首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activity-dependent increase in cytosolic calcium ([Ca2+]i) is a prerequisite for many neuronal functions. We previously reported a strong direct depolarization, independent of glutamate receptors, effectively caused a release of Ca2+ from ryanodine-sensitive stores and induced the synthesis of endogenous cannabinoids (eCBs) and eCB-mediated responses. However, the cellular mechanism that initiated the depolarization-induced Ca2+-release is not completely understood. In the present study, we optically recorded [Ca2+]i from CA1 pyramidal neurons in the hippocampal slice and directly monitored miniature Ca2+ activities and depolarization-induced Ca2+ signals in order to determine the source(s) and properties of [Ca2+]i-dynamics that could lead to a release of Ca2+ from the ryanodine receptor. In the absence of depolarizing stimuli, spontaneously occurring miniature Ca2+ events were detected from a group of hippocampal neurons. This miniature Ca2+ event persisted in the nominal Ca2+-containing artificial cerebrospinal fluid (ACSF), and increased in frequency in response to the bath-application of caffeine and KCl. In contrast, nimodipine, the antagonist of the L-type Ca2+ channel (LTCC), a high concentration of ryanodine, the antagonist of the ryanodine receptor (RyR), and thapsigargin (TG) reduced the occurrence of the miniature Ca2+ events. When a brief puff-application of KCl was given locally to the soma of individual neurons in the presence of glutamate receptor antagonists, these neurons generated a transient increase in the [Ca2+]i in the dendrosomal region. This [Ca2+]i-transient was sensitive to nimodipine, TG, and ryanodine suggesting that the [Ca2+]i-transient was caused primarily by the LTCC-mediated Ca2+-influx and a release of Ca2+ from RyR. We observed little contribution from N- or P/Q-type Ca2+ channels. The coupling between LTCC and RyR was direct and independent of synaptic activities. Immunohistochemical study revealed a cellular localization of LTCC and RyR in a juxtaposed configuration in the proximal dendrites and soma. We conclude in the hippocampal CA1 neuron that: (1) homeostatic fluctuation of the resting membrane potential may be sufficient to initiate functional coupling between LTCC and RyR; (2) the juxtaposed localization of LTCC and RyR has anatomical advantage of synchronizing a Ca2+-release from RyR upon the opening of LTCC; and (3) the synchronized Ca2+-release from RyR occurs immediately after the activation of LTCC and determines the peak amplitude of depolarization-induced global increase in dendrosomal [Ca2+]i.  相似文献   

2.
Changes in the intracellular calcium concentration ([Ca2+]i) convey signals that are essential to the life and death of neurons. Ca2+-induced Ca2+-release (CICR), a process in which a modest elevation in [Ca2+]i is amplified by a secondary release of Ca2+ from stores within the cell, plays a prominent role in shaping neuronal [Ca2+]i signals. When CICR becomes regenerative, an explosive increase in [Ca2+]i generates a Ca2+ wave that spreads throughout the cell. A discrete threshold controls activation of this all-or-none behavior and cellular context adjusts the threshold. Thus, the store acts as a switch that determines whether a given pattern of electrical activity will produce a local or global Ca2+ signal. This gatekeeper function seems to control some forms of Ca2+-triggered plasticity in neurons. BioEssays 21:743–750, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

3.
Intracellular calcium ([Ca2+]i) plays a pivotal role in neuronal ischemia. The aim of the present study was to investigate the routes of Ca2+ entry during non-excitotoxic oxygen and glucose deprivation (OGD) in acutely dissociated rat CA1 neurons. During OGD the fluo-3/fura red ratio reflecting [Ca2+]i increased rapidly and irreversibly. [Ca2+]i increased to the same degree in Ca2+ depleted medium, and also when both the ryanodine receptors (RyR) and the inositol 1,4,5-trisphosphate (IP3) receptors were blocked. When the endoplasmic reticulum (ER) Ca2+ stores were emptied with thapsigargin no increase in [Ca2+]i was observed independent of extracellular Ca2+. The OGD induced Ca2+ deregulation in isolated CA1 neurons is not prevented by removing Ca2+, or by blocking the IP3– or RyR receptors. However, when SERCA was blocked, no increase in [Ca2+]i was observed suggesting that SERCA dysfunction represents an important mechanism for ischemic Ca2+ overload.  相似文献   

4.
The effect of hyposmotic conditions on the concentration of intracellular free calcium ([Ca2+]i) was studied in cultured cerebellar granule cells and cerebral cortical neurons after loading of the cells with the fluorescent Ca2+ chelator Fluo-3. It was found that in both types of neurons exposure to media with a decrease in osmolarity of 20 to 50% of the osmolarity in the isosmotic medium (320 mOsm) led to a dose dependent increase in [Ca2+]i with a time course showing the highest value at the earliest measured time point, i.e. 40 s after exposure to the hyposmotic media and a subsequent decline towards the basal level during the following 320 s. The response in the cortical neurons was larger than in the granule cells but both types of neurons exhibited a similar increase in [Ca2+]i after expoxure to 50 mM K+ which was of the same magnitude as the increase in [Ca2+]i observed in the cortical neurons exposed for 40 s to a medium with a 50% reduction in osmolarity. In both types of neurons the blocker of voltage gated Ca2+ channels verapamil had no effect on the hyposmolarity induced increase in [Ca2+]i. On the contrary, this increase in [Ca2+]i was dependent upon external calcium and could be inhibited partly or completely by the inorganic blockers of Ca2+ channels Mg2+ and La3+. Dantrolene which prevents release of Ca2+ from internal stores had no effect. The results show that exposure of neurons to hyposmotic conditions leading to swelling results in a large increase in free intracellular Ca2+ which represents an influx of Ca2+ rather than a release of Ca2+ from internal, dantrolene sensitive stores.  相似文献   

5.
Orexins, novel excitatory neuropeptides from the lateral hypothalamus, have been strongly implicated in the regulation of sleep and wakefulness. In this study, we explored the effects and mechanisms of orexin A on intracellular free Ca2+ concentration ([Ca2+]i) of freshly dissociated neurons from layers V and VI in prefrontal cortex (PFC). Changes in [Ca2+]i were measured with fluo-4/AM using confocal laser scanning microscopy. The results revealed that application of orexin A (0.1 ≈1 μM) induced increase of [Ca2+]i in a dose-dependent manner. This elevation of [Ca2+]i was completely blocked by pretreatment with selective orexin receptor 1 antagonist SB 334867. While depletion of intracellular Ca2+ stores by the endoplasmic reticulum inhibitor thapsigargin (2 μM), [Ca2+]i in PFC neurons showed no increase in response to orexin A. Under extracellular Ca2+-free condition, orexin A failed to induce any changes of Ca2+ fluorescence intensity in these acutely dissociated cells. Our data further demonstrated that the orexin A-induced increase of [Ca2+]i was completely abolished by the inhibition of intracellular protein kinase C or phospholipase C activities using specific inhibitors, BIS II (1 μM) and D609 (10 μM), respectively. Selective blockade of L-type Ca2+ channels by nifedipine (5 μM) significantly suppressed the elevation of [Ca2+]i induced by orexin A. Therefore, these findings suggest that exposure to orexin A could induce increase of [Ca2+]i in neurons from deep layers of PFC, which depends on extracellular Ca2+ influx via L-type Ca2+ channels through activation of intracellular PLC-PKC signaling pathway by binding orexin receptor 1.  相似文献   

6.
Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca2+ stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca2+ imaging, we found that the depletion of ER/SR Ca2+ stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca2+ ([Ca2+]i), followed by sustained increase depending on extracellular Ca2+. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na+/Ca2+ exchanger inhibitors, inhibited [Ca2+]i relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl3) or by an increased extracellular Ca2+([Ca2+]o) increased the concentration of intracelluar Ca2+, whereas, the sustained elevation of [Ca2+]i was reduced in the presence of SKF96365. Similarly, the duration of [Ca2+]i increase was also shortened in the absence of extracellular Ca2+. Western blot analysis showed that GdCl3 increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl3. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca2+-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.  相似文献   

7.
Synaptically activated postsynaptic [Ca2+]i increases occur through three main pathways: Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ entry through ligand-gated channels, and Ca2+ release from internal stores. The first two pathways have been studied intensively; release from stores has been the subject of more recent investigations.Ca2+ release from stores in CNS neurons primarily occurs as a result of IP3 mobilized by activation of metabotropic glutamatergic and/or cholingergic receptors coupled to PLC. Ca2+ release is localized near spines in Purkinje cells and occurs as a wave in the primary apical dendrites of pyramidal cells in the hippocampus and cortex. The amplitude of the [Ca2+]i increase can reach several micromolar, significantly larger than the increase due to backpropagating spikes.The large amplitude, long duration, and unique location of the [Ca2+]i increases due to Ca2+ release from stores suggests that these increases can affect specific downstream signaling mechanisms in neurons.  相似文献   

8.
Distal neuropathy is the most common complication of diabetes mellitus, and it is highly important to reveal the cellular mechanisms leading to its development. In our experiments, neurons of control and streptozotocin-treated diabetic rats were examined. Changes in the intracellular free calcium concentrations ([Ca2+] i ) were fluorometrically measured in primary and secondary nociceptive (dorsal root ganglion, DRG, and dorsal horn, DH, respectively) neurons. The [Ca2+] i elevation was induced by different agents, which can release calcium from the endoplasmic reticulum (ER) calcium stores. The amplitudes of calcium elevation induced by application of caffeine and ionomicine in DRG and DH neurons of diabetic rats were significantly lower, as compared with the control. Application of ATP and glutamate to a Ca-free extracellular solution induced calcium release from the IP3-sensitive store in DH neurons. Release of calcium from the IP3-sensitive ER calcium stores became significantly smaller in neurons from diabetic rats. Taken together, these data indicate that significant changes in the calcium regulating mechanisms of the ER develop under diabetes conditions.  相似文献   

9.
Oscillations in intracellular free Ca2+ concentration ([Ca2+]i) have been observed in a variety of cell types. In the present study, we constructed a mathematical model to simulate the caffeine-induced [Ca2+]i oscillations based on experimental data obtained from isolated type I horizontal cell of carp retina. The results of model analysis confirm the notion that the caffeine-induced [Ca2+]i oscillations involve a number of cytoplasmic and endoplasmic Ca2+ processes that interact with each other. Using this model, we evaluated the importance of store-operated channel (SOC) in caffeine-induced [Ca2+]i oscillations. The model suggests that store-operated Ca2+ entry (SOCE) is elicited upon depletion of the endoplasmic reticulum (ER). When the SOC conductance is set to 0, caffeine-induced [Ca2+]i oscillations are abolished, which agrees with the experimental observation that [Ca2+]i oscillations were abolished when SOC was blocked pharmacologically, verifying that SOC is necessary for sustained [Ca2+]i oscillations.  相似文献   

10.
Oscillations in intracellular free Ca2+ concentration ([Ca2+]i) have been observed in a variety of cell types. In the present study, we constructed a mathematical model to simulate the caffeine-induced [Ca2+]i oscillations based on experimental data obtained from isolated type I horizontal cell of carp retina. The results of model analysis confirm the notion that the caffeine-induced [Ca2+]i oscillations involve a number of cytoplasmic and endoplasmic Ca2+ processes that interact with each other. Using this model, we evaluated the importance of store-operated channel (SOC) in caffeine-induced [Ca2+]i oscillations. The model suggests that store-operated Ca2+ entry (SOCE) is elicited upon depletion of the endoplasmic reticulum (ER). When the SOC conductance is set to 0, caffeine-induced [Ca2+]i oscillations are abolished, which agrees with the experimental observation that [Ca2+]i oscillations were abolished when SOC was blocked pharmacologically, verifying that SOC is necessary for sustained [Ca2+]i oscillations.  相似文献   

11.
Mobilization of Ca2+sequestered by the endoplasmic reticulum (ER) produces the phosphorylation of initiation factor (eIF) 2, whereas an increase in cytosolic free Ca2+([Ca2+]i) due to plasmalemmal Ca2+influx increases the phosphorylation of elongation factor (eEF) 2. In nucleated mammalian cells, depletion of ER Ca2+stores has been demonstrated to inhibit translational initiation, but evidence that increased [Ca2+]iper se causes slowing of peptide chain elongation is lacking. L-type Ca2+channel activity of GH3pituitary cells, which are enriched in calmodulin-dependent eEF-2 kinase, was manipulated such that the impact of [Ca2+]ion eEF-2 phosphorylation and translational rate could be examined for up to 10 min without inhibiting initiation. At 1 mM extracellular Ca2+, resting [Ca2+]ivalues were high (154–255 nM) and eEF-2 was phosphorylated. The Ca2+channel antagonist, nisoldipine, lowered [Ca2+]iand reduced eEF-2 phosphorylation by half but had no effect on amino acid incorporation. The Ca2+channel agonist, Bay K 8644, produced sustained elevations of [Ca2+]ithat were associated with 25–50% increases in eEF-2 phosphorylation, but no changes in protein synthetic rates occurred. Larger Ca2+influxes were achievable with either 25 mM KCl or KCl plus Bay K 8644. These treatments further increased eEF-2 phosphorylation (50–100% above control) and inhibited leucine incorporation by 20–70% but ATP content was reduced by 25–50% and total cell-associated Ca2+contents rose by 3- to 13-fold. eIF-2α was not phosphorylated during these treatments. Addition of low concentrations of ionomycin, which do not lower ATP content, was associated with complex changes in [Ca2+]ithat resembled alterations in eEF-2 phosphorylation. The inhibition of leucine incorporation in response to ionomycin, however, coincided only with the phosphorylation of eIF-2α, not eEF-2. It is concluded that changes in [Ca2+]ioccurring in the absence of ATP depletion alter the phosphorylation state of eEF-2 but are not regulatory for mRNA translation.  相似文献   

12.
The ryanodine-sensitive intracellular Ca2+ stores are known to play a major role in excitation-contraction coupling in muscles. Although these stores are also abundantly present in central neurons, their functional role in these cells remains unclear. Using fluorometric digital imaging of the intracellular Ca2+ concentration ([Ca2+] i ) in rat hippocampal slices, we investigated the dynamic properties of the ryanodine-sensitive Ca2+ stores inCA1 hippocampal pyramidal cells. We found that at rest the ryanodine-sensitive Ca2+ stores are functioning predominantly as a “sink” for Ca ions responding to an increase in [Ca2+] i with an increase in the amount of Ca ions accumulated inside the stores. If, however, [Ca2+] i increases significantly, as happens during strong neuronal discharges, the ryanodine-sensitive Ca2+ stores respond with Ca2+ release, thus acting as an amplifier of the intracellular Ca2+ signal.  相似文献   

13.
Fluctuations of intracellular Ca2+ ([Ca2+]i) regulate a variety of cellular functions. The classical Ca2+ transport pathways in the endoplasmic reticulum (ER) and plasma membrane are essential to [Ca2+]i oscillations. Although mitochondria have recently been shown to absorb and release Ca2+ during G protein-coupled receptor (GPCR) activation, the role of mitochondria in [Ca2+]i oscillations remains to be elucidated. Using fluo-3-loaded human teratocarcinoma NT2 cells, we investigated the regulation of [Ca2+]i oscillations by mitochondria. Both the muscarinic GPCR agonist carbachol and the ER Ca2+-adenosine triphosphate inhibitor thapsigargin (Tg) induced [Ca2+]i oscillations in NT2 cells. The [Ca2+]i oscillations induced by carbachol were unsynchronized among individual NT2 cells; in contrast, Tg-induced oscillations were synchronized. Inhibition of mitochondrial functions with either mitochondrial blockers or depletion of mitochondrial DNA eliminated carbachol—but not Tg-induced [Ca2+]i oscillations. Furthermore, carbachol-induced [Ca2+]i oscillations were partially restored to mitochondrial DNA-depleted NT2 cells by introduction of exogenous mitochondria. Treatment of NT2 cells with gap junction blockers prevented Tg-induced but not carbachol-induced [Ca2+]i oscillations. These data suggest that the distinct patterns of [Ca2+]i oscillations induced by GPCR and Tg are differentially modulated by mitochondria and gap junctions.  相似文献   

14.
Alcohol is a potent neuroteratogen that can trigger neuronal death in the developing brain. However, the mechanism underlying this alcohol‐induced neuronal death is not fully understood. Utilizing primary cultures of cerebellar granule neurons (CGN), we tested the hypothesis that the alcohol‐induced increase in intracellular calcium [Ca2+]i causes the death of CGN. Alcohol induced a dose‐dependent (200–800 mg/dL) neuronal death within 24 h. Ratiometric Ca2+ imaging with Fura‐2 revealed that alcohol causes a rapid (1–2 min), dose‐dependent increase in [Ca2+]i, which persisted for the duration of the experiment (5 or 7 min). The alcohol‐induced increase in [Ca2+]i was observed in Ca2+‐free media, suggesting intracellular Ca2+ release. Pre‐treatment of CGN cultures with an inhibitor (2‐APB) of the inositol‐triphosphate receptor (IP3R), which regulates Ca2+ release from the endoplasmic reticulum (ER), blocked both the alcohol‐induced rise in [Ca2+]i and the neuronal death caused by alcohol. Similarly, pre‐treatment with BAPTA/AM, a Ca2+‐chelator, also inhibited the alcohol‐induced surge in [Ca2+]i and prevented neuronal death. In conclusion, alcohol disrupts [Ca2+]i homeostasis in CGN by releasing Ca2+ from intracellular stores, resulting in a sustained increase in [Ca2+]i. This sustained increase in [Ca2+]i may be a key determinant in the mechanism underlying alcohol‐induced neuronal death.  相似文献   

15.
Using indo-1- and fura-2-based microfluorometry for measuring the cytoplasmic free calcium concentration ([Ca2+] in ), the properties of caffeine-induced Ca2+ release from internal stores were studied in rat cultured central and peripheral neurons, including dorsal root ganglion (DRG) neurons, neurons from then. cuneatus, CA1 and CA3 hippocampal regions, and pyramidal neocortical neurons. Under resting conditions, the Ca2+ content of internal stores in DRG neurons was high enough to produce caffeine-triggered [Ca2+] in transients. Prolonged exposure of caffeine depleted the caffeine-sensitive stores of releasable Ca2+; the degree of this depletion depended on caffeine concentration. The depletion of the caffeine-sensitive internal stores to some extent was linked to calcium extrusion via La3+-sensitive plasmalemmal Ca2+-ATPases. Caffeine-induced Ca2+ release deprived internal stores in DRG neurons, but they refilled themselves spontaneously within 10 min. Pharmacological manipulation with caffeine-sensitive stores interferred with the depolarization-induced [Ca2+] in transients. In the presence of low caffeine concentration (0.5–1.0 mM) in the extracellular solution, the rate of rise of the depolarization-triggered [Ca2+] in transients significantly increased (by a factor of 2.15 ± 0.29) suggesting the occurrence of Ca2+-induced Ca2+ release. When the caffeine-sensitive stores were emptied by prolonged application of caffeine, the amplitude and rate of rise of the depolarization-induced [Ca2+] in transients decreased. These findings suggest the involvement of internal caffeine-sensitive calcium stores in generation of calcium signal in sensory neurons. In contrast, in all types of central neurons tested the resting Ca2+ content of internal stores was low, but the stores could be charged by transmembrane Ca2+ entry through voltage-operated calcium channels. After charging, the stores in central neurons spontaneously lost releasable calcium content and within 10 min they became completely empty again. We suggest that internal Ca2+ stores in peripheral and central neurons, although having similar pharmacological characteristics, handle Ca2+ ions in a different manner. Calcium stores in sensory neurons are continuously filled by releasable calcium and after discharging they can be spontaneously refilled, whereas in central neurons internal calcium stores can be charged by releasable calcium only transiently. Caffeine-evoked [Ca2+] in transients in all types of neurons were effectively blocked by 10 mM ryanodine, 5 mM procaine, 10 mM dantrolene, or 0.5 mM Ba2+, thus sharing the basic properties of the Ca2+-induced Ca2+ release from endoplasmic reticulum.Neirofiziologiya/Neurophysiology, Vol. 26, No. 1, pp. 16–25, January–February, 1994.  相似文献   

16.

Background

Oxidative stress increases the cytosolic content of calcium in the cytoplasm through a combination of effects on calcium pumps, exchangers, channels and binding proteins. In this study, oxidative stress was produced by exposure to tert-butyl hydroperoxide (tBHP); cell viability was assessed using a dye reduction assay; receptor binding was characterized using [3H]N-methylscopolamine ([3H]MS); and cytosolic and luminal endoplasmic reticulum (ER) calcium concentrations ([Ca2+]i and [Ca2+]L, respectively) were measured by fluorescent imaging.

Results

Activation of M3 muscarinic receptors induced a biphasic increase in [Ca2+]i: an initial, inositol trisphosphate (IP3)-mediated release of Ca2+ from endoplasmic reticulum (ER) stores followed by a sustained phase of Ca2+ entry (i.e., store-operated calcium entry; SOCE). Under non-cytotoxic conditions, tBHP increased resting [Ca2+]i; a 90 minute exposure to tBHP (0.5-10 mM ) increased [Ca2+]i from 26 to up to 127 nM and decreased [Ca2+]L by 55%. The initial response to 10 μM carbamylcholine was depressed by tBHP in the absence, but not the presence, of extracellular calcium. SOCE, however, was depressed in both the presence and absence of extracellular calcium. Acute exposure to tBHP did not block calcium influx through open SOCE channels. Activation of SOCE following thapsigargin-induced depletion of ER calcium was depressed by tBHP exposure. In calcium-free media, tBHP depressed both SOCE and the extent of thapsigargin-induced release of Ca2+ from the ER. M3 receptor binding parameters (ligand affinity, guanine nucleotide sensitivity, allosteric modulation) were not affected by exposure to tBHP.

Conclusions

Oxidative stress induced by tBHP affected several aspects of M3 receptor signaling pathway in CHO cells, including resting [Ca2+]i, [Ca2+]L, IP3 receptor mediated release of calcium from the ER, and calcium entry through the SOCE. tBHP had little effect on M3 receptor binding or G protein coupling. Thus, oxidative stress affects multiple aspects of calcium homeostasis and calcium dependent signaling.  相似文献   

17.
The excitotoxicity of glutamate is believed to be mediated by sustained increase in the cytosolic Ca2+ concentration. Mitochondria play a vital role in buffering the cytosolic calcium overload in stimulated neurons. Here we have studied the glutamate induced Ca2+ signals in cortical brain slices under physiological conditions and the conditions that modify the mitochondrial functions. Exposure of slices to glutamate caused a rapid increase in [Ca2+]i followed by a slow and persistently rising phase. The rapid increase in [Ca2+]i was mainly due to influx of Ca2+ through the N-methyl-D-aspartate (NMDA) receptor channels. Glutamate stimulation in the absence of Ca2+ in the extracellular medium elicited a small transient rise in [Ca2+]i which can be attributed to the mobilization of Ca2+ from IP3 sensitive endoplasmic reticulum pools consequent to activation of metabotropic glutamate receptors. The glutamate induced Ca2+ influx was accompanied by depolarization of the mitochondrial membrane, which was inhibited by ruthenium red, the blocker of mitochondrial Ca2+ uniporter. These results imply that mitochondria sequester the Ca2+ loaded into the cytosol by glutamate stimulation. Persistent depolarization of mitochondrial membrane observed in presence of extracellular Ca2+ caused permeability transition and released the sequestered Ca2+ which is manifested as slow rise in [Ca2+]i. Protonophore carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) depolarized the mitochondrial membrane and enhanced the glutamate induced [Ca2+]i response. Contrary to this, treatment of slices with mitochondrial inhibitor oligomycin or ruthenium red markedly reduced the [Ca2+]i response. Combined treatment with oligomycin and rotenone further diminished the [Ca2+]i response and also abolished the CCCP mediated rise in [Ca2+]i. However, rotenone alone had no effect on glutamate induced [Ca2+]i response. These changes in glutamate-induced [Ca2+]i response could not be explained on the basis of deficient mitochondrial Ca2+ sequestration or ATP dependent Ca2+ buffering. The mitochondrial inhibitors reduced the cellular ATP/ADP ratio, however, this would have restrained the ATP dependent Ca2+ buffering processes leading to elevation of [Ca2+]i. In contrast our results showed repression of Ca2+ signal except in case of CCCP which drastically reduced the ATP/ADP ratio. It was inferred that, under the conditions that hamper the Ca2+ sequestering ability of mitochondria, the glutamate induced Ca2+ influx could be impeded. To validate this, influx of Mn2+ through ionotropic glutamate receptor channel was monitored by measuring the quenching of Fura-2 fluorescence. Treatment of slices with oligomycin and rotenone prior to glutamate exposure conspicuously reduced the rate of glutamate induced fluorescence quenching as compared to untreated slices. Thus our data establish that the functional status of mitochondria can modify the activity of ionotropic glutamate receptor and suggest that blockade of mitochondrial Ca2+ sequestration may desensitize the NMDA receptor operated channel.  相似文献   

18.
Using a two-wave fluorescence probe, Fura-2, we studied changes in the intracellular concentration of calcium ions ([Ca2+]i) resulting from activation of muscarinic and purine receptors in single myocytes of the guinea-pig small intestine. Applications of the respective agonists added to the normal Krebs solution (1.0, 10.0, and 100.0 μM carbachol, CCh, as well as 10.0 and 100.0 μM ATP) induced a rise in the [Ca2+]i. Carbachol evoked an increase in the [Ca2+]i, including two components (a rapid and a plateaulike), while ATP under analogous conditions led only to a short-lasting rise in the [Ca2+]i. Transients induced by CCh or ATP applied in different concentrations, which exceeded a certain level, did not significantly differ from each other in their amplitudes, i.e., they were generated according to an all-or-none principle. In the nominally Ca-and Mg-free solution, CCh and ATP induced only rapid increases in the [Ca2+]i in myocytes. The absence of the slow component in the [Ca2+]i elevation upon the action of CCh under such conditions indicates that the effect of ATP, as compared with that of CCh, is not related to activation of the entry of Ca2+ ions into cells through voltage-operated calcium channels. After the addition of CCh, repeated application of CCh or ATP induced no effect, while application of CCh after the addition of ATP initiated a rise in the [Ca2+]i. These data show that intracellular calcium stores are depleted completely upon the action of CCh, while they are depleted only partially after the action of ATP. An inhibitor of phospholipase C (PLC), U-73122 (5.0 μM), completely blocked rises in the [Ca2+]i induced by both CCh and ATP; therefore, the release of Ca2+ ions from the intracellular calcium stores after application of these agonists is mediated by PLC. We hypothesize that the difference in the release of Ca2+ ions from the intracellular stores observed in our experiments upon activation of choline and purine receptors (partial and complete depletion of the stores upon the action of ATP and CCh, respectively) is responsible for the opposite functional effects of the above-mentioned neurotransmitters on smooth muscles. Neirofiziologiya/Neurophysiology, Vol. 38, No. 1, pp. 3–10, January–February, 2006.  相似文献   

19.
Abstract: Hyposmotic swelling-induced changes in intracellular Ca2+ concentration ([Ca2+]i) and their influence on regulatory volume decrease (RVD) were examined in rat cultured suspended cerebellar astrocytes. Hyposmotic media (50 or 30%) evoked an immediate rise in [Ca2+]i from 117 nM to a mean peak increase of 386 (50%) and 220 nM (30%), followed by a maintained plateau phase. Ca2+ influx through the plasmalemma as well as release from internal stores contributed to this osmosensitive [Ca2+]i elevation. Omission of external Ca2+ or addition of Cd2+, Mn2+, or Gd3+ did not reduce RVD, although it was decreased by La3+ (0.1–1 mM). Verapamil did not affect either the swelling-evoked [Ca2+]i or RVD. Maneuvers that deplete endoplasmic reticulum (ER) Ca2+ stores, such as treatment (in Ca2+-free medium) with 0.2 µM thapsigargin (Tg), 10 µM 2,5-di-tert-butylhydroquinone, 1 µM ionomycin, or 100 µM ATP abolished the increase in [Ca2+]i but did not affect RVD. However, prolonged exposure to 1 µM Tg blocked RVD regardless of ER Ca2+ content or cytosolic Ca2+ levels. Ryanodine (up to 100 µM) and caffeine (10 mM) did not modify [Ca2+]i or RVD. BAPTA-acetoxymethyl ester (20 µM) abolished [Ca2+]i elevation without affecting RVD, but at higher concentrations BAPTA prevented cell swelling and blocked RVD. We conclude that the osmosensitive [Ca2+]i rise occurs as a consequence of increased Ca2+ permeability of plasma and organelle membranes, but it appears not relevant as a transduction signal for RVD in rat cultured cerebellar astrocytes.  相似文献   

20.
The roles of Ca2+ mobilization in development of tension induced by acetylcholine (ACh, 0.1–100 µM) in swine tracheal smooth muscle strips were studied. Under control conditions, ACh induced a transient increase in free cytosolic calcium concentration ([Ca2+]i) that declined to a steady-state level. The peak increase in [Ca2+]i correlated with the magnitude of tension at each [ACh] after a single exposure to ACh, while the steady-state [Ca2+]i did not. Removal of extracellular Ca2+ had little effect on peak [Ca2+]i but greatly reduced steady-state increases in [Ca2+]i and tension. Verapamil inhibited steady-state [Ca2+]i only at [ACh]<1 µM. After depletion of internal Ca2+ stores by 10 min exposure to ACh in Ca2+-free solution and then washout of ACh for 5 min in Ca2+-free solution, simultaneous re-exposure to ACh in the presence of 2.5 mM Ca2+ increased [Ca2+]i to the control steady-state level without overshoot. The tension attained was the same as control for each [ACh] used. Continuous exposure to successively increasing [ACh] (0.1–100 µM) also reduced the overshoot of [Ca2+]i at 10 and 100 µM ACh, yet tension reached control levels at each [ACh] used. We conclude that the steady-state increase in [Ca2+]i is necessary for tension maintenance and is dependent on Ca2+ influx through voltage-gated calcium channels at 0.1 µM ACh and through a verapamil-insensitive pathway at 10 and 100 µM. The initial transient increase in calcium arises from intracellular stores and is correlated with the magnitude of tension only in muscles that have completely recovered from previous exposure to agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号