首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Bordetella bronchiseptica establishes persistent infection of the murine respiratory tract. We hypothesize that long-term colonization is mediated in part by bacteria-driven modulation of dendritic cells (DCs) leading to altered adaptive immune responses. Bone marrow-derived DCs (BMDCs) from C57BL/6 mice infected with live B. bronchiseptica exhibited high surface expression of MHCII, CD86, and CD80. However, B. bronchiseptica-infected BMDCs did not exhibit significant increases in CD40 surface expression and IL-12 secretion compared with BMDCs treated with heat-killed B. bronchiseptica. The B. bronchiseptica type III secretion system (TTSS) mediated the increase in MHCII, CD86, and CD80 surface expression, while the inhibition of CD40 and IL-12 expression was mediated by adenylate cyclase toxin (ACT). IL-6 secretion was independent of the TTSS and ACT. These phenotypic changes may result from differential regulation of MAPK signaling in DCs. Wild-type B. bronchiseptica activated the ERK 1/2 signaling pathway in a TTSS-dependent manner. Additionally, ACT was found to inhibit p38 signaling. These data suggest that B. bronchiseptica drive DC into a semimature phenotype by altering MAPK signaling. These semimature DCs may induce tolerogenic immune responses that allow the persistent colonization of B. bronchiseptica in the host respiratory tract.  相似文献   

2.
Bordetella bronchiseptica is a Gram-negative bacterium equipped with several colonization factors that allow it to establish a persistent infection of the murine respiratory tract. Previous studies indicate that B. bronchiseptica adenylate cyclase toxin (ACT) and the type III secretion system (TTSS) synergize to drive dendritic cells into an altered phenotype to down-regulate the host immune response. In this study, we examined the effects of B. bronchiseptica ACT and TTSS on murine bone marrow-derived macrophages. We demonstrate that ACT and TTSS are required for the inhibition of Ag-driven CD4+ T cell proliferation by bacteria-infected macrophages. We identify PGE2 as the mediator of this inhibition, and we show that ACT and the TTSS synergize to increase macrophage production of PGE2. We further demonstrate that B. bronchiseptica can modulate normal macrophage function and drive the immune response toward a Th17 phenotype classified by the significant production of IL-17. In this study, we show that B. bronchiseptica-infected macrophages can induce IL-17 production from naive CD4+ splenocytes, and that lung tissues from B. bronchiseptica-infected mice exhibit a strong Th17 immune response. ACT inhibited surface expression of CD40 and CD86, suppressed TNF-alpha production, and up-regulated IL-6 production. TTSS also synergized with ACT to up-regulate IL-10 and PGE2 secretion. These findings indicate that persistent colonization by B. bronchiseptica may rely on the ability of the bacteria to differentially modulate both macrophage and dendritic cell function leading to an altered adaptive immune response and subsequent bacterial colonization.  相似文献   

3.
Bordetella bronchiseptica establishes respiratory tract infections in laboratory animals with high efficiency. Colonization persists for the life of the animal and infection is usually asymptomatic in immunocompetent hosts. We hypothesize that this reflects a balance between immunostimulatory events associated with infection and immunomodulatory events mediated by the bacteria. We have identified 15 loci that are part of a type III secretion apparatus in B. bronchiseptica and three secreted proteins. The functions of the type III secretion system were investigated by comparing the phenotypes of wild-type bacteria with two strains that are defective in type III secretion using in vivo and in vitro infection models. Type III secretion mutants were defective in long-term colonization of the trachea in immunocompetent mice. The mutants also elicited higher titres of anti- Bordetella antibodies upon infection compared with wild-type bacteria. Type III secretion mutants also showed increased lethal virulence in immunodeficient SCID-beige mice. These observations suggest that type III-secreted products of B. bronchiseptica interact with components of both innate and adaptive immune systems of the host. B. bronchiseptica induced apoptosis in macrophages in vitro and inflammatory cells in vivo and type III secretion was required for this process. Infection of an epithelial cell line with high numbers of wild type, but not type III deficient B. bronchiseptica resulted in rapid aggregation of NF-κB into large complexes in the cytoplasm. NF-κB aggregation was dependent on type III secretion and aggregated NF-κB did not respond to TNFα activation, suggesting B. bronchiseptica may modulate host immunity by inactivating NF-κB. Based on these in vivo and in vitro results, we hypothesize that the Bordetella type III secretion system functions to modulate host immune responses during infection.  相似文献   

4.
BACKGROUND: Helicobacter pylori has been shown to induce pronounced gastric inflammation in the absence of interleukin-10 (IL-10) by 6 weeks post inoculation. The ability of IL-10(-/-) mice to eradicate H. pylori has not been demonstrated, possibly due to early sacrifice. Therefore, the long-term effect of enhanced gastritis on H. pylori colonization was determined in IL-10(-/-) mice. METHODS: C57BL/6 and IL-10(-/-) mice were infected with H. pylori and assessed for the degree of gastritis, bacterial load, and in vitro T-cell recall response at 4 and 16 weeks of infection. RESULTS: Infection of IL-10(-/-) mice resulted in significantly more severe gastritis than wild-type control mice and eradication of H. pylori by 4 weeks post inoculation. By 16 weeks, the level of gastritis in IL-10(-/-) was reduced to the levels observed in wild-type mice. Splenocytes from IL-10(-/-) mice were prone to produce significantly greater amounts of IFN-gamma than wild-type mice when stimulated with bacterial antigens. CONCLUSIONS: These results indicate that the host is capable of spontaneously eradicating H. pylori from the gastric mucosa when inflammation is elevated beyond the chronic inflammation induced in wild-type mice, and that the gastritis dissipates following bacterial eradication. Additionally, these data provide support for a model of gastrointestinal immunity in which naturally occurring IL-10-producing regulatory T cells modulate the host response to gastrointestinal bacteria.  相似文献   

5.
CD11b is a cell surface receptor that contributes to many cellular processes which are involved in the generation of a protective immune response against pathogenic organisms. In this work, the natural host-pathogen model of murine Bordetella bronchiseptica infection was used to explore the role of CD11b in respiratory immunity. Following intranasal inoculation, CD11b-/- mice rapidly succumb to B. bronchiseptica respiratory infection, highlighting the prominent role of CD11b in the generation of a protective immune response in this model. CD11b appears to be required for both the control of bacterial numbers and the regulation of cellular responses in the lungs. An increased accumulation of neutrophils in the lungs of CD11b-/- mice as compared with wild-type mice suggests that CD11b contributes to the regulation of cellular responses to respiratory infection. This accumulation may be explained by a decrease in apoptosis that is observed in the absence of CD11b following cellular interactions with B. bronchiseptica. Interestingly, this role for CD11b in the regulation of cellular accumulation appears to be critically important for the resolution of damage associated with the type III secretion system (TTSS) of B. bronchiseptica. These data provide new insight into the key role CD11b plays in the resolution of damage in the lower respiratory tract, as well as the B. bronchiseptica virulence determinant that induces it.  相似文献   

6.
This study documents a defect in IL-12-dependent IFN-gamma responses in a substrain (B10.Q-H2-(q)/SgJ) of B10.Q mice that manifests as an acute susceptibility to infection by the intracellular protozoan pathogen, Toxoplasma gondii. Despite robust systemic production of IL-12, infected B10.Q/J animals fail to mount an early IFN-gamma response after parasite inoculation. Genetic experiments revealed that the host resistance and IFN-gamma production defects are determined by a single autosomal recessive locus distinct from the Stat4 gene. Nonetheless, a delayed IL-12-mediated IFN-gamma response emerges in later stages of acute infection but is unable to prevent host mortality. IL-18 administration restores, in an IL-12-dependent manner, the early IFN-gamma response and host resistance of B10.Q/J animals. These in vivo studies indicate that the partially impaired IL-12 responsiveness in B10.Q/J mice can result in defective host resistance and demonstrate a therapeutic function for IL-18 in reversing a genetically based immunodeficiency in IL-12-dependent IFN-gamma production.  相似文献   

7.
Bordetella bronchiseptica chronically infects a wide range of mammals, and resides primarily in the nasal cavity of the infected host. Multiple virulence factors of Bordetella species have been studied in the context of lower respiratory tract infections, but relatively less is known about the bacterial life cycle in the nasal cavity. Evidences were discovered for Bvg intermediate (Bvg(i)) phase expression in vivo and that the major adhesin filamentous hemagglutinin plays a major role in the colonization of B. bronchiseptica in the unciliated olfactory epithelia of the nasal cavity.  相似文献   

8.
IL-18, formerly designated IFN-inducing factor, is a novel cytokine produced by activated macrophages. It synergizes with IL-12 in the induction of the development of Th1 cells and NK cells. To define the biological role of IL-18 in vivo, we have constructed a strain of mice lacking IL-18. Homozygous IL-18 knockout (-/-) mice are viable, fertile, and without evident histopathologic abnormalities. However, in contrast to the heterozygous (+/-) or wild-type (+/+) mice, which are highly resistant to the infection of the protozoan parasite Leishmania major, the IL-18-/- mice are uniformly susceptible. The infected IL-18-/- mice produced significantly lower levels of IFN-gamma and larger amounts of IL-4 compared with similarly infected +/- and +/+ mice. In contrast, when infected with the extracellular Gram-positive bacteria Staphylococcus aureus, the IL-18-/- mice developed markedly less septicemia than similarly infected wild-type (+/+) mice. However, the mutant mice developed significantly more severe septic arthritis than the control wild-type mice. This was accompanied by a reduction in the levels of Ag-induced splenic T cell proliferation, decreased IFN-gamma and TNF-alpha synthesis, but increased IL-4 production by the mutant mice compared with the wild-type mice. These results therefore provide direct evidence that IL-18 is not only essential for the host defense against intracellular infection, but it also plays a critical role in regulating the synthesis of inflammatory cytokines, and therefore could be an important target for therapeutic intervention.  相似文献   

9.
Bacterial pneumonia is a leading cause of morbidity and mortality in the U.S. An effective innate immune response is critical for the clearance of bacteria from the lungs. IL-12, a key T1 cytokine in innate immunity, signals through STAT4. Thus, understanding how STAT4 mediates pulmonary immune responses against bacterial pathogens will have important implications for the development of rational immunotherapy targeted at augmenting innate immunity. We intratracheally administered Klebsiella pneumoniae to wild-type BALB/c and STAT4 knockout (STAT4-/-) mice. Compared with wild-type controls, STAT4-/- mice had decreased survival following intratracheal Klebsiella administration, which was associated with a higher lung and blood bacterial burden. STAT4-/- animals also displayed impaired pulmonary IFN-gamma production and decreased levels of proinflammatory cytokines, including the ELR- CXC chemokines IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma. Although total lung leukocyte populations were similar between STAT4-/- and wild-type animals following infection, alveolar macrophages isolated from infected STAT4-/- mice had decreased production of proinflammatory cytokines, including IFN-gamma, compared with infected wild-type mice. The intrapulmonary overexpression of IFN-gamma concomitant with the systemic administration of IFN-gamma partially reversed the immune deficits observed in STAT4-/- mice, resulting in improved bacterial clearance from the blood. Collectively, these studies demonstrate that STAT4 is required for the generation of an effective innate host defense against bacterial pathogens of the lung.  相似文献   

10.
To elucidate the pathogenesis of Helicobacter pylori-associated gastritis, we studied immune responses of C57BL/6J wild-type (WT), SCID, and gene deficient (IFN-gamma-/- and IL-4-/-) mice following infection with a pathogenic isolate of H. pylori (SPM326). During early infection in WT mice, mononuclear and polymorphonuclear cells accumulated in the gastric lamina propria, and the numbers of cells in the inflamed mucosa expressing IFN-gamma, but not IL-4, mRNA rose significantly (p < 0.005), consistent with a local Th1 response. Splenic T cells from the same infected WT mice produced high levels of IFN-gamma, no detectable IL-4, and low amounts of IL-10 following in vitro H. pylori urease stimulation, reflecting a systemic Th1 response. Infected C57BL/6J SCID mice did not develop gastric inflammation despite colonization by many bacteria. Infected C57BL/10J and BALB/c mice also did not develop gastric inflammation and displayed a mixed Th1/Th2 splenic cytokine profile. These data imply a major role for the Th1 cytokine IFN-gamma in H. pylori-associated gastric inflammation in C57BL/6J mice. Compared with WT animals, infected IL-4-/- animals had more severe gastritis and higher levels of IFN-gamma production by urease-stimulated splenocytes (p < 0.01), whereas IFN-gamma-/- mice exhibited no gastric inflammation and higher levels of IL-4 production by stimulated splenocytes. These findings establish C57BL/6J mice as an important model for H. pylori infection and demonstrate that up-regulated production of IFN-gamma, in the absence of the opposing effects of IL-4 (and possibly IL-10), plays a pivotal role in promoting H. pylori-induced mucosal inflammation.  相似文献   

11.
Chlamydia pneumoniae is the causative agent of respiratory tract infections and a number of chronic diseases. Here we investigated the involvement of the common TLR adaptor molecule MyD88 in host responses to C. pneumoniae-induced pneumonia in mice. MyD88-deficient mice were severely impaired in their ability to mount an acute early inflammatory response toward C. pneumoniae. Although the bacterial burden in the lungs was comparable 5 days after infection, MyD88-deficient mice exhibited only minor signs of pneumonia and reduced expression of inflammatory mediators. MyD88-deficient mice were unable to up-regulate proinflammatory cytokines and chemokines, demonstrated delayed recruitment of CD8+ and CD4+ T cells to the lungs, and were unable to clear the pathogen from their lungs at day 14. At day 14 the MyD88-deficent mice developed a severe, chronic lung inflammation with elevated IL-1beta and IFN-gamma leading to increased mortality, whereas wild-type mice as well as TLR2- or TLR4-deficient mice recovered from acute pneumonia and did not show delayed bacterial clearance. Thus, MyD88 is essential to recognize C. pneumoniae infection and initiate a prompt and effective immune host response against this organism leading to clearance of bacteria from infected lungs.  相似文献   

12.
To successfully colonize their mammalian hosts, many bacteria produce multiple virulence factors that play essential roles in disease processes and pathogenesis. Some of these molecules are adhesins that allow efficient attachment to host cells, a prerequisite for successful host colonization. Bordetella spp. express a number of proteins which either play a direct role in attachment to the respiratory epithelia or exhibit similarity to known bacterial adhesins. One such recently identified protein is BipA. Despite the similarity of BipA to intimins and invasins, deletion of this protein from B. bronchiseptica did not result in any significant defect in respiratory tract colonization. In this study, we identified an open reading frame in B. bronchiseptica, designated bcfA (encoding BcfA [bordetella colonization factor A]), that is similar to bipA. In contrast to the maximal expression of bipA in the Bvg intermediate (Bvg(i)) phase, bcfA is expressed at high levels in both the Bvg(+) and Bvg(i) phases. We show here that BvgA and phosphorylated BvgA bind differentially to the bcfA promoter region. Utilizing immunoblot assays, we found that BcfA is localized to the outer membrane and that it is expressed during animal infection. While deletion of either bipA or bcfA did not significantly affect respiratory tract colonization, concomitant deletion of both genes resulted in a defect in colonization of the rat trachea. Our results indicate that the two paralogous proteins have a combinatorial role in mediating efficient respiratory tract colonization.  相似文献   

13.
Enteropathogenic Escherichia coli (EPEC) virulence requires a type III secretion system (TTSS) to deliver effector molecules in host cells. Although the TTSS is crucial to EPEC pathogenesis, its function in EPEC-induced inflammation is not known. The aim of this study was to investigate the role of the TTSS in EPEC-induced inflammation. HT-29 intestinal epithelial cells were infected with wild-type (WT) EPEC or select mutant strains or exposed to corresponding filter-sterilized supernatants (SN), and interleukin-8 (IL-8) secretion was determined by ELISA. EPEC SN stimulated significantly greater IL-8 production than EPEC organisms. Flagellin, as well as a TTSS-independent >50-kDa nonflagellin protein, was found to significantly contribute to this response. Dose-response studies showed that increasing concentrations of WT SN proportionally increased IL-8, whereas increasing multiplicity of infection of EPEC inversely correlated with IL-8 secretion, suggesting that EPEC dampens this host response. Infection with DeltaescN (nonfunctional TTSS) markedly increased IL-8 compared with WT, indicating that a functional TTSS is required for this anti-inflammatory property; complementation of escN restored the attenuated response. Mutation of espB also enhanced the IL-8 response, and complementation returned IL-8 to near WT levels, suggesting involvement of this effector. The anti-inflammatory effect extends to both bacterial and host-derived proinflammatory stimuli, since prior infection with EPEC suppressed the IL-8 response to tumor necrosis factor-alpha, IL-1beta, and enterohemorrhagic E. coli flagellin. These findings indicate that EPEC-induced inflammation is a balance between pro- and anti-inflammatory proteins; extracellular factors, including flagellin and an unidentified TTSS-independent, >50-kDa protein, trigger inflammation while intracellular TTSS-dependent factors, including EspB, attenuate this response.  相似文献   

14.
Mammals are colonized by an astronomical number of commensal microorganisms on their environmental exposed surfaces. These symbiotic species build up a complex community that aids their hosts in several physiological activities. We have shown that lack of intestinal microbiota is accompanied by a state of active IL-10-mediated inflammatory hyporesponsiveness. The present study investigated whether the germfree state and its hyporesponsive phenotype alter host resistance to an infectious bacterial insult. Experiments performed in germfree mice infected with Klebsiella pneumoniae showed that these animals are drastically susceptible to bacterial infection in an IL-10-dependent manner. In germfree mice, IL-10 restrains proinflammatory mediator production and neutrophil recruitment and favors pathogen growth and dissemination. Germfree mice were resistant to LPS treatment. However, priming of these animals with several TLR agonists recovered their inflammatory responsiveness to sterile injury. LPS pretreatment also rendered germfree mice resistant to pulmonary K. pneumoniae infection, abrogated IL-10 production, and restored TNF-α and CXCL1 production and neutrophil mobilization into lungs of infected germfree mice. This effective inflammatory response mounted by LPS-treated germfree mice resulted in bacterial clearance and enhanced survival upon infection. Therefore, host colonization by indigenous microbiota alters the way the host reacts to environmental infectious stimuli, probably through activation of TLR-dependent pathways. Symbiotic gut colonization enables proper inflammatory response to harmful insults to the host, and increases resilience of the entire mammal-microbiota consortium to environmental pressures.  相似文献   

15.
Interaction of alpha-galactosylceramide (alpha-GalCer) presented by CD1d on dendritic cells (DCs) with the invariant TCR of NKT cells activates NKT cells. We have now investigated the role of Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1), a transmembrane protein abundantly expressed on DCs, in regulation of NKT cells with the use of mice that express a mutant form of SHPS-1. The suppression by alpha-GalCer of experimental lung metastasis was markedly attenuated in SHPS-1 mutant mice compared with that apparent in wild-type (WT) mice. The antimetastatic effect induced by adoptive transfer of alpha-GalCer-pulsed DCs from SHPS-1 mutant mice was also reduced compared with that apparent with WT DCs. Both the production of IFN-gamma and IL-4 as well as cell proliferation in response to alpha-GalCer in vitro were greatly attenuated in splenocytes or hepatic mononuclear cells from SHPS-1 mutant mice compared with the responses of WT cells. Moreover, CD4+ mononuclear cells incubated with alpha-GalCer and CD11c+ DCs from SHPS-1 mutant mice produced markedly smaller amounts of IFN-gamma and IL-4 than did those incubated with alpha-GalCer and CD11c+ DCs from WT mice. SHPS-1 on DCs thus appears to be essential for alpha-GalCer-induced antimetastatic activity and Th1 and Th2 responses of NKT cells. Moreover, our recent findings suggest that SHPS-1 on DCs is also essential for the priming of CD4+ T cells by DCs.  相似文献   

16.
17.
The ability of nonmodulated Bvg+ phase cultures, temperature modulated Bvg- phase cultures, and a Bvg- phase-locked mutant of Bordetella bronchiseptica to colonize the rat upper respiratory tract was investigated. Initially, greater numbers of the temperature modulated Bvg- phase bacteria adhered to the nasal cavity of the rats. The temperature modulated Bvg- phase bacteria appeared to be quickly cleared to levels lower than the Bvg+ phase bacteria by 4 h after inoculation and stayed lower until 48 h after inoculation when colonization levels were equal to the Bvg+ phase bacteria. The level of colonization with the Bvg- phase-locked mutant of B. bronchiseptica was lower than both the nonmodulated Bvg+ phase and temperature modulated Bvg- phase cultures and declined over time during the experiment. These findings suggest that there may be increased adherence from an environmental phase to ensure bacteria survive initial clearance mechanisms until the switch to the Bvg+ phase occurs.  相似文献   

18.
Both peptidoglycan and muropeptides potently modulate inflammatory and innate immune responses. The secreted Listeria monocytogenes p60 autolysin digests peptidoglycan and promotes bacterial infection in vivo. Here, we report that p60 contributes to bacterial subversion of NK cell activation and innate IFN-gamma production. L. monocytogenes deficient for p60 (Deltap60) competed well for expansion in mice doubly deficient for IFNAR1 and IFN-gammaR1 or singly deficient for IFN-gammaR1, but not in wild-type, IFNAR1(-/-), or TLR2(-/-) mice. The restored competitiveness of p60-deficient bacteria suggested a specific role for p60 in bacterial subversion of IFN-gamma-mediated immune responses, since in vivo expansion of three other mutant L. monocytogenes strains (DeltaActA, DeltaNamA, and DeltaPlcB) was not complemented in IFN-gammaR1(-/-) mice. Bacterial expression of p60 was not required to induce socs1, socs3, and il10 expression in infected mouse bone marrow macrophages but did correlate with enhanced production of IL-6, IL-12p70, and most strikingly IFN-gamma. The primary source of p60-dependent innate IFN-gamma was NK cells, whereas bacterial p60 expression did not significantly alter innate IFN-gamma production by T cells. The mechanism for p60-dependent NK cell stimulation was also indirect, given that treatment with purified p60 protein failed to directly activate NK cells for IFN-gamma production. These data suggest that p60 may act on infected cells to indirectly enhance NK cell activation and increase innate IFN-gamma production, which presumably promotes early bacterial expansion through its immunoregulatory effects on bystander cells. Thus, the simultaneous induction of IFN-gamma production and factors that inhibit IFN-gamma signaling may be a common strategy for misdirection of early antibacterial immunity.  相似文献   

19.
Pseudomonas aeruginosa keratitis destroys the cornea in susceptible (B6), but not resistant (BALB/c) mice. To determine mechanisms mediating resistance, the role of IFN-gamma, IL-12, and IL-18 was tested in BALB/c mice. RT-PCR analysis detected IFN-gamma mRNA expression levels in cornea that were significantly increased at 1-7 days postinfection. IL-18 mRNA was detected constitutively in cornea and, at 1-7 days postinfection, levels were elevated significantly, while no IL-12 mRNA was similarly detected. To test whether IL-18 contributed to IFN-gamma production, mice were treated with anti-IL-18 mAb. Treatment decreased corneal IFN-gamma mRNA levels, and bacterial load and disease increased/worsened, compared with IgG-treated mice. To stringently examine the role of IFN-gamma in bacterial killing, knockout (-/-) vs wild-type (wt) mice also were tested. All corneas perforated, and bacterial load was increased significantly in -/- vs wt mice. Because disease severity was increased in IFN-gamma(-/-) vs IL-18-neutralized mice, and since IL-18 also induces production of TNF, we tested for TNF-alpha in both groups. ELISA analysis demonstrated significantly elevated corneal TNF-alpha protein levels in IFN-gamma(-/-) vs wt mice after infection. In contrast, RT-PCR analysis of IL-18-neutralized vs IgG-treated infected mice revealed decreased corneal TNF-alpha mRNA expression. Next, to resolve whether TNF was required for bacterial killing, TNF-alpha was neutralized in BALB/c mice. No difference in corneal bacterial load was detected in neutralized vs IgG-treated mice. These data provide evidence that IL-18 contributes to the resistance response by induction of IFN-gamma and that IFN-gamma is required for bacterial killing.  相似文献   

20.
We have constructed an aromatic amino acid auxotrophic mutant of Bordetella bronchiseptica, harbouring mutations in aroA and trpE to investigate the use of such a strain as a live-attenuated vaccine. B. bronchiseptica aroA trpE was unable to grow in minimal medium without aromatic supplementation. Compared to the parental wild-type strain, the mutant displayed significantly reduced abilities to invade and survive within the mouse macrophage-like cell line J774A.1 in vitro and in the murine respiratory tract following experimental intranasal infection. Mice vaccinated with B. bronchiseptica aroA trpE displayed significant dose-dependent increases in B. bronchiseptica-specific antibody responses, and exhibited increases in the number of B. bronchiseptica-reactive spleen cells in lymphoproliferation assays. Immunised animals were protected against lung colonisation after challenge with the wild-type parental strain. With such a broad host range displayed by B. bronchiseptica, the attenuated strain constructed in this study may not only be used for the prevention of B. bronchiseptica-associated disease, but also for the potential delivery of heterologous antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号