首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Five nuclear mutants falling into five different complementation groups are shown to block the maturation of long form mitochondrial cob RNA at five different processing steps. At the same time they prevent complete processing of the oxi 3 RNA, thus exhibiting the same phenotype as mitochondrial box mutants (cyt b- and oxi 3-). The different nuclear factors in question have varying ranges of specificity for the removal of introns from cob RNA, from only one to at the most three introns. Two mutated nuclear elements are shown to be specific for the processing of introns present only in the long form cob gene. One such mutation shows, as expected, no deleterious effect on the processing of the short form cob RNA exchanged into the mutant via cytoduction. The role of nuclear coded factors in the possible translation or activity of introncoded products ("maturases") is discussed for two mutants. Striking parallels are found between diverse polypeptide products, presumably translated from accumulated cob RNA intermediates, in pet- and mit- mutants blocked in the excision of the same intron.  相似文献   

5.
6.
A method has been devised to test intergenic complementation of mutations in the mitochondrial DNA of Saccharomyces cerevisiae. The test is based on the observation that diploids issued from pairwise crosses of certain mit- mutants with deficiencies in cytochrome oxidase, or coenzyme QH2-cytochrome c reductase, acquire high levels of respiratory activity shortly after zygote formation. Under our experimental conditions neither biochemical complementation, interallelic complementation, nor recombination has been found to contribute to any significant extent toward the respiration measured in the diploids at early times. The test has been used to study the number of complementation groups represented by a large number of mit- mutants. Results of pairwise crosses of mutants in the oxi 1, oxi 2, oxi 3, cob 1, and cob 2 loci indicate that complementation occurs between the oxi and cob loci between different oxi loci but not between the two cob loci. The five loci have, therefore, been assigned to four different complementation groups.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Products of the mitochondrial protein-synthesizing system have been labeled in vivo in the presence of cycloheximide in microaerobic cells and in cells from glucose-limited and glucose-repressed aerobic continuous cultures of Saccharomyces cerevisiae. Lipophilic proteins were extracted from labeled mitochondrial membranes with aqueous methanol and neutral and acidic chloroform-methanol solvents. In glucose-limited aerobic and microaerobic cells, about half of the total mitochondrial products were soluble in organic solvents; in contrast, almost all of the labeled products were extracted from glucose-repressed mitochondria. Only trace amounts of labeled product were formed in mitochondrial membranes of a petite mutant. Lipophilic proteins were examined by polyacrylamide gel electrophoresis under dissociating conditions. Most of the label was associated with components of apparent molecular weights 12,000, 14,000 and 16,000. The relative proportions of these species in mitochondrial membranes are dependent on the concentrations of oxygen and glucose in which the cells are grown.  相似文献   

14.
15.
Summary An approach for the screening of mit - mutants, the isolation and preliminary classification of a series of such mutants is reported. Loss and retention of 8 mit - and 6 drug r markers in mitDNA was analyzed in populations of rho- clones derived from four yeast strains. The populations studied constitute a representative fraction of the rho- petites formed during growth at 35° C under the influence of mutation tsp-25 which is in common to the four strains. The majority of the rho- clones retained several of the markers studied. Depending on the marker regarded retention frequencies between 15% (oxi3) and 45% (oli1, cob) were observed. Loss of one and retention of the other of a pair of markers was determined in all rho- clones of the four populations. The frequencies of marker separation by rho- deletion thus obtained are assumed to reflect the distance between markers on the mitochondrial genome: the higher the frequency of separation the longer the distance between two markers. Based on these frequencies a unique order of markers on a circular map was determined. Positions of markers on a scale from 0 to 100 were found to be: cap/ery (0) — olil (16) — cob1-1354 (21) — ana101 (22) — cob2-1625 (24) — oli2 (35) — pho1 (40) — oxi3-2501 (44) — oxi3-3771 (47) — par (65) — oxi2 (79) — oxil (87) tms8 (93) —cap (100). The relevance of this map as to the faithful representation of the topology of gene loci on mitDNA is discussed. Correlation of retention frequencies of markers to their map positions reveals a pronounced polarity: mitDNA segments carrying the cob-oli1 segment prevail whereas segments retaining oxi3 are the least frequent.  相似文献   

16.
17.
1. Mitochondria of Saccharomyces cerevisiae contain two tRNA's that are acylated with threonine. The two isoaccepting species (tRNA1Thr and tRNA2Thr) can be separated by reversed-phase chromatography on RPC-5. 2. A cytoplasmic mutant has been isolated which lacks tRNA1Thr but has normal levels of tRNA2Thr. This mutation was previously shown to map between the oxi 1 and oxi 2 loci on mitochondrial DNA. 3. tRNA1Thr and tRNA2Thr hybridize to wild type mitochondrial but not nuclear DNA and are capable of partially competing with each other. Hybridization of each species to different segments of mitochondrial DNA isolated from p- clones indicate that there are two threonyl tRNA genes. One gene is located between oxi 1 and oxi 2 and codes for tRNA1Thr. The second gene codes for tRNA2Thr and is near the cap locus. 4. Binding assays to E. coli ribosomes indicate that tRNA2Thr recognizes the threonine triplet ACA and may also recognize the other three triplets but with a much lower efficiency. None of the four codons for threonine stimulate the binding of tRNA1Thr to the ribosomes.  相似文献   

18.
19.
The nuclear cyt-4 mutants of Neurospora crassa have been shown previously to be defective in splicing the group I intron in the mitochondrial large rRNA gene and in 3' end synthesis of the mitochondrial large rRNA. Here, Northern hybridization experiments show that the cyt-4-1 mutant has alterations in a number of mitochondrial RNA processing pathways, including those for cob, coI, coII and ATPase 6 mRNAs, as well as mitochondrial tRNAs. Defects in these pathways include inhibition of 5' and 3' end processing, accumulation of aberrant RNA species, and inhibition of splicing of both group I introns in the cob gene. The various defects in mitochondrial RNA synthesis in the cyt-4-1 mutant cannot be accounted for by deficiency of mitochondrial protein synthesis or energy metabolism, and they suggest that the cyt-4-1 mutant is defective in a component or components required for processing and/or turnover of a number of different mitochondrial RNAs. Defective splicing of the mitochondrial large rRNA intron in the cyt-4-1 mutant may be a secondary effect of failure to synthesize pre-rRNAs having the correct 3' end. However, a similar explanation cannot be invoked to account for defective splicing of the cob pre-mRNA introns, and the cyt-4-1 mutation may directly affect splicing of these introns.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号