首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Silent corticotroph adenoma (SCA) is a non-functioning macroadenoma that has positive immunoreactivity for ACTH. Few studies have evaluated the biochemical behaviour of these tumours. We present the case of a 65-year-old male incidentally diagnosed with SCA, in which an exhaustive study of the corticotroph axis was conducted.  相似文献   

2.
Exercise has been shown to be effective in preventing glucocorticoid-induced atrophy in muscles containing high proportions of type II or fast-twitch fibers. This investigation was undertaken to further evaluate this response in type IIa and IIb fibers, determined by histochemical staining for myofibrillar adenosinetriphosphatase with alkaline and acid preincubation. Steroid [cortisol acetate (CA), 100 mg/kg body wt] and exercise (running 90 min/day, 29 m/min) treatments were initiated simultaneously for 11 consecutive days in female rats. Fiber distribution and area measurements were performed in a deep and superficial region of plantaris muscle. The exercise regimen spared approximately 40% of the CA-induced plantaris muscle atrophy. In the deep region, the fiber population, which contained approximately 13% type I (slow-twitch), 24% type IIa, and 63% IIb fibers, was not affected by either treatment. In the superficial section, which consisted solely of type II fibers, the proportion of type IIa fibers was higher (27 vs. 9%, P less than 0.01) in the steroid- than in the vehicle-treated groups. Within each region, type IIa fibers were less susceptible to atrophy than type IIb fibers, and within each fiber type, the deep region had less atrophy than the superficial region. Type I fibers were unchanged by steroid treatment. For type IIa fibers, exercise prevented 100% of the atrophy in the deep region and 50% in the superficial region. For type IIb fibers, the activity spared 67 and 40% of the atrophy in these same regions, respectively. These results show that glucocorticoids are capable of changing the myosin phenotype.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Skeletal muscle atrophy induced by aging (sarcopenia), inactivity, and prolonged fasting states (starvation) is predominantly restricted to glycolytic type II muscle fibers and typical spares oxidative type I fibers. However, the mechanisms accounting for muscle fiber-type specificity of atrophy have remained enigmatic. In the current study, although the Fyn tyrosine kinase activated the mTORC1 signaling complex, it also induced marked atrophy of glycolytic fibers with relatively less effect on oxidative muscle fibers. This was due to inhibition of macroautophagy via an mTORC1-independent but STAT3-dependent reduction in Vps34 protein levels and decreased Vps34/p150/Beclin1/Atg14 complex 1. Physiologically, in the fed state endogenous Fyn kinase activity was increased in glycolytic but not oxidative skeletal muscle. In parallel, Y705-STAT3 phosphorylation increased with decreased Vps34 protein levels. Moreover, fed/starved regulation of Y705-STAT3 phosphorylation and Vps34 protein levels was prevented in skeletal muscle of Fyn null mice. These data demonstrate a Fyn/STAT3/Vps34 pathway that is responsible for fiber-type-specific regulation of macroautophagy and skeletal muscle atrophy.  相似文献   

4.
Satellite cells (SC) are essential for skeletal muscle growth and repair. Because sarcopenia is associated with type II muscle fiber atrophy, we hypothesized that SC content is specifically reduced in the type II fibers in the elderly. A total of eight elderly (E; 76 +/- 1 yr) and eight young (Y; 20 +/- 1 yr) healthy males were selected. Muscle biopsies were collected from the vastus lateralis in both legs. ATPase staining and a pax7-antibody were used to determine fiber type-specific SC content (i.e., pax7-positive SC) on serial muscle cross sections. In contrast to the type I fibers, the proportion and mean cross-sectional area of the type II fibers were substantially reduced in E vs. Y. The number of SC per type I fiber was similar in E and Y. However, the number of SC per type II fiber was substantially lower in E vs. Y (0.044 +/- 0.003 vs. 0.080 +/- 0.007; P < 0.01). In addition, in the type II fibers, the number of SC relative to the total number of nuclei and the number of SC per fiber area were also significantly lower in E. This study is the first to show type II fiber atrophy in the elderly to be associated with a fiber type-specific decline in SC content. The latter is evident when SC content is expressed per fiber or per fiber area. The decline in SC content might be an important factor in the etiology of type II muscle fiber atrophy, which accompanies the loss of skeletal muscle with aging.  相似文献   

5.
Past the age of 50 years, aging individuals lose muscle mass at an approximate rate of 1-2% per year. This age-related muscle atrophy, termed sarcopenia, can have significant effects on individual health and quality of life and can also impact the socioeconomic status. Sarcopenia is due to both a decrease in the number of fibers and the atrophy of the remaining fibers. The mechanisms causing loss of fibers have not been clearly defined, but may likely involve apoptosis. Elevated levels of circulating tumor necrosis factor alpha (TNF-alpha) and adaptations in TNF-alpha signaling in aged skeletal muscle may be contributing factors for the activation of apoptosis. These adaptations may be fiber-type specific, which could explain the selective loss of type II fibers, vs. type I fibers, in the aging process. Caloric restriction, a proven antiaging intervention, is known to attenuate the loss of muscle mass and function with age. Furthermore, caloric restriction has been shown to attenuate the age-associated adaptations in TNF-alpha signaling in skeletal muscle, which may be a possible mechanism by which CR prevents apoptosis and the loss of muscle fibers with age. The potential role of TNF-alpha in the progression of sarcopenia will be discussed, as well as the effects of life-long caloric restriction on TNF-alpha signaling.  相似文献   

6.
The influence of prolonged nutritional deprivation on the succinate dehydrogenase (SDH) activity and cross-sectional areas of individual fibers in the rat diaphragm and deep portion of the medial gastrocnemius (MGr) muscles was determined. Fatigue resistance of the diaphragm was measured by means of an in vitro nerve-muscle strip preparation. Fiber SDH activity and cross-sectional area were quantified by means of an image processing system. Diaphragm fatigue resistance was significantly improved in the nutritionally deprived (ND) group. In both muscles, nutritional deprivation resulted in a significant decrease in fiber cross-sectional area (both type I and II), type II fibers showing greater atrophy. The SDH activities of type I and II fibers in the diaphragm were not affected by nutritional deprivation. This contrasted with a significant decrease in the SDH activity of both type I and II fibers in the MGr of ND animals. An assessment of the interrelationships between fiber atrophy and fiber SDH activity revealed a greater effect of malnutrition on those diaphragm type II fibers that had the lowest relative SDH activities and the largest cross-sectional areas. By comparison, the effect of malnutrition on type I and II fibers in the MGr was nonselective with regard to fiber SDH activity. We conclude that the enhanced diaphragm fatigue resistance in the ND animals does not result from an increase in the oxidative capacity of muscle fibers and is best explained by the pattern of diaphragm muscle fiber atrophy.  相似文献   

7.
Muscular dystrophies comprise an important group of inherited disorders of man. Although the disease has been studied extensively, little is known about the underlying primary pathomechanisms. Consequently, treatment of patients is difficult and prognosis is poor. An animal model of muscular dystrophy is a useful research tool for approaching the basic problems of pathogenesis in muscle diseases. An inherited progressive muscular dystrophy of mink which resembles the amyotonic forms of human muscular dystrophy is currently under study. Clinically, the earliest sign is progressive muscular weakness and atrophy. Muscle enzyme activities in serum are usually elevated to pathologic levels. Urinary creatine/creatinine ratio is elevated. Pathologic changes are limited to skeletal muscle and are typical of those seen in amyotonic forms of human muscular dystrophy. These changes include variation in diameter size of muscle fibers, centralized nuclei, floccular and hyaline degeneration of scattered muscle fibers, increase in connective tissue in endomysial and perimysial areas, and regenerative attempts. Both type I and type II muscle fibers are involved in the disease process. Genetic studies indicate an autosomal recessive mode of inheritance. Although the primary defect in muscular dystrophy is traditionally thought to reside in skeletal muscle, recent studies have produced theories of primary involvement of other tissues and organ systems. These theories are presented and relationships to the traditional theory are discussed.  相似文献   

8.
Alcohol-induced muscle damage (AIMD) is an umbrella term that includes all forms of alcoholic myopathy developing in acute or chronic alcohol intoxication. The most common form of destruction of skeletal muscles in alcoholism is chronic alcoholic myopathy, which develops independently of other alcohol-induced disorders, such as polyneuropathy, the malabsorption syndrome, and liver damage, but may be combined with them. The atrophy of muscle fibers underlies skeletal muscle destruction in chronic AIMD. Type II muscle fibers are affected to a greater degree than type I muscle fibers. To date, the pathogenesis of chronic alcoholic myopathy has been studied insufficiently. The imbalance between protein synthesis and proteolysis, as well as increased apoptosis rate, is discussed.  相似文献   

9.
The influence of dexamethasone on diaphragm (DIA) fatigue, oxidative capacity, and fiber cross-sectional areas (CSA) was determined in growing hamsters. One group received dexamethasone by daily subcutaneous injection for 21 days (D animals), while pair-weight (P) and free-eating controls (CTL) received saline subcutaneously. Isometric contractile properties of the DIA were determined in vitro by supramaximal direct muscle stimulation in the presence of curare. DIA fatigue resistance was determined through repetitive stimulation at 40 pulses/s for 2 min. A computer-based image-processing system was used to histochemically determine muscle fiber-type proportions, CSA, and succinate dehydrogenase activities. The medial gastrocnemius muscle (MG) was used as a limb muscle control, with histochemical studies being performed on both the superficial (s) and deep/red (r) portions. Dexamethasone markedly attenuated the normal increment in body weight over the 3-wk period. DIA fatigue resistance was significantly reduced in the D compared with CTL and P animals. Dexamethasone had no effect on fiber-type proportions of the DIA or MGr (MGs contained only type II fibers). In the DIA, the CSA of type II fibers was reduced 33% in D and 18.5% in P animals compared with CTL. Although no significant atrophy was noted in the type I DIA fibers of either D or P animals, a trend toward significance was noted in D animals compared with CTL. In the MGs, the CSA of type II fibers was reduced 33% in D and 16.5% in P animals compared with CTL. Significant atrophy of type I and II fibers of the MGr was noted in D animals compared with CTL (33.8 and 35% reductions, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Eleven of 25 rhesus monkeys which died of simian acquired immunodeficiency syndrome (SAIDS) caused by infection with a type D retrovirus related to Mason-Pfizer monkey virus showed evidence of muscle weakness and atrophy and had elevated levels of muscle enzymes. Biopsies of affected muscle studied with enzyme histochemistry showed the characteristic features of polymyositis. Inflammatory cells consisting of lymphocytes, macrophages, and large vacuolated bizarre-shaped cells of undetermined type were surrounding or invading muscle fibers and were present in the perivascular spaces and endomysia septa. Within the perivascular infiltrates, lymphocytes were abundant but very few macrophages were present. Other myopathic features including profound proliferation of fibrous tissue, necrosis, and phagocytosis of muscle fibers were noted to a variable degree. The retrovirus was isolated from affected muscles. The clinical and historical features of polymyositis in rhesus monkeys with SAIDS are very similar to those of human polymyositis. The polymyositis in SAIDS induced by a type D retrovirus related to Mason-Pfizer monkey virus is an excellent primate model to study the mechanism and morphological changes of viral-induced muscle damage.  相似文献   

11.
The tibial nerve transection model is a well-tolerated, validated, and reproducible model of denervation-induced skeletal muscle atrophy in rodents. Although originally developed and used extensively in the rat due to its larger size, the tibial nerve in mice is big enough that it can be easily manipulated with either crush or transection, leaving the peroneal and sural nerve branches of the sciatic nerve intact and thereby preserving their target muscles. Thus, this model offers the advantages of inducing less morbidity and impediment of ambulation than the sciatic nerve transection model and also allows investigators to study the physiologic, cellular and molecular biologic mechanisms regulating the process of muscle atrophy in genetically engineered mice. The tibial nerve supplies the gastrocnemius, soleus and plantaris muscles, so its transection permits the study of denervated skeletal muscle composed of fast twitch type II fibers and/or slow twitch type I fibers. Here we demonstrate the tibial nerve transection model in the C57Black6 mouse. We assess the atrophy of the gastrocnemius muscle, as a representative muscle, at 1, 2, and 4 weeks post-denervation by measuring muscle weights and fiber type specific cross-sectional area on paraffin-embedded histologic sections immunostained for fast twitch myosin.  相似文献   

12.
The purpose of this study was to test the hypothesis that weight loss results in a reduction in intramuscular lipid (IMCL) content that is concomitant with enhanced insulin action. Muscle biopsies were obtained from morbidly obese individuals [body mass index (BMI) 52.2 +/- 2.5 kg/m(2); n = 6] before and after gastric bypass surgery, an intervention that improves insulin action. With intervention, there was a 47% reduction (P < 0.01) in BMI and a 93% decrease in homeostasis model assessment, or HOMA (7.0 +/- 1.9 vs. 0.5 +/- 0.1). Histochemically determined IMCL content decreased (P < 0.05) by approximately 30%. In relation to fiber type, IMCL was significantly higher in type I vs. type II fibers. In both fiber types, there were reductions in IMCL and trends for muscle atrophy. Despite these two negating factors, the IMCL-to-fiber area ratio still decreased by approximately 44% with weight loss. In conclusion, despite differing initial levels and possible atrophy, weight loss appears to decrease IMCL deposition to a similar relative extent in type I and II muscle fibers. This reduction in intramuscular triglyceride may contribute to enhanced insulin action seen with weight loss.  相似文献   

13.
BACKGROUND: We quantified the expression of various growth-related factors in an adrenocorticotropic hormone (ACTH)-secreting adenoma that had recurred very rapidly as invasive macroadenoma. METHODS/RESULTS: A 43-year-old woman underwent successful transsphenoidal surgery for Cushing's disease. Seven years later, she was admitted to our ward for further endocrine examinations. In spite of a very high plasma ACTH level, the serum cortisol level was normal. Discrepancies between ACTH and cortisol levels were detected on the basis of diurnal rhythms, dexamethasone suppression tests, and corticotropin-releasing hormone test. The patient showed no clinical features of Cushing's disease. Magnetic resonance imaging of the pituitary showed an almost empty sella, and no microadenoma was found. These results, along with those of Sephadex column gel filtration and high-performance liquid chromatography of plasma-immunoreactive ACTH, suggested that the patient's residual corticotrophs secreted biologically inactive ACTH. Two years later, the patient suddenly developed diplopia and right abducens nerve palsy. She was slightly moonfaced and centrally obese. Her plasma ACTH and serum and urinary free cortisol levels were elevated, although discrepancies between ACTH and cortisol still existed. Magnetic resonance imaging revealed a large pituitary mass with suprasellar and cavernous sinus extensions. The tumor was excised, and the proopiomelanocortin gene and the expression of growth-related factors were analyzed. No mutations were found in the ACTH-coding region of the proopiomelanocortin gene. A significant expression of insulin-like growth factor II and proliferating cell nuclear antigen mRNAs was demonstrated. A high MIB-1 antibody labeling index was also detected in the adenoma tissue, suggesting high Ki-67 expression. CONCLUSION: These growth- and proliferation-related factors might be involved in the rapid growth and aggressiveness of this patient's pituitary adenoma.  相似文献   

14.
Spaceflight (SF) has been shown to cause skeletal muscle atrophy; a loss in force and power; and, in the first few weeks, a preferential atrophy of extensors over flexors. The atrophy primarily results from a reduced protein synthesis that is likely triggered by the removal of the antigravity load. Contractile proteins are lost out of proportion to other cellular proteins, and the actin thin filament is lost disproportionately to the myosin thick filament. The decline in contractile protein explains the decrease in force per cross-sectional area, whereas the thin-filament loss may explain the observed postflight increase in the maximal velocity of shortening in the type I and IIa fiber types. Importantly, the microgravity-induced decline in peak power is partially offset by the increased fiber velocity. Muscle velocity is further increased by the microgravity-induced expression of fast-type myosin isozymes in slow fibers (hybrid I/II fibers) and by the increased expression of fast type II fiber types. SF increases the susceptibility of skeletal muscle to damage, with the actual damage elicited during postflight reloading. Evidence in rats indicates that SF increases fatigability and reduces the capacity for fat oxidation in skeletal muscles. Future studies will be required to establish the cellular and molecular mechanisms of the SF-induced muscle atrophy and functional loss and to develop effective exercise countermeasures.  相似文献   

15.
Ohira T  Terada M  Kawano F  Nakai N  Ogura A  Ohira Y 《PloS one》2011,6(6):e21044
Response of adductor longus (AL) muscle to gravitational unloading and reloading was studied. Male Wistar Hannover rats (5-wk old) were hindlimb-unloaded for 16 days with or without 16-day ambulation recovery. The electromyogram (EMG) activity in AL decreased after acute unloading, but that in the rostral region was even elevated during continuous unloading. The EMG levels in the caudal region gradually increased up to 6th day, but decreased again. Approximately 97% of fibers in the caudal region were pure type I at the beginning of experiment. Mean percentage of type I fibers in the rostral region was 61% and that of type I+II and II fiber was 14 and 25%, respectively. The percent type I fibers decreased and de novo appearance of type I+II was noted after unloading. But the fiber phenotype in caudal, not rostral and middle, region was normalized after 16-day ambulation. Pronounced atrophy after unloading and re-growth following ambulation was noted in type I fibers of the caudal region. Sarcomere length in the caudal region was passively shortened during unloading, but that in the rostral region was unchanged or even stretched slightly. Growth-associated increase of myonuclear number seen in the caudal region of control rats was inhibited by unloading. Number of mitotic active satellite cells decreased after unloading only in the caudal region. It was indicated that the responses of fiber properties in AL to unloading and reloading were closely related to the region-specific neural and mechanical activities, being the caudal region more responsive.  相似文献   

16.
It has become increasingly recognized that skeletal muscle dysfunction is common in patients with chronic obstructive pulmonary disease (COPD). Muscle strength and endurance are decreased, whereas muscle fatigability is increased. There is a reduced proportion of type I fibers and an increase in type II fibers. Muscle atrophy occurs with a reduction in fiber cross-sectional area. Oxidative enzyme activity is decreased, and measurement of muscle bioenergetics during exercise reveals a reduced aerobic capacity. Deconditioning is probably very important mechanistically. Other mechanisms that may be of varying importance in individual patients include chronic hypercapnia and/or hypoxia, nutritional depletion, steroid usage, and oxidative stress. Potential therapies include exercise training, oxygen supplementation, nutritional repletion, and administration of anabolic hormones.  相似文献   

17.
The human trapezius muscle has an origin that is more extensive than that of any other body muscle; it has a complex macroscopic structure with fibers running in different directions. Histochemical analysis of multiple samples, obtained from different parts of the trapezius muscle from five males, showed marked differences in the distribution and the cross-sectional fiber area of the fiber types among different parts of the muscle as well as among individuals. As revealed by the mATPase activity, after different levels of alkaline and acidic preincubations, the lower third of the descending portion, the transverse, and the ascending portions of the muscle had a predominance of type I fibers (low mATPase activity at pH 9.4), whereas the most superior parts of pars descendens had a higher frequency of type II fibers (high mATPase activity at pH 9.4). The fibers of the most superior parts of the muscle were considerably smaller compared with those in all the other parts. In sections stained for NADH-TR, moth-eaten fibers were observed within parts of the descending portion. Their location and their larger fiber area, compared with that of ordinary type I fibers, may be related to frequent and/or continuous use of these fibers. In conclusion, the differences in fiber type composition between the different parts of the muscle probably reflect different functional demands on the trapezius muscle in various head, neck, and shoulder movements. We suggest that the interindividual differences in muscle fiber composition are due, at least in part, to genetic factors.  相似文献   

18.
19.
To differentiate the effect of muscle contractile activity from that of motor nerve on oxidative processes in type I muscle, oxidative processes were studied in muscle after immobilization and after denervation. The two processes led to similar atrophy of muscle weight and of the mean diameter of muscle fibers. Disuse of soleus muscle (type I) did not affect rates of oxidation of 14C-labeled substrates although these were reduced by disuse of the vastus lateralis (type II). Disuse of the soleus did not affect activities of several mitochondrial enzymes assayed by histochemical or biochemical methods. However, denervation of the soleus did lead to a fall in metabolic rates and enzyme activities. The activity of 3-hydroxybutyrate dehydrogenase fell more than did the activities of succinic dehydrogenase, lipoamide dehydrogenase, or cytochrome-c oxidase in both homogenates and in mitochondrial fractions. These results suggest nerve may regulate mitochondrial enzymes in type I muscle. The mechanism appears to be different from that which regulates oxidative processes in type II muscle.  相似文献   

20.
Effects of hindlimb suspension, tenotomy, denervation, and/or the combination of these models on plantar-flexors were studied in adult rats. Suspension-induced atrophy was not promoted by addition of tenotomy. But the magnitude of the atrophy was advanced if denervation or both denervation and tenotomy were combined with 5-day hindlimb suspension. Similar effects were noted in the cross-sectional area of single muscle fibers, especially of slow-twitch fibers. A shift of muscle fiber type from slow- to fast-twitch type was also induced mainly in soleus. The atrophy and fiber transformation were closely associated with a passive shortening of muscle due to the plantar-flexion of ankle and/or tenotomy and a disappeared electrical activity caused by denervation. The fiber atrophy, but not the shift of fiber type, was further advanced by the combination of tenotomy and denervation. It is suggested that muscle atrophy is caused by the decreased fiber size and protein content. The water content was also reduced proportionally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号