actin-rich cortex, where actin concentrations can be extremely high. Using CLIP-170 fragments and mutants, we show that the direct CLIP-170–F-actin interaction is independent of the FEED domain, the region that mediates formin-dependent actin polymerization, and that the CLIP-170 F-actin-binding region overlaps with the MT-binding region. Consistent with these observations, in vitro competition assays indicate that CLIP-170–F-actin and CLIP-170–MT interactions are mutually exclusive. Taken together, these observations lead us to speculate that direct CLIP-170–F-actin interactions may function to reduce the stability of MTs in actin-rich regions of the cell, as previously proposed for MT end-binding protein 1.  相似文献   

9.
alpha-Actinin is an abundant actin-bundling and adhesion protein that directly links actin filaments to integrin receptors. Previously, in platelet-derived growth factor-treated fibroblasts, we demonstrated that phosphoinositides bind to alpha-actinin, regulating its localization (Greenwood, J. A., Theibert, A. B., Prestwich, G. D., and Murphy-Ullrich, J. E. (2000) J. Cell Biol. 150, 627- 642). In this study, phosphoinositide binding and regulation of alpha-actinin function is further characterized. Phosphoinositide binding specificity, determined using a protein-lipid overlay procedure, suggests that alpha-actinin interacts with phosphates on the 4th and 5th position of the inositol head group. Binding assays and mutational analyses demonstrate that phosphoinositides bind to the calponin homology domain 2 of alpha-actinin. Phosphoinositide binding inhibited the bundling activity of alpha-actinin by blocking the interaction of the actin-binding domain with actin filaments. Consistent with these results, excessive bundling of actin filaments was observed in fibroblasts expressing an alpha-actinin mutant with decreased phosphoinositide affinity. We conclude that the interaction of alpha-actinin with phosphoinositides regulates actin stress fibers in the cell by controlling the extent to which microfilaments are bundled.  相似文献   

10.
Cardiac myosin-binding protein C (cMyBP-C), a major accessory protein of cardiac thick filaments, is thought to play a key role in the regulation of myocardial contraction. Although current models for the function of the protein focus on its binding to myosin S2, other evidence suggests that it may also bind to F-actin. We have previously shown that the N-terminal fragment C0-C2 of cardiac myosin-binding protein-C (cMyBP-C) bundles actin, providing evidence for interaction of cMyBP-C and actin. In this paper we directly examined the interaction between C0-C2 and F-actin at physiological ionic strength and pH by negative staining and electron microscopy. We incubated C0-C2 (5-30μM, in a buffer containing in mM: 180 KCl, 1 MgCl(2), 1 EDTA, 1 DTT, 20 imidazole, at pH 7.4) with F-actin (5μM) for 30min and examined negatively-stained samples of the solution by electron microscopy (EM). Examination of EM images revealed that C0-C2 bound to F-actin to form long helically-ordered complexes. Fourier transforms indicated that C0-C2 binds with the helical periodicity of actin with strong 1st and 6th layer lines. The results provide direct evidence that the N-terminus of cMyBP-C can bind to F-actin in a periodic complex. This interaction of cMyBP-C with F-actin supports the possibility that binding of cMyBP-C to F-actin may play a role in the regulation of cardiac contraction.  相似文献   

11.
Interaction of microtubule-associated protein 2 with actin filaments   总被引:8,自引:0,他引:8  
R F Sattilaro 《Biochemistry》1986,25(8):2003-2009
The interaction of unphosphorylated and phosphorylated microtubule-associated protein 2 (MAP-2) with actin filaments was examined by electron microscopic, electrophoretic, and dark-field light microscopic techniques. Unphosphorylated MAP-2 was observed to cross-link and bundle individual actin filaments. Chymotryptic fragments of MAP-2 protein were produced which bound to, but could not cross-link, actin polymer; these fragments encompassed the tubulin binding domain of MAP-2. The phosphorylation of intact MAP-2, by means of endogenous protein kinases, inhibited the ability of this molecule to cross-link and bundle actin filaments. Phosphorylation did not, however, inhibit the binding of MAP-2 to F-actin. The chymotryptic fragments of phosphorylated MAP-2 that retained their ability to bind to actin and promote microtubule assembly also encompassed the tubulin binding domain of this molecule. An analysis of MAP-2 fragments by nonequilibrium pH gradient electrophoresis indicated that most of the polypeptide backbone is relatively acidic with the exception of the tubulin binding domain. This region was determined to be the most basic (positively charged) region of the MAP-2 molecule. Biochemical and morphological evidence is presented to demonstrate that both unphosphorylated MAP-2 and phosphorylated MAP-2 have the capacity to use actin, in addition to microtubules, as a separate anchoring substrate. The presence of tubulin, however, strongly inhibits the interaction of MAP-2 with actin filaments.  相似文献   

12.
Calcium activates full-length myosin Va steady-state enzymatic activity and favors the transition from a compact, folded "off" state to an extended "on" state. However, little is known of how a head-tail interaction alters the individual actin and nucleotide binding rate and equilibrium constants of the ATPase cycle. We measured the effect of calcium on nucleotide and actin filament binding to full-length myosin Va purified from chick brains. Both heads of nucleotide-free myosin Va bind actin strongly, independent of calcium. In the absence of calcium, bound ADP weakens the affinity of one head for actin filaments at equilibrium and upon initial encounter. The addition of calcium allows both heads of myosin Va.ADP to bind actin strongly. Calcium accelerates ADP binding to actomyosin independent of the tail but minimally affects ATP binding. Although 18O exchange and product release measurements favor a mechanism in which actin-activated Pi release from myosin Va is very rapid, independent of calcium and the tail domain, both heads do not bind actin strongly during steady-state cycling, as assayed by pyrene actin fluorescence. In the absence of calcium, inclusion of ADP favors formation of a long lived myosin Va.ADP state that releases ADP slowly, even after mixing with actin. Our results suggest that calcium activates myosin Va by allowing both heads to interact with actin and exchange bound nucleotide and indicate that regulation of actin binding by the tail is a nucleotide-dependent process favored by linked conformational changes of the motor domain.  相似文献   

13.
Lasp-2 binds to actin filaments and concentrates in the actin bundles of filopodia and lamellipodia in neural cells and focal adhesions in fibroblastic cells. Lasp-2 has three structural regions: a LIM domain, a nebulin-repeat region, and an SH3 domain; however, the region(s) responsible for its interactions with actin filaments and focal adhesions are still unclear. In this study, we revealed that the N-terminal fragment from the LIM domain to the first nebulin-repeat module (LIM-n1) retained actin-binding activity and showed a similar subcellular localization to full-length lasp-2 in neural cells. The LIM domain fragment did not interact with actin filaments or localize to actin filament bundles. In contrast, LIM-n1 showed a clear subcellular localization to filopodial actin bundles. Although truncation of the LIM domain caused the loss of F-actin binding activity and the accumulation of filopodial actin bundles, these truncated fragments localized to focal adhesions. These results suggest that lasp-2 interactions with actin filaments are mediated through the cooperation of the LIM domain and the first nebulin-repeat module in vitro and in vivo. Actin filament binding activity may be a major contributor to the subcellular localization of lasp-2 to filopodia but is not crucial for lasp-2 recruitment to focal adhesions.  相似文献   

14.
Myosin binding to actin. Structural analysis using myosin fragments   总被引:2,自引:0,他引:2  
The actin-binding property of the myosin head 20 K (K = 10(3) Mr) fragment has been examined by a structural assay. A new fragment is produced by digestion of scallop myosin synthetic filaments with a lysine-specific protease. This fragment consists of the rod together with two "nubs" corresponding to the 20 K fragment, which retain both the regulatory and essential light chains. Myosin filaments, digested for different lengths of time, were mixed with F-actin and visualized by electron microscopy after negative staining. When the head is cleaved, but the head fragments remain associated, the filaments bind actin in an ATP-sensitive manner. Filaments made primarily of the nub-containing fragments, however, bind actin very poorly. In addition, electron microscopic characterization of actin-binding by the isolated tryptic 20 K fragment from chicken myosin indicates that binding of this fragment to actin is probably non-specific. These results suggest that interactions between the 20 K region and the other peptides in the head are essential for actin-binding.  相似文献   

15.
Native calponin is able to bind 2 mol of calcium binding protein (CaBP) per mole calponin. This study extends this observation to define the 2 domains of interaction, one of which is near the actin binding site, and the other in the amino-terminal region of calponin. Also, the first evidence for a differentiation in the response of calponin to interaction with caltropin versus calmodulin is demonstrated. The binding of caltropin to cleavage and recombinant fragments of calponin was determined by 3 techniques: tryptophan fluorescence of the fragments, CD measurements to determine secondary structure changes, and analytical ultracentrifugation. In order to delineate the sites of interaction, 3 fragments of calponin have been studied. From a cyanogen bromide cleavage of calponin, residues 2-51 were isolated. This fragment is shown to bind to CaBPs and the affinity for caltropin is slightly higher than that for calmodulin. A carboxyl-terminal truncated mutant of calponin comprising residues 1-228 (CP 1-228) has been produced by recombinant techniques. Analytical ultracentrifugation has shown that CP 1-228, like the parent calponin, is able to bind 2 mol of caltropin per mol of 1-228 in a Ca(2+)-dependent fashion, indicating that there is a second site of interaction between residues 52-228. Temperature denaturation of the carboxyl-terminal truncated fragment compared with whole calponin show that the carboxyl-terminal region does not change the temperature at which calponin melts; however, there is greater residual secondary structure with whole calponin versus the fragment. A second mutant produced through recombinant techniques comprises residues 45-228 and is also able to bind caltropin, thus mapping the location of the second site of interaction to near the actin binding site.  相似文献   

16.
Most studies aimed at characterizing the utrophinactin interaction have focused on the amino-terminal tandem calponin homology domain. However, we recently reported evidence suggesting that spectrin-like repeats of utrophin also participate in binding to actin. Here we expressed several recombinant fragments encoding the utrophin amino-terminal domain alone or in combination with various numbers of spectrin-like repeats. We further quantitatively characterized the actin binding properties of each recombinant utrophin fragment using a high-speed sedimentation assay. To evaluate the capacity of each protein to stabilize actin filaments, we compared the effect of utrophin recombinant fragments and full-length utrophin on 6-propionyl-2-(N,N-dimethylamino)naphthalene actin depolymerization. Our results suggest that, whereas the amino-terminal domain is essential for primary interaction between utrophin and actin, spectrin-like repeats have additive effects on the affinity and stoichiometry of binding. Our data indicate that the amino-terminal domain and first 10 consecutive spectrin-like repeats recapitulate the actin binding activity of full-length utrophin more faithfully than the amino-terminal domain alone. These findings support the model for lateral association of utrophin along the actin filament and provide the molecular basis for designing the most effective utrophin "mini-genes" for treatment of dystrophinopathies.  相似文献   

17.
Capping protein (CP) is a ubiquitously expressed, heterodimeric 62-kDa protein that binds the barbed end of the actin filament with high affinity to block further filament elongation. Myotrophin (V-1) is a 13-kDa ankyrin repeat-containing protein that binds CP tightly, sequestering it in a totally inactive complex in vitro. Here, we elucidate the molecular interaction between CP and V-1 by NMR. Specifically, chemical shift mapping and intermolecular paramagnetic relaxation enhancement experiments reveal that the ankyrin loops of V-1, which are essential for V-1/CP interaction, bind the basic patch near the joint of the α tentacle of CP shown previously to drive most of the association of CP with and affinity for the barbed end. Consistently, site-directed mutagenesis of CP shows that V-1 and the strong electrostatic binding site for CP on the barbed end compete for this basic patch on CP. These results can explain how V-1 inactivates barbed end capping by CP and why V-1 is incapable of uncapping CP-capped actin filaments, the two signature biochemical activities of V-1.  相似文献   

18.
This study was designed to define the molecular epitopes of dystrophin-actin interaction and to directly compare the actin binding properties of dystrophin and utrophin. According to our data, dystrophin and utrophin both bound alongside actin filaments with submicromolar affinities. However, the molecular epitopes involved in actin binding differed between the two proteins. In utrophin, the amino-terminal domain and an adjacent string of the first 10 spectrin-like repeats more fully recapitulated the activities measured for full-length protein. The homologous region of dystrophin bound actin with low affinity and near 1:1 stoichiometry as previously measured for the isolated amino-terminal, tandem (CH) domain. In contrast, a dystrophin construct including a cluster of basic spectrin-like repeats and spanning from the amino terminus through repeat 17, bound actin with properties most similar to full-length dystrophin. Dystrophin and utrophin both stabilized preformed actin filaments from forced depolymerization with similar efficacies but did not appear to compete for binding sites on actin. We also found that dystrophin binding to F-actin was markedly sensitive to increasing ionic strength, although utrophin binding was unaffected. Although dystrophin and utrophin are functionally homologous actin-binding proteins, these results indicate that their respective modes of contact with actin filaments are markedly different. Finally, we reassessed the abundance of dystrophin in striated muscle using full-length protein as the standard and measured greater than 10-fold higher values than previously reported.  相似文献   

19.
The N-terminal domains of cardiac myosin binding protein C (MyBP-C) play a regulatory role in modulating interactions between myosin and actin during heart muscle contraction. Using NMR spectroscopy and small-angle neutron scattering, we have determined specific details of the interaction between the two-module human C0C1 cMyBP-C fragment and F-actin. The small-angle neutron scattering data show that C0C1 spontaneously polymerizes monomeric actin (G-actin) to form regular assemblies composed of filamentous actin (F-actin) cores decorated by C0C1, similar to what was reported in our earlier four-module mouse cMyBP-C actin study. In addition, NMR titration analyses show large intensity changes for a subset of C0C1 peaks upon addition of G-actin, indicating that human C0C1 interacts specifically with actin and promotes its assembly into filaments. During the NMR titration, peaks corresponding to cardiac-specific C0 domain are the first to be affected, followed by those from the C1 domain. No peak intensity or position changes were detected for peaks arising from the disordered proline/alanine-rich (P/A) linker connecting C0 with C1, despite previous suggestions of its involvement in binding actin. Of considerable interest is the observation that the actin-interaction “hot-spots” within the C0 and C1 domains, revealed in our NMR study, overlap with regions previously identified as binding to the regulatory light chain of myosin and to myosin ΔS2. Our results suggest that C0 and C1 interact with myosin and actin using a common set of binding determinants and therefore support a cMyBP-C switching mechanism between myosin and actin.  相似文献   

20.
The binding sites for actin depolymerising factor (ADF) and cofilin on G-actin have been mapped by competitive chemical cross-linking using deoxyribonuclease I (DNase I), gelsolin segment 1 (G1), thymosin beta4 (Tbeta4), and vitamin D-binding protein (DbP). To reduce ADF/cofilin induced actin oligomerisation we used ADP-ribosylated actin. Both vitamin D-binding protein and thymosin beta4 inhibit binding by ADF or cofilin, while cofilin or ADF and DNase I bind simultaneously. Competition was observed between ADF or cofilin and G1, supporting the hypothesis that cofilin preferentially binds in the cleft between sub-domains 1 and 3, similar to or overlapping the binding site of G1. Because the affinity of G1 is much higher than that of ADF or cofilin, even at a 20-fold excess of the latter, the complexes contained predominantly G1. Nevertheless, cross-linking studies using actin:G1 complexes and ADF or cofilin showed the presence of low concentrations of ternary complexes containing both ADF or cofilin and G1. Thus, even with monomeric actin, it is shown for the first time that binding sites for both G1 and ADF or cofilin can be occupied simultaneously, confirming the existence of two separate binding sites. Employing a peptide array with overlapping sequences of actin overlaid by cofilin, we have identified five sequence stretches of actin able to bind cofilin. These sequences are located within the regions of F-actin predicted to bind cofilin in the model derived from image reconstructions of electron microscopical images of cofilin-decorated filaments. Three of the peptides map to the cleft region between sub-domains 1 and 3 of the upper actin along the two-start long-pitch helix, while the other two are in the DNase I loop corresponding to the site of the lower actin in the helix. In the absence of any crystal structures of ADF or cofilin in complex with actin, these studies provide further information about the binding sites on F-actin for these important actin regulatory proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号