首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major challenge for future genetically modified (GM) crops is to prevent undesired gene flow of transgenes to plant material intended for another use. Recombinase-mediated auto excision of transgenes directed by a tightly controlled microspore-specific promoter allows efficient removal of either the selectable marker gene or of all introduced transgenes during microsporogenesis. This way, transgene removal becomes an integral part of the biology of pollen maturation, not requiring any external stimulus such as chemical induction by spraying. We here show the feasibility of engineering transgenic plants to produce pollen devoid of any transgene. Highly efficient excision of transgenes from tobacco pollen was achieved with a potential failure rate of at most two out of 16 800 seeds (0.024%). No evidence for either premature activation or absence of activation of the recombinase system was observed under stress conditions in the laboratory. This approach can prevent adventitious presence of transgenes in non-GM crops or related wild species by gene flow. Such biological containment may help the deployment and management of coexistence practices to support consumer choice and will promote clean molecular farming for the production of high-value compounds in plants.  相似文献   

2.
Efficient and inducible recombinase-mediated DNA excision is an optimal technology for automatically deleting unwanted DNA sequences, including selection marker genes. However, this methodology has yet to be established in transgenic silkworms. To achieve efficient and inducible FLP recombinase-mediated DNA excision in transgenic silkworms, one transgenic target strain (TTS) containing an FRT-flanked silkworm cytoplasmic actin 3 gene promoter (A3)-enhanced green fluorescent protein (EGFP) expression cassette, as well as two different types of FLP recombinase expression helper strains were generated. Then, the FLP recombinase was introduced into the TTS silkworms by pre-blastoderm microinjection and sexual hybridization. Successful recombinase-mediated deletion of the A3-EGFP expression cassette was observed in the offspring of the TTS, and the excision efficiencies of the FLP expression vector and FLP mRNA pre-blastoderm microinjection were 2.38 and 13.3 %, respectively. The excision efficiencies resulting from hybridization between the TTS and the helper strain that contained a heat shock protein 70 (Hsp70)-FLP expression cassette ranged from 32.14 to 36.67 % after heat shock treatment, while the excision efficiencies resulting from hybridization between the TTS and the helper strain containing the A3-FLP expression cassette ranged from 97.01 to 100 %. These results demonstrate that the FLP/FRT system can be used to achieve highly efficient and inducible post-integration excision of unwanted DNA sequences in transgenic silkworms in vivo. Our present study will facilitate the development and application of the FLP/FRT system for the functional analysis of unknown genes, and establish the safety of transgenic technologies in the silkworm and other lepidopteran species.  相似文献   

3.
Plant transformation based on random integration of foreign DNA often generates complex integration structures. Precision in the integration process is necessary to ensure the formation of full-length, single-copy integration. Site-specific recombination systems are versatile tools for precise genomic manipulations such as DNA excision, inversion or integration. The yeast FLP-FRT recombination system has been widely used for DNA excision in higher plants. Here, we report the use of FLP-FRT system for efficient targeting of foreign gene into the engineered genomic site in rice. The transgene vector containing a pair of directly oriented FRT sites was introduced by particle bombardment into the cells containing the target locus. FLP activity generated by the co-bombarded FLP gene efficiently separated the transgene construct from the vector-backbone and integrated the backbone-free construct into the target site. Strong FLP activity, derived from the enhanced FLP protein, FLPe, was important for the successful site-specific integration (SSI). The majority of the transgenic events contained a precise integration and expressed the transgene. Interestingly, each transgenic event lacked the co-bombarded FLPe gene, suggesting reversion of the integration structure in the presence of the constitutive FLPe expression. Progeny of the precise transgenic lines inherited the stable SSI locus and expressed the transgene. This work demonstrates the application of FLP-FRT system for site-specific gene integration in plants using rice as a model.  相似文献   

4.
Site-specific recombination systems, such as FLP–FRT and Cre–lox, carry out precise recombination reactions on their respective targets in plant cells. This has led to the development of two important applications in plant biotechnology: marker-gene deletion and site-specific gene integration. To draw benefits of both applications, it is necessary to implement them in a single transformation process. In order to develop this new process, the present study evaluated the efficiency of FLP–FRT system for excising marker gene from the transgene locus developed by Cre–lox mediated site-specific integration in rice. Two different FLP recombinases, the wild-type FLP (FLPwt) and its thermostable derivative, FLPe, were used for the excision of marker gene flanked by FLP recombination targets (FRT). While marker excision mediated by FLPwt was undetectable, use of FLPe resulted in efficient marker excision in a number of transgenic lines, with the relative efficiency reaching up to ~100%. Thus, thermo-stability of FLP recombinase in rice cells is critical for efficient site-specific recombination, and use of FLPe offers practical solutions to FLP–FRT-based biotechnology applications in plants.  相似文献   

5.
利用FLP/frt重组系统产生无选择标记的转基因烟草植株   总被引:3,自引:0,他引:3  
在植物转基因植株产生过程中,对转化细胞进行抗性筛选是通用程序,转化细胞的抗性一般是抗生素抗性或除草剂抗性,将赋予转化细胞抗性的选择标记基因删除是提高转基因植物生物安全性的重要措施。来自于啤酒酵母的FLP/frt位点特异性重组系统可有效删除同向定点重组位点frt之间的基因。通过多步骤重组,建立了可在植物中广泛应用的FLP/frt位点特异性重组系统。该系统包括含有frt位点的植物表达载体pCAMBIA1300-betA-frt-als-frt和含有由热诱导启动子hsp启动的FLP重组酶基因的植物表达载体pCAMBIA1300-hsp-FLP-hpt。利用二次转化的方式将二者先后转入烟草植株,热激处理后,热诱导型启动子hsp调控的重组酶FLP基因的表达催化位于选择标记基因als两侧同向frt位点间的重组反应,有效地删除了选择标记基因als。41%的经热激处理的二次转化植株发生了选择标记基因的删除,表明该系统在获得无选择标记基因的转基因植株中有很好的应用价值。  相似文献   

6.
7.
Transgene escape, a major environmental and regulatory concern in transgenic crop cultivation, could be alleviated by removing transgenes from pollen, the most frequent vector for transgene flow. A transgene excision vector containing a codon optimized serine resolvase CinH recombinase (CinH) and its recognition sites RS2 were constructed and transformed into tobacco (Nicotiana tabacum cv. Xanthi). CinH recombinase recognized 119 bp of nucleic acid sequences, RS2, in pollen and excised the transgene flanked by the RS2 sites. In this system, the pollen-specific LAT52 promoter from tomato was employed to control the expression of CinH recombinase. Loss of expression of a green fluorescent protein (GFP) gene under the control of the LAT59 promoter from tomato was used as an indicator of transgene excision. Efficiency of transgene excision from pollen was determined by flow cytometry (FCM)-based pollen screening. While a transgenic event in the absence of CinH recombinase contained about 70% of GFP-synthesizing pollen, three single-copy transgene events contained less than 1% of GFP-synthesizing pollen based on 30,000 pollen grains analyzed per event. This suggests that CinH-RS2 recombination system could be effectively utilized for transgene biocontainment.  相似文献   

8.
DP Long  AC Zhao  XJ Chen  Y Zhang  WJ Lu  Q Guo  AM Handler  ZH Xiang 《PloS one》2012,7(6):e40150
A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they have not yet been established for use in the manipulation of the silkworm Bombyx mori genome. In this study, we achieved site-specific excision of a target gene at predefined chromosomal sites in the silkworm using a FLP/FRT site-specific recombination system. We first constructed two stable transgenic target silkworm strains that both contain a single copy of the transgene construct comprising a target gene expression cassette flanked by FRT sites. Using pre-blastoderm microinjection of a FLP recombinase helper expression vector, 32 G3 site-specific recombinant transgenic individuals were isolated from five of 143 broods. The average frequency of FLP recombinase-mediated site-specific excision in the two target strains genome was approximately 3.5%. This study shows that it is feasible to achieve site-specific recombination in silkworms using the FLP/FRT system. We conclude that the FLP/FRT system is a useful tool for genome manipulation in the silkworm. Furthermore, this is the first reported use of the FLP/FRT system for the genetic manipulation of a lepidopteran genome and thus provides a useful reference for the establishment of genome manipulation technologies in other lepidopteran species.  相似文献   

9.
M. L. Siegal  D. L. Hartl 《Genetics》1996,144(2):715-726
Studies of gene function and regulation in transgenic Drosophila are often compromised by the possibility of genomic position effects on gene expression. We have developed a method, called transgene coplacement, in which any two sequences can be positioned at exactly the same site and orientation in the genome. Transgene coplacement makes use of the bacteriophage P1 system of Cre/loxP site-specific recombination, which we have introduced into Drosophila. In the presence of a cre transgene driven by a dual hsp70-Mos1 promoter, a white reporter gene flanked by loxP sites is excised with virtually 100% efficiency both in somatic cells and in germ cells. A strong maternal effect, resulting from Cre recombinase present in the oocyte, is observed as white or mosaic eye color in F(1) progeny. Excision in germ cells of the F(1) yields a strong grand-maternal effect, observed as a highly skewed ratio of eye-color phenotypes in the F(2) generation. The excision reactions of Cre/loxP and the related FLP/FRT system are used to create Drosophila lines in which transgenes are at exactly allelic sites in homologous chromosomes.  相似文献   

10.
Variation in the inheritance of expression among subclones for an unselected (uidA) and a selected (bar) transgene was analyzed in two individual transformation events in maize. The unselectable gene (uidA) and the selectable gene (bar), on two separate plasmids, were transferred to maize (Hi-II derivative) by particle bombardment of embryogenic calli or suspension cells. A total of 188 fertile T1 plants were obtained from one transformant (transformation event BG which integrated uidA and bar). A total of 98 fertile T1 plants were obtained from a second transformant (transformation event B which integrated bar). Through self-pollination and/or cross-pollination in the greenhouse, approximately 10 000 T2 progeny were obtained from event BG, and more than 1000 T2 progeny were obtained from event B. Segregation of transgene expression was analyzed statistically in a total of 2350 T2 progeny from 40 T1 subclones of event BG and in 217 T2 progeny from six T1 subclones from event B. Variation in the inheritance of expression among subclones for the two transgenes (uidA and bar) was observed in the two transformants. A significant difference was observed between the use of the female or male as the transgenic parent in the inheritance of expression for the two transgenes in event BG. No inheritance through the pollen was observed in two of four T1 subclones analyzed in event B. Co-expression analysis of event BG showed that both transgenes were co-expressed in 67.7% of the T2 plants which expressed at least one of the two transgenes. Of the T2 expressing plants, 30.4% expressed only bar, and 1.9% expressed only uidA. Inactivation of the unselected (uidA) and the selected (bar) transgenes was observed in individual T2 plants.  相似文献   

11.
Unintended gene flow from transgenic plants via pollen, seed and vegetative propagation is a regulatory concern because of potential admixture in food and crop systems, as well as hybridization and introgression to wild and weedy relatives. Bioconfinement of transgenic pollen would help address some of these concerns and enable transgenic plant production for several crops where gene flow is an issue. Here, we demonstrate the expression of the restriction endonuclease EcoRI under the control of the tomato pollen‐specific LAT52 promoter is an effective method for generating selective male sterility in Nicotiana tabacum (tobacco). Of nine transgenic events recovered, four events had very high bioconfinement with tightly controlled EcoRI expression in pollen and negligible‐to‐no expression other plant tissues. Transgenic plants had normal morphology wherein vegetative growth and reproductivity were similar to nontransgenic controls. In glasshouse experiments, transgenic lines were hand‐crossed to both male‐sterile and emasculated nontransgenic tobacco varieties. Progeny analysis of 16 000–40 000 seeds per transgenic line demonstrated five lines approached (>99.7%) or attained 100% bioconfinement for one or more generations. Bioconfinement was again demonstrated at or near 100% under field conditions where four transgenic lines were grown in close proximity to male‐sterile tobacco, and 900–2100 seeds per male‐sterile line were analysed for transgenes. Based upon these results, we conclude EcoRI‐driven selective male sterility holds practical potential as a safe and reliable transgene bioconfinement strategy. Given the mechanism of male sterility, this method could be applicable to any plant species.  相似文献   

12.
Selectable marker genes that usually encode antibiotic or herbicide resistances are widely used for the selection of transgenic plants, but they become unnecessary and undesirable after transformation selection. An important strategy to improve the transgenic plants' biosafety is to eliminate the marker genes after successful selection. In the FLP/frt site-specific system of 2-μm plasmid from Saccharomyces cerevisiae, the FLP enzyme efficiently catalyzes recombination between two directly repeated FLP recombination target (frt) sites, eliminating the sequence between them. By controlled expression of the FLP recombinase and specific allocation of the frt sites within transgenic constructs, the system can be applied to eliminate the marker genes after selection. Through a series of procedures, the plant FLP/frt site-specific recombination system was constructed, which included the frt-containing vector pCAMBIA1300-betA-frt-als-frt and the FLP expression vector pCAMBIA1300-hsp-FLP-hpt. The FLP recombinase gene was introduced into transgenic (betA-frt-als-frt) tobacco plants by re-transformation. In re-transgenic plants, after heat-shock treatment, the marker gene als flanked by two identical orientation frt sites could be excised by the inducible expression of FLP recombinase under the control of hsp promoter. Excision of the als gene was found in 41 % re-transgenic tobacco plants, which indicated that this system could make a great contribution obtaining the marker-free transgenic plants.  相似文献   

13.
The excision of specific DNA sequences from integrated transgenes in insects permits the dissection in situ of structural elements that may be important in controlling gene expression. Furthermore, manipulation of potential control elements in the context of a single integration site mitigates against insertion site influences of the surrounding genome. The cre-loxP site-specific recombination system has been used successfully to remove a marker gene from transgenic yellow fever mosquitoes, Aedes aegypti. A total of 33.3% of all fertile families resulting from excision protocols showed evidence of cre-loxP-mediated site-specific excision. Excision frequencies were as high as 99.4% within individual families. The cre recombinase was shown to precisely recognize loxP sites in the mosquito genome and catalyze excision. Similar experiments with the FLP/FRT site-specific recombination system failed to demonstrate excision of the marker gene from the mosquito chromosomes.  相似文献   

14.
Luo K  Sun M  Deng W  Xu S 《Biotechnology letters》2008,30(7):1295-1302
To excise a selectable marker gene from transgenic plants, a new binary expression vector based on the 'genetically modified (GM)-gene-deletor' system was constructed. In this vector, the gene coding for FLP site-specific recombinase under the control of a heat shock-inducible promoter HSP18.2 from Arabidopsis thaliana and isopentenyltransferase gene (ipt), as a selectable marker gene under the control of the cauliflower mosaic virus 35S (CaMV 35S) promoter, were flanked by two loxP/FRT fusion sequences as recombination sites in direct orientation. Histochemical staining for GUS activity showed that, upon induction by heat shock, all exogenous DNA, including the selectable marker gene ipt, beta-glucuronidase (gusA) gene and the FLP recombinase gene, between two loxP/FRT sites was eliminated efficiently from primary transgenic tobacco plants. Molecular analysis further confirmed that excision of the marker gene (ipt) was heritable and stable. Our approach provides a reliable strategy for auto-excising a selectable marker gene from calli, shoots or other tissues of transgenic plants after transformation and producing marker-free transgenic plants.  相似文献   

15.
SUMMARY: The coding sequences of Cre (site-specific recombinase from bacteriophage P1) and FLP (yeast 2-microm plasmid site-specific recombinase) were fused in frame to produce a novel, dual-function, site-specific recombinase gene. Transgenic maize plants containing the Cre::FLP fusion expression vector were crossed to transgenic plants containing either the loxP or FRT excision substrate. Complete and precise excisions of chromosomal fragments flanked by the respective target sites were observed in the F1 and F2 progeny plants. The episomal DNA recombination products were frequently lost. Non-recombined FRT substrates found in the F1 plants were recovered in the F2 generation after the Cre::FLP gene segregated out. They produced the recombination products in the F3 generation when crossed back to the FLP-expressing plants. These observations may indicate that the efficiency of site-specific recombination is affected by the plant developmental stage, with site-specific recombination being more prevalent in developing embryos. The Cre::FLP fusion protein was also tested for excisions catalysed by Cre. Excisions were identified in the F1 plants and verified in the F2 plants by polymerase chain reaction and Southern blotting. Both components of the fusion protein (FLP and Cre) were functional and acted with similar efficiency. The crossing strategy proved to be suitable for the genetic engineering of maize using the FLP or Cre site-specific recombination system.  相似文献   

16.
The Cre/lox site-specific recombination controls the excision of a target DNA segment by recombination between two lox sites flanking it, mediated by the Cre recombinase. We have studied the functional expression of the Cre/lox system to excise a transgene from the rice genome. We developed transgenic plants carrying the target gene, hygromycin phosphotransferase (hpt) flanked by two lox sites and transgenic plants harboring the Cre gene. Each lox plant was crossed with each Cre plant reciprocally. In the Cre/lox hybrid plants, the Cre recombinase mediates recombination between two lox sites, resulting in excision of the hpt gene. The recombination event could be detected because it places the CaMV 35S promoter of the hpt gene adjacent to a promoterless gusA gene; as a result the gusA gene is activated and its expression could be visualized. In 73 Cre/lox hybrid plants from various crosses of T0 transgenic plants, 19 expressed GUS, and in 132 Cre/lox hybrid plants from crosses of T2 transgenic plants, 77 showed GUS expression. Molecular data proved the excision event occurred in all the GUS+ plants. Recombination occurred with high efficiency at the early germinal stage, or randomly during somatic development stages. Received. 2 April 2001 / Accepted: 29 June 2001  相似文献   

17.
The increasing use of genetically modified (GM) plants has raised concerns about the escape of transgenes to conventional populations. To counteract possible fitness advantages of GM plants, an advantageous ‘primary transgene’ may be linked to a ‘mitigation’ transgene that is selectively disfavored. A risk related to this technique is the possible break-up of the transgenes. This may lead to the establishment of genotypes that only express the primary transgenic trait and are therefore selectively favored over both conventional and GM genotypes. We study here how the establishment of break-up genotypes in tree populations depends on life history, pollen dispersal kernels, and the linkage between transgenes. To this end, we model the dynamics of an initially homozygous GM population and a conventional population growing next to each other. The simulations are based on a spatially explicit simulation model for population-genotype dynamics. Pollen and seed dispersal are described by fat-tailed dispersal kernels. Break-up of transgenes is due subsequent crossing of GM and conventional genotypes. The spatial pattern of pollen and seed dispersal causes break-up and establishment of new invasive genotypes to occur mostly in the conventional population. The amount of individuals of these genotypes established in the conventional population depends on the interaction between life-history traits, pollen dispersal distances and the linkage of the transgenes. Thus, risk assessment of transgene break-up requires information on the genetics, local dynamics, and dispersal of GM and conventional varieties. The approach presented here provides a tool for combining these different sources of information, and it contributes to the formulation of general rules for the management of GM tree populations.  相似文献   

18.
We report here a new selectable marker for tobacco immature pollen transformation based on the expression of dihydrofolate reductase (dhfr) gene which confers resistance to methotrexate (Mtx). Two immature pollen transformation approaches, i.e., male germ line transformation and particle bombardment of embryogenic mid-bicellular pollen have been used for the production of stable transgenic tobacco plants. In the first method, two methotrexate-resistant plants were selected from a total of 7161 seeds recovered after transformation experiments. In the second method, four methotrexate-resistant plants were obtained from 29 bombardments using 3.7×105 pollen grains per bombardment. Southern analysis confirmed the transgenic nature of T0 and T1 candidate transgenic plants, and a genetic analysis showed that the transgenes are transmitted to subsequent generations.  相似文献   

19.
Three oat ( Avena sativa L.) cultivars have been successfully transformed using an efficient and reproducible in vitro culture system for differentiation of multiple shoots from shoot apical meristems. The transformation was performed using microprojectile bombardment with two plasmids (pBY520 and pAct1-D) containing linked ( hva1-bar) and non-linked ( gus) genes. The hva1 and bar genes cointegrated with a frequency of 100% as expected, and 61.6% of the transgenic plants carried all three genes. Molecular and biochemical analyses in R0, R1 and R2 progenies confirmed stable integration and expression of all transgenes. Localization of the GUS protein in R0 and R1 plants revealed that high-expression of gus occurred in vascular tissues and in the pollen grains of mature flowers. The constitutive expression of HVA1 protein was observed at all developmental stages of transgenic plants, and was particularly stronger during the early seedling stages. R2 progeny of five independent transgenic lines was tested in vitro for tolerance to osmotic (salt and mannitol) stresses. As compared to non-transgenic control plants, transgenic plants maintained a higher growth and showed significantly ( P < 0.05) increased tolerance to stress conditions. Less than 10% of transgenic plants showed symptoms of wilting or death of leaves and, when these symptoms present were delayed in transgenic plants as compared to 80% of non-transgenic plants, either wilted or died. These symptoms confirmed the increased in vitro tolerance in hva1-expressing transgenic plants to non-transgenic plants, providing strong evidence that the HVA1 protein may play an important role in the protection of oats against salinity and possible water-deficiency stress conditions.  相似文献   

20.
The Cre/loxP site-specific recombination system has been used successfully for genome manipulation in a wide range of species. However, in Drosophila melanogaster, a major model organism for genetic analyses, the alternative FLP/FRT system, which is less efficient at least in mammalian cells, has been established, primarily for the generation of genetic mosaics for clonal analyses. To extend genetic methodology in D. melanogaster, we have created transgenic lines allowing tissue-specific expression of Cre recombinase with the UAS/GAL4 system. Surprisingly, chronic expression of Cre recombinase from these transgenes (UAST-cre) was found to be toxic for proliferating cells. Therefore, we also generated transgenic lines allowing the expression of Cre recombinase fused to the ligand-binding domain of the human estrogen receptor (UASP-cre-EBD). We demonstrate that recombination can be efficiently dissociated from toxicity by estrogen-dependent regulation of recombinase activity of the UASP-cre-EBD transgene products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号