首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this work, a series of glycerol-plasticized pea starch/konjac glucomannan (ST/KGM) blend films was prepared by a casting and solvent evaporation method. The structure, thermal behavior, and mechanical properties of the films were investigated by means of Fourier Transform Infrared Spectroscopy, wide-angle X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, and tensile testing. The results indicated that strong hydrogen bonding formed between macromolecules of starch (ST) and konjac glucomannan (KGM), resulting in a good miscibility between ST and KGM in the blends. Compared with the neat ST, the tensile strength of the blend films were enhanced significantly from 7.4 to 68.1 MPa with an increase of KGM content from 0 to 70 wt%. The value of elongation at break of the blend films was higher than that of ST and reached a maximum value of 59.0% when the KGM content was 70 wt% and 20% of glycerol as plasticizer. The incorporation of KGM into the ST matrix also led to an increase of moisture uptake for the ST-based materials. The structure and properties of pea starch-based films were modified and improved by blending with KGM.  相似文献   

2.
Chitosan has wide range of applications as a biomaterial, but barriers still exist to its broader use due to its physical and chemical limitations. The present study evaluated the properties of the polymeric blend films obtained from chitosan and potato starch by the casting/solvent evaporation method. The swelling properties of the different films studied as a function of pH showed that the sorption ability of the blend films increased with the increasing content of starch. Fourier transform infrared (FTIR) analyses confirmed that interactions were present between the hydroxyl groups of starch and the amino groups of chitosan in the blend films while the x-ray diffraction (XRD) studies revealed the films to exhibit an amorphous character. Thermogravimetric analyses showed that in the blend films, the thermal stability increased with the increasing starch content and the stability of starch and chitosan powders reduced when they were converted to film. The differential scanning calorimetry (DSC) studies revealed an endotherm corresponding to water evaporation around 100 degrees C in all the films and an exotherm, corresponding to the decomposition in the chitosan and blend films. Scanning electron microscopy (SEM) observations indicated that the blend films were less homogenous and atomic force microscopy (AFM) studies revealed the chitosan films to be smooth and homogenous, while the starch films revealed characteristic granular pattern. The blend films exhibited an intermediate character with a slight microphase separation. The starch-chitosan blend films exhibited a higher flexibility and incorporation of potato starch into chitosan films improved the percentage elongation.  相似文献   

3.
The synergistic interaction of polyvinyl alcohol (PVOH) and cassava starch was studied by differential scanning calorimetry (DSC) method. Film of the PVOH–cassava starch blends were prepared by solution cast method. Originally, cassava starch film did not show presence of any endothermic peaks in DSC thermogram. However, after adding PVOH to cassava starch, the PVOH–cassava starch blend films showed obvious endothermic peaks with onset and end-point temperatures higher than neat PVOH film. In addition, the PVOH–cassava starch blends have experimental enthalpy of melting higher than theoretical values. This evidence shows that the interactions between PVOH and cassava starch molecules are extensively strong. Due to the synergistic interactions of PVOH and cassava starch, it is postulated that incorporation of 65–75 wt.% of PVOH in cassava starch blend has physical bonding equivalent to neat PVOH.  相似文献   

4.
A systematic study on the anaerobic degradability of a series of starch:polyvinyl alcohol (TPS:PVOH) blends was performed to determine their fate upon disposal in either anaerobic digesters or bioreactor landfills. The aims of the study were to measure the rate and extent of solubilisation of the plastics. The extent of substrate solubilisation on a COD basis reached 60% for a 90:10 (w/w) blend of TPS:PVOH, 40% for 75:25, 30% for 50:50 and 15% for PVOH only. The rate of substrate solubilisation was most rapid for the 90:10 blend (0.041 h(-1)) and decreased with the amount of starch in the blend in the following order 0.034 h(-1)(75:25); 0.023 h(-1)(50:50). The total solids that remained after 900 h were 10 wt.% (90:10); 23 wt.% (75:25); 55 wt.% (50:50); 90 wt.% (0:100). Starch containing substrates produced a higher concentration of volatile fatty acids (VFAs) and biogas, compared to the 0:100 substrate. The major outcome was that PVOH inhibited the degradation of the starch from the blend.  相似文献   

5.
Poly(L-lactide) is a biodegradable polymer primarily used in biomedical applications. In this paper, both the microstructure and the region of dual-phase continuity are examined for binary and compatibilized poly(L-lactide)/polystyrene blends (PLLA/PS) prepared by melt mixing. The blends are shown to be completely immiscible with an interfacial tension of 6.1 mN/m. The PS-b-PLLA (24,000-b-28,000) diblock copolymer compatibilizer has an asymmetric effect on the blend. It is effective at compatibilizing 50/50 PLLA/PS blends but is only a marginal emulsifier for blends where PLLA is the dominant matrix. Percent continuity, as estimated by solvent extraction/gravimetry and also torque/composition diagrams clearly indicate an onset of the region of dual-phase continuity at 40-45%PS. It is demonstrated that highly percolated blends of the above materials exist from 40 to 75% PS and 40 to 60% PS for the binary and compatibilized blends, respectively. The scale of the microstructure of the continuous morphology is measured using BET and mercury intrusion porosimetry techniques, after extraction of the PS phase. Both the pore size and extent of continuity can be controlled through composition and interfacial modification. Static annealing of the blend after melt mixing can also be used to substantially increase the pore size of the system. Extraction of the PS phase in the blend, carried out after the above preparation protocols, is a route to generating completely interconnected porosity of highly controlled morphologies (pore size, void volume) in poly(L-lactide) materials. In this study, the pore diameter was controlled from 0.9 to 72 microm for a constant void volume of 45-47%, and the void volume was modified from 35 to 74% depending on the blend composition.  相似文献   

6.
Glycerol-plasticized pea starch/α-zirconium phosphate (PS/ZrP) nanocomposite films with different loading levels of α-zirconium phosphate (α-ZrP) were prepared by a casting and solvent evaporation method. The effects of the α-ZrP on the structure and properties of the PS/ZrP films were characterized by Fourier transform infrared (FT-IR) spectroscopy, wide-angle X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and tensile testing. The results indicated that hydrogen bonds formed between pea starch (PS) and α-ZrP, which improved the compatibility between PS and α-ZrP. Compared with the neat PS, the tensile strength (σb) and elongation at break (εb) of the PS/ZrP nanocomposite films were significantly enhanced with an increase in α-ZrP content. The maximum values of σb and εb reached 9.44 MPa and 47.5%, respectively, at 0.3% α-ZrP and 25% glycerol as plasticizer. The moisture uptake of the nanocomposite films, measured in an environment with 92% relative humidity, was reduced by the addition of α-ZrP. The structure and properties of pea starch-based films were modified and improved by the incorporation of α-ZrP.  相似文献   

7.
Films formed by blending of two polymers usually have modified physical and mechanical properties compared to films made of the individual components. Our preliminary studies indicated that incorporation of chitosan in polyethylene oxide (PEO) films may provide additional functionality to the PEO films and may decrease their tendency to spherulitic crystallization. The objective of this study was to determine the correlation between chitosan/PEO weight ratio and the physical, mechanical, and antibacterial properties of corresponding films. Films with chitosan/PEO weight ratios from 100/0 to 50/50 in 10% increments were characterized by measuring thickness, puncture strength (PS), tensile strength (TS), elongation at break (%E), water vapor permeability (WVP), and water solubility (WS). Additionally, the films were examined by polarized microscopy, wide-angle X-ray diffraction (WAXD), and Fourier transform infrared (FTIR) spectroscopy, and their antibacterial properties were tested against Escherichia coli. The chitosan fraction contributes to antimicrobial effect of the films, decreases tendency to spherulitic crystallization of PEO, and enhances puncture and tensile strength of the films, while addition of the PEO results in thinner films with lower water vapor permeability. Films with 90/10 blend ratio of chitosan/PEO showed the most satisfactory PS, TS, %E, and antibacterial properties of all tested ratios.  相似文献   

8.
The effects of hydrophilic and hydrophobic characteristics of proteins on the interactions with corn starch were investigated in this study. The model system included corn starch and proteins, i.e. zein, gliadin, gluten, soy protein and rapeseed protein. The blend films were prepared by thermo-moulding in gentle conditions at 70 °C in order to avoid starch gelatinization, with respect to water content, and avoid protein denaturation. The effects of different kinds of proteins on structure and mechanical behaviour of blend biomaterials were characterised by scanning electron microscopy (SEM) and tensile test, respectively. The effects of different kinds of proteins on intermolecular interactions between proteins and starch were investigated by dynamical mechanical thermal analysis. Based on the solubility measurement results, almost all protein films showed the similar solubility to the natural protein powders, resulting from the weak influence of mild thermo-moulding treatment on protein inner structure. Different morphologies were observed for different proteins and corresponding blends, which are relatively loose protein architecture that appeared for hydrophobic protein and blend films, and uniform and densely packed architecture for hydrophilic ones. Moreover, different mechanical behaviours were obtained for different proteins and corresponding blends. No significantly increased strength for hydrophilic protein blends with starch added can be explained that there is weak intermolecular interaction between both components based on SEM observation. However, the addition of corn starch granules in hydrophobic protein networks was assumed that starch destroyed or weakened the protein network, resulting in the decrease of mechanical strength.  相似文献   

9.
The characterization of corn starch (CS) films impregnated with CaCO3 nanoparticles was investigated. Criteria such as morphology, crystallinity, water vapor permeability (WVP), opacity, and mechanical properties were the focus of the investigation. It was found that the CaCO3 contents had significant effects on the tensile properties of the nanocomposite films. The addition of CaCO3 nanoparticles to the CS films significantly increased tensile strength from 1.40 to 2.24 MPa, elongation from 79.21 to 118.98%, and Young’s modulus from 1.82 to 2.41 MPa. The incorporation of CaCO3 nanoparticles increased the opacity of films, lowered the degree of WVP and film solubility value compared to those of the CS films. The results of scanning electron microscopy (SEM) showed that with the increase of CaCO3 nanoparticles content in starch films, the roughness of the films increased, and pores or cavities were found on the surface of the films, while small cracks were observed in the structures of the fractured surfaces. X-ray diffraction showed that the addition of nanoparticles increased the peaks in the intensity of films.  相似文献   

10.
A novel antibacterial film was prepared by blending konjac glucomannan (KGM) and poly(diallydimethylammonium chloride) (PDADMAC) in an aqueous system. The antibacterial activity of the films against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Saccharomyces were measured by the halo zone test and the double plate method. The films exhibited an excellent antibacterial activity against B. subtilis and S. aureus but not against E. coli, P. aeruginosa or Saccharomyces. The miscibility, morphology, thermal stability, water vapour permeability and mechanical properties of the blend films were investigated by density determination, SEM, ATR-IR, XRD, DSC, TGA, WVA and tensile tests. The results of density determination predicted that the blends of KGM and PDADMAC were miscible when the PDADMAC content was less than 70 wt%. Moreover, SEM and XRD confirmed the result. ATR-IR showed that strong intermolecular hydrogen bonds and electrostatic interactions occurred between KGM and PDADMAC in the blends. The tensile strength and the break elongation of the blends were improved largely to 106.5 MPa and 32.04% and the water vapour permeability decreased when the PDADMAC content was 20 wt%. The thermal stability of the blends was higher than pure KGM. The blends should be good antibacterial materials.  相似文献   

11.
X Luo  J Li  X Lin 《Carbohydrate polymers》2012,90(4):1595-1600
The blend films of ungelatinized and gelatinized starch/polyvinyl alcohol (PVA) were prepared with a solution casting method by the introduction of additives (glycerol/urea) or not. The phase morphologies and thermal behaviors of the blends were carefully analyzed. A droplet phase was observed in the blends containing ungelatinized starch and a laminated phase was observed in the blends containing gelatinized starch. For both ungelatinized and gelatinized starch/PVA blends, the melting temperature (T(m)) (210-230°C) of PVA was detected, and the T(m) of gelatinized starch/PVA blends was higher than that of the ungelatinized starch/PVA blends. Blend films containing 16.8wt% of glycerol or urea exhibited a decreased T(m). The introduction of additives (glycerol or urea) reduced the decomposition onset temperature of the blend films. These various morphologies and thermal behaviors could be attributed to the different hydrogen bonding interaction characteristics between starch and polyvinyl alcohol at different conditions.  相似文献   

12.
Polymer films of sago starch/polyvinyl alcohol (PVA) were prepared by casting and cured under ultra violet (UV) radiation. Different blends were made varying the concentration of sago starch and PVA. Tensile strength (TS) and elongation at break (Eb) of the prepared films were studied. Films made up of sago starch and PVA with a ratio of 1:2 showed the highest TS and Eb. The physico-mechanical properties of prepared films were improved by grafting with acrylic monomers with the aid of UV radiation. A series of formulations was prepared with two monomers 2-ethyl 2-hydroxymethyl 1,3 methacrylate (EHMPTMA) and 2-ethylhexylacrylate (EHA) and a photoinitiator. Monomer concentration, soaking time and radiation dose were optimized in terms of grafting and mechanical properties. The highest TS was at 50% EHMPTMA and 48% EHA and 2% photo initiator at 5 min soaking time and recorded value was 6.58 MPa. The prepared films were further characterized with NMR spectroscopy and scanning electron microscope (SEM).  相似文献   

13.
Plastic formulations containing up to 40% starch were prepared and blown into thin films using extrusion methods. Extruded films were evaluated for their biodegradability by exposing them to a consortium of starch degrading bacteria in the laboratory for 45 days and in the La Silla river located in Monterrey, N.L. Mexico for up to 60 days. Biodegradability was assessed by measuring changes in weight loss and chemical composition of the films using Fourier transform infrared (FTIR) spectroscopy. While little or no degradation was apparent in control films made up of 100% low density polyethylene (LDPE) or 100% poly-(ethylene-co-acrylic acid) (EAA), most of the starch was depleted in starch-containing films exposed in the river. Starch degradation in films exposed to amylolytic bacteria in the laboratory was relatively slower. Also, increasing the amount of EAA from 25% to 50% substantially reduced starch depletion in these films.Abbreviations FTIR Fourier transform infrared - LDPE low density poly-(ethylene) - EAA poly-(ethyleneco-acrylic acid) - SEM Scanning electron microscopy The mention of firms names or trade products does not imply that they are endorsed or recommended by the U. S. Department of Agriculture over the firms or similar products not mentioned. All programs and services of the U. S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, marital status, or handicap.  相似文献   

14.
Blend films based on cuttlefish (Sepia pharaonis) ventral skin gelatin (CG) and mungbean protein isolate (MPI) at different blend ratios (CG/MPI = 10:0, 8:2, 6:4, 4:6, 2:8 and 0:10, w/w) prepared at pH 11 using 50% glycerol (based on total protein) as plasticizer were characterized. CG films incorporated with MPI at increasing amounts had the decreases in tensile strength (TS) (p < 0.05). The increases in elongation at break (EAB) were observed when CG/MPI ratios of 6:4 or 4:6 were used (p < 0.05). Decreased water vapor permeability (WVP) was obtained for films having the increasing proportion of MPI (p < 0.05). CG/MPI blend films with higher MPI proportion had lower film solubility and L*-values (lightness) but higher b*-values (yellowness) and ΔE*-values (total color difference) (p < 0.05). Electrophoretic study revealed that disulfide bond was present in MPI and CG/MPI blend films. However, hydrogen bonds between CG and MPI in the film matrix were dominant, as elucidated from FTIR spectroscopic analysis. Moreover, thermal stability of CG/MPI blend film was improved as compared to that of films from respective single proteins. Differential scanning calorimetry result suggested solid-state morphology of CG/MPI (6:4) blend film that consisted of amorphous phase of partially miscible CG/MPI mixture and the coexisting two different order phases of individual CG and MPI domains. Thus, the incorporation of MPI into gelatin film could improve the properties of resulting blend film, which were governed by CG/MPI ratio.  相似文献   

15.
Blends of hydroxypropyl methylcellulose (HPMC) with up to 70% hydroxypropyl starch (HPS) were developed for use as hard capsule materials. Polyethylene glycol (PEG) was used as both a plasticizer and a compatibilizer in the blends. In order to prepare hard capsules for pharmaceutical application using the well-established method of dipping stainless steel mold pins into solution then drying at certain temperature, equilibrated solutions with higher solids concentration (20%) were investigated and developed. The solutions, films and capsules of the different HPMC/HPS blends were characterized by viscosity, transparency, tensile testing, water contact angle, SEM, as well as FTIR. The results showed that the blend system is immiscible but compatible in certain degree, especially after adding PEG. The hydroxypropylene groups grafted onto both cellulose and starch improved the compatibility between the HPMC and the modified starch. The higher viscosity of starch at lower temperature improved the viscosity balance of the system, which enlarged the operation window for the dipping–drying technique. The PEG increased the transparency and toughness of the various blends. By optimizing temperature and incubation time to control viscosity, capsules of various blends were successfully developed.  相似文献   

16.
Influence of amylose content on starch films and foams   总被引:1,自引:0,他引:1  
After extraction of smooth pea starch and waxy maize starch from pure amylose and amylopectin fractions, films with various amylose contents were prepared by casting in the presence of water or water with glycerol. For unplasticized films, a continuous increase in tensile strength (40–70 MPa) and elongation (4–6%) was observed as amylose increased from 0 to 100%. Discrepancies with values obtained for native starches with variable amylose content and different botanical origins were attributable to variations in the molecular weights of components. Taking cell wall properties into account, the values obtained in the laboratory were used to improve the relation between the flexural behavior of extruded foams and the model of cellular solids with open cavities.

The properties of plasticized films were not improved by the presence of glycerol and remained constant when amylose content was higher than 40%. Results are interpreted on the basis of topological differences between amylose and amylopectin.  相似文献   


17.
The aim of this work was to develop biodegradable films based on blends of Amaranthus cruentus flour and poly(vinyl alcohol). Five different PVA types were tested. Blends with higher hydrolysis (HD) degree PVA were more resistant, showing greater tensile strength (TS) and puncture force (PF). However, the films with PVA with lower HD showed more flexibility, greater elongation at break (ELO) and greater puncture deformation (PD), with the exception of PVA 325. The latter was chosen due to it superior mechanical performance (TS = 10.2 MPa, ELO = 89.8%, PF = 9.4 N and PD = 16.3%). When films based on blends of amaranth flour and PVA 325 (10–50%) were evaluated, all mechanical properties were enhanced with increase in PVA 325 content. The solubility in water of the films made with PVA and amaranth flour decreased with increasing PVA content, reaching 44% of soluble matter for the 50% PVA film. The formation of hydrogen bonds between the blend components was confirmed by the FTIR spectra analysis.  相似文献   

18.
The objective of the present study was to investigate the effect of Aloe vera gel incorporation at different proportions on chitosan-based films. Consequently, the thickness of films was affected significantly by the addition of the gel and decreased from F0 (plain chitosan film) to F50 (the film containing 50% gel). The gel incorporation did not have a considerable effect on water vapor permeability (WVP); however, a significant difference was observed for F50. Addition of the gel significantly improved the water solubility (WS), wherein the F10 (the film with 10% of gel) showed the lowest. All mechanical properties increased by introducing the gel and, after reaching the peak for F20, started to reduce. Color properties were affected by the gel addition as the higher the gel, the darker the films. Overall, the results showed that incorporating the gel into film-forming solution of chitosan up to 20% (F20) was promising.  相似文献   

19.
Cellulose and chitosan were mixed in N-methylmorpholine-N-oxide (NMMO) and heated to 100 °C, and then were processed under a pressure of 70 kg/cm2 exerted by a compression molding machine at 100 °C for 8 min. As a result, transparent orange viscose films were obtained. After rinsing with deionized water and drying transparent yellowish blend films were obtained. Scanning electron microscope (SEM) indicated that when the chitosan content in the blend increased up to 3% the surface structure became smoother, but the film containing 5% (w/w) chitosan, became coarse again probably due to phase separation. Tensile strength test results were consistant with this. Antibacterial assessment proved that addition of chitosan to the films results in slight antibacterial properties. The halo zone test confirmed that the blend films made in this research have non-diffusible antibacterial properties.  相似文献   

20.
Wheat starch granules and poly-(beta-hydroxybutyrate-co-beta-hydroxyvalerate) [P(HB-co-HV), (19.1 mol% HV)] were blended at 160 degrees C. Increasing the starch content from 0 to 50% (wt/wt) decreased the tensile strength of P(HB-co-HV) from 18 MPa to 8 MPa and diminished flexibility as Young's modulus increased from 1,525 MPa to 2,498 MPa, but overall mechanical properties of the polymer remained in a useful range. A mixed microbial culture required more than 20 days to degrade 150-microns-thick samples of 100% P(HB-co-HV), whereas samples containing 50% (wt/wt) starch disappeared in fewer than 8 days. Starch granules degraded before P(HB-co-HV) did. Aerobic degradation proceeded more rapidly than anaerobic degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号