首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Thirty-six programs have been set up to revegetate the degraded lake wetlands in east China since 2002. Most projects however faced deficiency of submerged macrophyte propagules. To solve the problem, alternative seedling sources must be found besides traditional field collection. This paper deals with an in vitro propagation protocol for two popularly used submerged macrophytes, Myriophyllum spicatum L. and Potamogeton crispus L. Full strength Murashige and Skoog-based liquid media (MS) plus 3% sucrose in addition to 0–2.0 mg l−1 6-benzylaminopurine (BA) and 0–1.0 mg l−1 indoleacetic acid (IAA) were tried for shoot regeneration. Meanwhile, full, half or quarter strength MS in addition to 0, 0.1 or 0.2 mg l−1 naphthaleneacetic acid (NAA) were tested for root induction, respectively. Results indicated that both species had the ability of regeneration from stem fragments in MS without further regulators. However, the addition of 2.0 mg l−1 BA with 0.2 or 1.0 mg l−1 IAA in MS drastically stimulated the regeneration efficiency of M. spicatum, while the addition of 2.0 mg l−1 BA with 0.2 or 0.5 mg l−1 IAA in MS significantly stimulated that of P. crispus. For root induction, full strength MS in combination with 0.1or 0.2 mg l−1 NAA was preferred by M. spicatum, and the same MS without or with 0.1 mg l−1 NAA was preferred by P. crispus. Seedlings of each species produced from tissue culture room had a 100% survival rate on clay, sandy loam or their mixture (1:1) in an artificial pond, and phenotypic plasticity was exhibited when the nutrient levels varied among the three types of sediments. This acclimation of seedlings helped develop the shoot and root systems, which ensured seedling quality and facilitated the transplantation. Our study has established an effective protocol to produce high quality seedlings for lake revegetation programs at a larger scale. Since the two species we tested represent different regeneration performances in nature but shared similar in vitro propagation conditions, this study has indicated a potentially wide use of the common media for preparing seedlings of other submerged macrophytes.  相似文献   

2.
New fluorescent polymeric materials were synthesized by grafting the nucleobase cytosine on to the backbone of agarose and κ-carrageenan, employing a rapid water based method under microwave irradiation using potassium persulphate (KPS) as an initiator. The emission spectrum of the modified agarose and κ-carrageenan recorded in aqueous solution (5 × 10−5 M) exhibited emission maxima (λem,max) at 348 nm by excitation at 266 nm. The emission intensity was enhanced by ca. 104% and 60% compared to that of pure cytosine solution of the same concentration. When the concentration of the pure cytosine solution is made equivalent to the concentration of the cytosine molar component (3.09 × 10−5) and (3.5 × 10−5) present in 5 × 10−5 M solution of modified agarose and κ-carrageenan, respectively, then ca. 143% and 81% enhancement in emission intensity was observed. The remarkable fluorescent activity of the agarose-cytosine derivative may have potential uses as sensor in various applications.  相似文献   

3.
4.
Myriophyllum spicatum L. is a nonindigenous invasive plant in North America that can displace the closely related native Myriophyllum sibiricum Komarov. We analyzed the chemical composition (including: C, N, P, polyphenols, lignin, nonpolar extractables, and sugars) of M. spicatum and M. sibiricum and determined how the chemistry of the two species varied by plant part with growing environment (lake versus tank), irradiance (full sun versus 50% shading), and season (July through September). M. spicatum had higher concentrations of carbon, polyphenols and lignin (C: 47%; polyphenols: 5.5%; lignin: 18%) than M. sibiricum (C: 42%; polyphenols: 3.7%; lignin: 9%) while M. sibiricum had a higher concentration of ash under all conditions (12% versus 8% for M. spicatum). Apical meristems of both species had the highest concentration of carbon, polyphenols, and tellimagrandin II, followed by leaves and stems. Tellimagrandin II was present in apical meristems of both M. spicatum (24.6 mg g−1 dm) and M. sibiricum (11.1 mg g−1 dm). Variation in irradiance from 490 (shade) to 940 (sun) μmol of photons m−2 s−1 had no effect on C, N, and polyphenol concentrations, suggesting that light levels above 490 μmol of photons m−2 s−1 do not alter chemical composition. The higher concentration of polyphenols and lignin in M. spicatum relative to M. sibiricum may provide advantages that facilitate invasion and displacement of native plants.  相似文献   

5.
The uptake kinetics of phosphate (Pi) by Myriophyllum spicatum was determined from adsorption and absorption under light and dark conditions. Pi uptake was light dependent and showed saturation following the Michaelis-Menten relation (in light: V = 16.91 × [Pi](1.335 + [Pi]), R2 = 0.90, p < 0.001; in the dark: V = 5.13 × [Pi](0.351 + [Pi]), R2 = 0.77, p < 0.001). Around 77% of the loss of Pi in the water column was absorbed into the tissue of M. spicatum, and only 23% was adsorbed on the surface of the plant shoots. Our study shows that M. spicatum shoots have a much higher affinity (in light: 3.9 μmol g−1 dw h−1 μM−1; in the dark: 3.7 μmol g−1 dw h−1 μM−1) and Vmax (maximum uptake rate, shoot light) for Pi uptake than many other aquatic macrophytes (in light: 0.002-0.23 μmol g−1 dw h−1 μM−1; in the dark: 0.002-0.19 μmol g−1 dw h−1 μM−1), which may provide a competitive advantage over other macrophytes across a wide range of Pi concentrations.  相似文献   

6.
An efficient method of regeneration for antidiabetic plant (Stevia rebaudiana) has been established for healthy biomass and main steviol glycosides (SGs) production, using different PGRs and agar concentrations. Higher callus induction (93.3%) was recorded when leaf explants were placed on an MS medium supplemented with 3.5 gL−1 agar and 2.0 mgL−1 2,4-D. The addition of 7.0 gL−1 agar and BA (1.0, 2.0 and 4.0 mgL−1) significantly (< 0.01) influences shooting response (100%). A maximum mean shoot length (13.03 cm) and 28 shoots per explant were observed on a medium containing 1.0 mgL−1 BA. However, the maximum number of leaves (132.67) was encouraged by the addition of BA (1.0 mgL−1) and Kin (1.0 mgL−1). Lower agar (3.5 gL−1), IAA (2.0 mgL−1), and NAA (2.0 mgL−1) concentrations significantly influence the rooting percent (100%), the mean root length (2.9 cm), and the number of roots per plantlet (26.3). These plantlets were successfully acclimatized in the soil. The BA (3.0 mgL−1) in combination with Kin (3.0 mgL−1) and 3.5 gL−1 agar increases dulcoside-A content (Dul-A; 71.8 μg/g-DW) in shoots compared to control (50.81 μg/g-DW). Similar PGRs with 7.0 gL−1 significantly increases the production of steviosides (Stev. 82.48 μg/g-DW). A higher rebaudioside-A content (Reb-A; 12.35 μg/g-DW) was observed in shoots that underwent the addition of BA (1.0 mgL−1) and 7.0 gL−1 agar than in control (07.39 μg/g-DW). Hereby, we developed an efficient and cost-effective method for regeneration and major SGs production, which could be helpful for future studies on this species.  相似文献   

7.
A Mn(II) complex, MnL (L = sodium (E)-3-((1-carboxyethylimino)methyl)-4-hydroxybenzenesulfonate), was synthesized and characterized using elemental analysis and IR spectroscopy. Cyclic voltammetry (CV) and fluorescence spectroscopy were used to investigate the interaction between MnL and salmon sperm DNA. It was revealed that MnL presented high electrochemical activity on glassy carbon electrode (GCE), and it could be intercalated into the double helices of double-stranded DNA (dsDNA). Using MnL as the hybridization indicator, a novel and sensitive electrochemical DNA biosensor based on multiwall carbon nanotubes functionalized with carboxyl groups (MWCNTs-COOH, on which DNA probes were covalently immobilized) was prepared. The target single-stranded DNA (ssDNA) could be quantified ranging from 6.7 × 10−10 M to 8.4 × 10−9 M with good linearity (r = 0.9922). A detection limit of 1.4 × 10−10 M (3σ, n = 9) was achieved.  相似文献   

8.
A novel molecularly imprinted polymer that could be applied as enrichment sorbent was prepared using methimazole (MMZ) as the template molecule, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker. Though evaluated by static, kinetic and competitive adsorption tests, the polymer exhibited high adsorption capacity, fast kinetics and good selective ability. A method for determination of trace MMZ was developed using this polymer as enrichment sorbent coupled with high performance liquid chromatography focusing on complex biological matrices. Under the optimum experimental conditions, the MMZ standard is linear within the concentration range studied, that is, from 0.5 μg L−1 to 150 μg L−1 (r2 = 0.9941). Lower limits of detection (LOD, at S/N = 3) and quantification (LOQ, at S/N = 10) in pig samples were 0.63 μg kg−1 and 2.10 μg kg−1 for kidney, 0.51 μg kg−1 and 1.70 μg kg−1 for liver, 0.56 μg kg−1 and 1.86 μg kg−1 for muscle, respectively. Recoveries and relative standard deviation (RSD, n = 9) values for precision in the developed method were from 71.14% to 88.41% and from 2.53% to 6.18%.  相似文献   

9.
Although many emergent wetland plants may readily tolerate rapid changes in flooding and drying under freshwater conditions, their tolerance to dynamic water regimes may be compromised by salinity. Melaleuca-dominated woodlands occur naturally in Australia, south-east Asia and New Caledonia. Coastal wetlands dominated by Swamp paperbark (Melaleuca ericifolia) (Myrtaceae), native to south-east Australia, are commonly degraded as a consequence of altered water regime and salinity. This study simulates the release of M. ericifolia seeds from the aerial canopy under a range of water regime and salinity scenarios to determine conditions limiting sexual recruitment. Plant growth and survival were examined following seed release under two static water regimes (moist and flooded sediment) and two dynamic water regimes (simulated drawdown—“flooded-moist” and simulated re-flooding—“moist-flooded”). All water regimes, excluding the continuously flooded regime, were examined at three salinities: 0.1 dS m−1 (fresh), 8 dS m−1 and 16 dS m−1, over a 50-day period commencing 44 days after the seeds were sown. The flooded treatment was examined at 0.1 dS m−1 only, to confirm that flooding prohibits establishment of M. ericifolia. Seed and seedlings were positively buoyant and establishment was limited to moist soil. Flotation of seedlings in the flooded-moist treatment, however, did not inhibit subsequent establishment upon moist soil, even at the highest salinity of 16 dS m−1. Growth, but not survival, was reduced by salinities of 8 dS m−1 and 16 dS m−1 in the moist treatment. Flotation of seedlings in saline water in the flooded-moist treatment did not reduce growth or survival compared with fresh water. Survival of seedlings in the moist-flooded treatment was lower in the freshwater and 16 dS m−1 treatment compared with the moist treatment, but not at 8 dS m−1. These findings suggest that water regime influences establishment of young M. ericifolia plants more strongly than does salinity, at least up to ∼1/3 seawater and in the short term (<2 months). Seedlings are likely to establish during a drawdown where the soil is exposed at salinities of ≤16 dS m−1. In contrast, premature re-flooding of seedlings, even with fresh water, will compromise survival.  相似文献   

10.
To characterize driving forces and driven processes in formation of a large-interface, wrapped protein-DNA complex analogous to the nucleosome, we have investigated the thermodynamics of binding the 34-base pair (bp) H′ DNA sequence to the Escherichia coli DNA-remodeling protein integration host factor (IHF). Isothermal titration calorimetry and fluorescence resonance energy transfer are applied to determine effects of salt concentration [KCl, KF, K glutamate (KGlu)] and of the excluded solute glycine betaine (GB) on the binding thermodynamics at 20 °C. Both the binding constant Kobs and enthalpy ΔH°obs depend strongly on [salt] and anion identity. Formation of the wrapped complex is enthalpy driven, especially at low [salt] (e.g., ΔHoobs = − 20.2 kcal·mol− 1 in 0.04 M KCl). ΔH°obs increases linearly with [salt] with a slope (dΔH°obs/d[salt]), which is much larger in KCl (38 ± 3 kcal·mol− 1 M− 1) than in KF or KGlu (11 ± 2 kcal·mol− 1 M− 1). At 0.33 M [salt], Kobs is approximately 30-fold larger in KGlu or KF than in KCl, and the [salt] derivative SKobs = dlnKobs/dln[salt] is almost twice as large in magnitude in KCl (− 8.8 ± 0.7) as in KF or KGlu (− 4.7 ± 0.6).A novel analysis of the large effects of anion identity on Kobs, SKobs and on ΔH°obs dissects coulombic, Hofmeister, and osmotic contributions to these quantities. This analysis attributes anion-specific differences in Kobs, SKobs, and ΔH°obs to (i) displacement of a large number of water molecules of hydration [estimated to be 1.0(± 0.2) × 103] from the 5340 Å2 of IHF and H′ DNA surface buried in complex formation, and (ii) significant local exclusion of F and Glu from this hydration water, relative to the situation with Cl, which we propose is randomly distributed. To quantify net water release from anionic surface (22% of the surface buried in complexation, mostly from DNA phosphates), we determined the stabilizing effect of GB on Kobs: dlnKobs/d[GB]  = 2.7 ± 0.4 at constant KCl activity, indicating the net release of ca. 150 H2O molecules from anionic surface.  相似文献   

11.
A novel 4-butoxyethoxy-N-octadecyl-1,8-naphthalimide (BON) was synthesized as a fluorescent probe for the determination of proteins. The interactions between BON and bovine serum albumin (BSA) were studied by fluorescence spectroscopy and UV-vis absorption spectroscopy. Fluorescence data revealed that the fluorescence quenching of BSA by BON was likely the result of the formation of the BON-BSA complex. According to the modified Stern-Volmer equation, the binding constants of BON with BSA at four different temperatures were obtained. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) for the reaction were calculated to be −23.27 kJ mol−1 and 10.40 J mol−1 K−1 according to van’t Hoff equation, indicating that the hydrogen bonds and hydrophobic interactions played a dominant role in the binding of BON to BSA. Furthermore, displacement experiments using warfarin indicated that BON could bind to site I of BSA. The effect of BON on the conformation of BSA was also analyzed by synchronous fluorescence and three-dimensional fluorescence spectra. A new fluorescence quenching assay of the proteins BSA using BON in the HCl-Tris (pH 7.4) buffer solution was developed with maximum excitation and emission wavelengths of 373 and 489 nm, respectively. The linear range was 0.1-10.0 × 10−5 mol L−1 with detection limits were determined to be 1.76 × 10−8 mol L−1. The effect of metal cations on the fluorescence spectra of BON in ethanol was also investigated. Determination of protein in human serum by this method gave results which were very close to those obtained by using Coomassie Brilliant Blue G-250 colorimetry.  相似文献   

12.
The objective of this research was to develop an efficient protocol for shoot regeneration from leaf segments of the Chrysanthemum cv. Vivid Scarlet by examining the effects of plant growth regulators, dark incubation period, gelling agents, and silver nitrate. The highest number of shoots per explant (12.3) was regenerated from leaf explants cultured on Murashige and Skoog (MS) medium supplemented with a combination of 1 mg L−1 of 6-benzyladenine (BA) and 2 mg L−1 of α-naphthaleneacetic acid (NAA) under light conditions without any initial dark period. Gelrite was the most effective gelling agent for shoot regeneration among those tested, whereas the presence of silver nitrate distinctly inhibited shoot regeneration. Superior plant growth and rooting was observed on a hormone-free MS medium solidified with Gelrite. Flow cytometry analysis revealed no ploidy variation between the regenerated plants and the mother plant grown under greenhouse conditions. The established protocol was applicable to shoot regeneration for four out of six cultivars tested. This research will facilitate the genetic transformation and micropropagation of Chrysanthemum cultivars.  相似文献   

13.
Temperature-sensitive liposomes (TSLs) loaded with doxorubicin (Dox), and Magnetic Resonance Imaging contrast agents (CAs), either manganese (Mn2 +) or [Gd(HPDO3A)(H2O)], provide the advantage of drug delivery under MR image guidance. Encapsulated MRI CAs have low longitudinal relaxivity (r1) due to limited transmembrane water exchange. Upon triggered release at hyperthermic temperature, the r1 will increase and hence, provides a means to monitor drug distribution in situ. Here, the effects of encapsulated CAs on the phospholipid bilayer and the resulting change in r1 were investigated using MR titration studies and 1H Nuclear Magnetic Relaxation Dispersion (NMRD) profiles. Our results show that Mn2 + interacted with the phospholipid bilayer of TSLs and consequently, reduced doxorubicin retention capability at 37 °C within the interior of the liposomes over time. Despite that, Mn2 +-phospholipid interaction resulted in higher r1 increase, from 5.1 ± 1.3 mM− 1 s− 1 before heating to 32.2 ± 3 mM− 1 s− 1 after heating at 60 MHz and 37 °C as compared to TSL(Gd,Dox) where the longitudinal relaxivities before and after heating were 1.2 ± 0.3 mM− 1 s− 1 and 4.4 ± 0.3 mM− 1 s− 1, respectively. Upon heating, Dox was released from TSL(Mn,Dox) and complexation of Mn2 + to Dox resulted in a similar Mn2 + release profile. From 25 to 38 °C, r1 of [Gd(HPDO3A)(H2O)] gradually increased due to increase transmembrane water exchange, while no Dox release was observed. From 38 °C, the release of [Gd(HPDO3A)(H2O)] and Dox was irreversible and the release profiles coincided. By understanding the non-covalent interactions between the MRI CAs and phospholipid bilayer, the properties of the paramagnetic TSLs can be tailored for MR guided drug delivery.  相似文献   

14.
A case study on Centaurea gymnocarpa Moris & De Not., a narrow endemic species, was carried out by analyzing its morphological, anatomical, and physiological traits in response to natural habitat stress factors under Mediterranean climate conditions. The results underline that the species is particularly adapted to the environment where it naturally grows. At the plant level, the above-ground/below-ground dry mass (1.73 ± 0.60) shows its investment predominately in the above-ground structure with a resulting total leaf area per plant of 1399 ± 94 cm2. The senescent attached leaves at the base of the plant contribute to limit leaf transpiration by shading soil around the plant. Moreover, the dense C. gymnocarpa leaf pubescence, leaf rolling, the relatively high leaf mass area (LMA = 12.3 ± 1.3 mg cm−2) and leaf tissue density (LTD = 427 ± 44 mg cm−3) contribute to limit leaf transpiration, also postponing leaf death under dry conditions. At the physiological level, a relatively low respiration/photosynthesis ratio (R/PN) in spring results from high R [2.26 ± 0.59 μmol (CO2) m−2 s−1] and PN [12.3 ± 1.5 μmol (CO2) m−2 s−1]. The high photosynthetic nitrogen use efficiency [PNUE = 15.5 ± 0.4 μmol (CO2) g−1 (N) s−1] shows the large amount of nitrogen (N) invested in the photosynthetic machinery of new leaves, associated to a high chlorophyll content (Chl = 35 ± 5 SPAD units). On the contrary, the highest R/PN ratio (1.75 ± 0.19) in summer is due to a significant PN decrease and increase of R in response to drought. The low PNUE [1.5 ± 0.2 μmol (CO2) g−1 (N) s−1] in this season is indicative of a greater N investment in leaf cell walls which may contribute to limit transpiration. On the contrary, the low R/PN ratio (0.05 ± 0.02) in winter is resulting from the limited enzyme activity of the respiratory apparatus [R = 0.23 ± 0.08 μmol (CO2) m−2 s−1] while the low PNUE [3.5 ± 0.2 μmol (CO2) g−1 (N) s−1] suggests that low temperatures additionally limit plant production. The experiment of the imposed water stress confirms that the C. gymnocarpa growth capability is in conformity with the severe conditions of its natural habitat, likewise as it may be the case with others narrow endemic species that have occupied niches with similar extreme conditions.  相似文献   

15.
Chlorophyll fluorescence analysis is one of the most convenient and widespread techniques used to monitor photosynthesis performance in plants. In this work, after a brief overview of the mechanisms of regulation of photosynthetic electron transport and protection of photosynthetic apparatus against photodamage, we describe results of our study of the effects of actinic light intensity on photosynthetic performance in Tradescantia species of different ecological groups. Using the chlorophyll fluorescence as a probe of photosynthetic activity, we have found that the shade-tolerant species Tradescantia fluminensis shows a higher sensitivity to short-term illumination (≤20 min) with low and moderate light (≤200 μE m−2 s−1) as compared with the light-resistant species Tradescantia sillamontana. In T. fluminensis, non-photochemical quenching of chlorophyll fluorescence (NPQ) and photosystem II operational efficiency (parameter ΦPSII) saturate as soon as actinic light reaches ≈200 μE m−2 s−1. Otherwise, T. sillamontana revealed a higher capacity for NPQ at strong light (≥800 μE m−2 s−1). The post-illumination adaptation of shade-tolerant plants occurs slower than in the light-resistant species. The data obtained are discussed in terms of reactivity of photosynthetic apparatus to short-term variations of the environment light.  相似文献   

16.
Lead accumulation by free and immobilized cyanobacteria, Lyngbya majuscula and Spirulina subsalsa was studied. Exponentially growing biomass was exposed to 1-20 mg L−1 of Pb(II) solution at pH 6, 7 and 8 for time periods ranging from 10 min to 48 h. L. majuscula accumulated 10 times more Pb (13.5 mg g−1) than S. subsalsa (1.32 mg g−1) at pH 6 within 3 h of exposure to 20 mg L−1 Pb(II) solution and 76% of the Pb could be recovered using 0.1 M EDTA. This chelator (2 μM) did not influence Pb accumulation whereas 100 μM citrate increased that of S. subsalsa 6- to 8-fold. L. majuscula filaments enmeshed in a glass wool packed in a column removed 95.8% of the Pb from a 5 mg L−1 Pb solution compared to free and dead biomass which removed 64 and 33.6% Pb respectively. A 92.5% recovery of accumulated Pb from the immobilized biomass suggests that repeated absorption-desorption is possible.  相似文献   

17.
Methane dynamics across wetland plant species   总被引:5,自引:0,他引:5  
We examined patterns of methane flux, plant biomass, and microbial methanogenic populations in nine wetland plant species. Methane dynamics varied across plant functional groupings, with patterns distinctive among forbs, clonal dominants, and tussock/clump-forming graminoids. Carex stricta and Scirpus atrovirens showed the highest emissions (31.7 and 20.6 mg CH4-C m−2 h−1), followed by other tussock- or clump-forming graminoids that averaged 11.0 mg CH4-C m−2 h−1 (Scirpus cyperinus, Glyceria striata, and Juncus effusus). The clonal dominants (Phalaris arundinacea and Typha angustifolia) had the lowest methane emissions (1.3 and 3.4 mg CH4-C m−2 h−1) of all seven graminoid species, and the forbs (Mimulus ringens and Verbena hastata) emitted no detectable methane flux from their leaves. In general, methane emissions decreased with greater plant biomass. Terminal restriction fragment analysis (T-RFLP) of archaeal 16S rRNA revealed that the structure of the soil methanogen communities isolated from plant rhizospheres had no effect on methane flux. The relative proportions of the different terminal fragments were not correlated with either methane emissions or plant biomass. Methanogen populations from J. effusus soils were dominated by acetoclastic archaea of the Methanosarcinaceae and Methanosaetaceae families, while all other graminoid soils were colonized primarily by hydrogenotrophic archaea of the Methanobacteriaceae family. The results indicate that plant functional groups and plant biomass are useful in predicting methane flux differences across plant species, while soil methanogen community structure showed no distinguishable patterns.  相似文献   

18.
One-dimensional organic/inorganic composite coordination polymer has been synthesised by the reaction of manganese(II) chloride with the chelating bidentate ligand, 1,10-phenanthroline (1,10-phen). X-ray single crystal analysis shows a doubly chloride bridged 1-D polymer, [Mn(μ-Cl)2(phen)]n (1), where manganese(II) ions possess octahedral environment. The complex is characterised by elemental analysis, different spectroscopic, electrochemical and low temperature magnetic susceptibility measurements. 1 exhibits strong fluorescence emission band at 410 nm and can serve as potential photoactive material as indicated from the characteristic fluorescence properties. Magnetic susceptibility measurements reveal a weak ferromagnetic interaction between the two high-spin Mn(II) ions of J = 0.017 cm−1.  相似文献   

19.
Lead (Pb) EC50 values in the very sensitive early development phases (48–72 h post-fertilization) of the mussels Mytilus galloprovincialis and Mytilus trossolus and sea urchin Strongylocentrotus purpuratus in 100% sea water were: M. trossolus — 45 (95% C.I. = 22–72) μg L− 1; M. galloprovincialis — 63 (36–94) μg L− 1; S. purpuratus — 74 (50–101) μg L− 1. Salinity thresholds for normal development varied: M. trossolus > 21 ppt; M. galloprovincialis > 28 ppt; S. purpuratus ≥ 30 ppt. Addition of two spectroscopically distinct dissolved organic matters (DOM) from fresh water (Nordic Reservoir) and sea water (Inshore) moderately decreased the toxicity of Pb to both mussels, but not in a concentration-dependent fashion, with only an approximate doubling of EC50 over the range of 1.4–11.2 mg C L− 1. Independent Pb binding capacity determinations for DOC explained the lack of a relationship between DOM concentration and toxicity. Salinity had no effect on Pb toxicity down to 21 ppt in M. trossolus, and low salinity (21 ppt) did not enhance the protective effect of DOC. Both DOMs increased the toxicity of Pb in developing sea urchin embryos, in contrast to mussels. Relative to Pb, the organisms were 6–9 fold less sensitive to Zn on a molar basis in 100% seawater with the following Zn EC50s: M. trossolus — 135 (103–170) μg L− 1; M. galloprovincialis — 172 (126–227) μg L− 1, S. purpuratus — 151 (129–177) μg L− 1. Nordic Reservoir and Inshore DOM (2–12 mg C L− 1) had no significant effect on Zn toxicity to mussels, in accord with voltammetry data showing an absence of any strong ligand binding for Zn by DOMs. As with Pb, DOMs increased Zn toxicity to urchin larvae. Critical Tissue Residues (CTR) based on whole body concentrations of Pb and Zn were determined for M. galloprovincialis at 48 h and S. purpuratus at 72 h. The median lethal CTR values (LA50s), useful parameters for development of saltwater Biotic Ligand Models (BLMs), were approximately 4-fold higher on a molar basis for Zn than for Pb. The latter were not altered by DOM exposure, despite increased EC50 values, in accord with the tenets of the BLM.  相似文献   

20.
Mixed ligand complexes: [Co(L)(bipy)] · 3H2O (1), [Ni(L)(phen)] · H2O (2), [Cu(L)(phen)] · 3H2O (3) and [Zn(L)(bipy)] · 3H2O (4), where L2− = two -COOH deprotonated dianion of N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter, H2L), bipy = 2,2′ bipyridine and phen = 1,10-phenanthroline have been isolated and characterized by elemental analysis, spectral and magnetic measurements and thermal studies. Single crystal X-ray diffraction studies show octahedral geometry for 1, 2 and 4 and square pyramidal geometry for 3. Equilibrium studies in aqueous solution (ionic strength I = 10−1 mol dm−3 (NaNO3), at 25 ± 1 °C) using different molar proportions of M(II):H2L:B, where M = Co, Ni, Cu and Zn and B = phen, bipy and en (ethylene diamine), however, provides evidence of formation of mononuclear and binuclear binary and mixed ligand complexes: M(L), M(H−1L), M(B)2+, M(L)(B), M(H−1L)(B), M2(H−1L)(OH), (B)M(H−1L)M(B)+, where H−1L3− represents two -COOH and the benzimidazole N1-H deprotonated quadridentate (O, N, O, N), or, quinquedentate (O, N, O, N, N) function of the coordinated ligand H2L. Binuclear mixed ligand complex formation equilibria: M(L)(B) + M(B)2+ ? (B)M(H−1L)M(B)+ + H+ is favoured with higher π-acidity of the B ligands. For Co(II), Ni(II) and Cu(II), these equilibria are accompanied by blue shift of the electronic absorption maxima of M(II) ions, as a negatively charged bridging benzimidazolate moiety provides stronger ligand field than a neutral one. Solution stability of the mixed ligand complexes are in the expected order: Co(II) < Ni(II) < Cu(II) > Zn(II). The Δ log KM values are less negetive than their statistical values, indicating favoured formation of the mixed ligand complexes over the binary ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号