首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microscope laser light scattering spectroscopy of single biological cells   总被引:1,自引:0,他引:1  
A microscope laser light scattering setup was developed, allowing us to do intensity autocorrelation spectroscopy on the light scattered from a volume as small as (2 μm)3. This non-invasive technique makes cytoplasmic studies possible inside single live biological cells. The effect of osmotic swelling and shrinking on the diffusion coefficient of hemoglobin inside intact red blood cells is shown as an illustrative example of the applicability and sensitivity of this new experimental method.  相似文献   

2.
Temperature induced denaturation of collagen in acidic solution   总被引:1,自引:0,他引:1  
Mu C  Li D  Lin W  Ding Y  Zhang G 《Biopolymers》2007,86(4):282-287
The denaturation of collagen solution in acetic acid has been investigated by using ultra-sensitive differential scanning calorimetry (US-DSC), circular dichroism (CD), and laser light scattering (LLS). US-DSC measurements reveal that the collagen exhibits a bimodal transition, i.e., there exists a shoulder transition before the major transition. Such a shoulder transition can recover from a cooling when the collagen is heated to a temperature below 35 degrees C. However, when the heating temperature is above 37 degrees C, both the shoulder and major transitions are irreversible. CD measurements demonstrate the content of triple helix slowly decreases with temperature at a temperature below 35 degrees C, but it drastically decreases at a higher temperature. Our experiments suggest that the shoulder transition and major transition arise from the defibrillation and denaturation of collagen, respectively. LLS measurements show the average hydrodynamic radius R(h), radius of gyration R(g)of the collagen gradually decrease before a sharp decrease at a higher temperature. Meanwhile, the ratio R(g)/R(h) gradually increases at a temperature below approximately 34 degrees C and drastically increases in the range 34-40 degrees C, further indicating the defibrillation of collagen before the denaturation.  相似文献   

3.
Electrophoretic light scattering (laser Doppler electrophoresis) has been employed to study the effects of guinea pig IgG immune complexes on the electrophoretic mobility distributions of guinea pig resident peritoneal cells. The resident population of cells is composed of macrophages (approximately 75%) and eosinophils (approximately 25%). These cells were separated according to the well-established method of Boyum. Populations of resident macrophages, eosinophils, and the unfractionated samples were incubated with soluble immune complexes, antigen alone, or antibody alone. The mean mobility of the resident macrophages decreased approximately 60% when incubated in the presence of immune complexes, although no effect could be discerned in the presence of antigen or antibody alone. The width of the resulting macrophage mobility distribution was larger than that of the control distributions, with a broad shoulder on the high-mobility side, indicating a heterogeneous response of the macrophages to the immune complexes. Eosinophils react in two distinct fashions. One population of eosinophils is present near the control experiments. The second population reacts in a manner very similar to that of macrophages. This suggest that at least two populations of eosinophils are present in the unstimulated guinea pig peritoneal cavity. Results that are intermediate between these two cases are found when unfractionated samples are studied.  相似文献   

4.
Formation of the deposits of protein aggregates—amyloid fibrils in an intracellular and intercellular space—is common to a large group of amyloid‐associated disorders. Among the approaches to develop of therapy of such disorders is the use of agents preventing protein fibrillization. Polyaromatic complexes—porphyrins and phthalocyanines—are known as compounds possessing anti‐fibrillogenic activity. Here, we explore the impact of related macrocyclic complexes—phthalocyanines (Pc) and octaphenyl porphyrazines (Pz) of Mg and Zn—on aggregation of amyloidogenic protein insulin. Pz complexes are firstly reported as compounds able to affect protein fibrillization. The effect of Pc and Pz complexes on the kinetics and intensity of insulin aggregation was studied by the fluorescent assay using amyloid sensitive cyanine dye. This has shown the impact of metal ion on the anti‐fibrillogenic properties of macrocyclic complexes—the effect on the fibrillization kinetics of Mg‐containing compounds is much more pronounced comparing to that of Zn analogues. Scanning electron microscopy experiments have demonstrated that filamentous fibrils are the main product of aggregation both for free insulin and in the presence of macrocyclic complexes. However, those fibrils are distinct by their length and proneness to lateral aggregation. The Pc complexes cause the increase in variation of fibrils length 0.9 to 2.7 nm in opposite to 1.4 to 2.0 nm for free insulin, whereas Pz complexes cause certain shortening of the fibrils to 0.8 to 1.6 nm. The averaged size of the fibrils population was estimated by dynamic light scattering; it correlates with the size of single fibrils detected by scanning electron microscopy.  相似文献   

5.
Using steady-state, polarized, and phase-modulation fluorometry, the dithiothreitol-induced denaturation of insulin and formation of its complex with alpha-crystallin in solution were studied. Prevention of the aggregation of insulin by alpha-crystallin is due to formation of chaperone complexes, i.e. interaction of chains of the denatured insulin with alpha-crystallin. The conformational changes in alpha-crystallin that occur during complex formation are rather small. It is unlikely that N-termini are directly involved in the complex formation. The 8-anilino-1-naphthalenesulfonate (ANS) is not sensitive to the complex formation. ANS emits mainly from alpha-crystallin monomers, dimers, and tetramers, but not from oligomers or aggregates. The possibility of highly sensitive detection of aggregates by light scattering using a spectrofluorometer with crossed monochromators is demonstrated.  相似文献   

6.
Hypertrophic cardiomyopathy (HCM) is a common, autosomal dominant disorder primarily characterized by left ventricular hypertrophy and is the leading cause of sudden cardiac death in youth. HCM is caused by mutations in several sarcomeric proteins, with mutations in MYH7, encoding β-MyHC, being the most common. While many mutations in the globular head region of the protein have been reported and studied, analysis of HCM-causing mutations in the β-MyHC rod domain has not yet been reported. To address this question, we performed an array of biochemical and biophysical assays to determine how the HCM-causing E1356K mutation affects the structure, stability, and function of the β-MyHC rod. Surprisingly, the E1356K mutation appears to thermodynamically destabilize the protein, rather than alter the charge profile know to be essential for muscle filament assembly. This thermodynamic instability appears to be responsible for the decreased ability of the protein to form filaments and may be responsible for the HCM phenotype seen in patients.  相似文献   

7.
Lipid metabolism plays crucial roles during aging processes, but how it is regulated by diets and how it interplays with aging still remain unclear. We proposed a new optical imaging platform by integrating heavy water (D2O) probing with stimulated Raman scattering (DO‐SRS) microscopy, for the first time, to directly visualize and quantify lipid metabolism regulated by different diets and insulin signaling pathway in Drosophila fat body during aging. We found that calorie restriction, low protein diet, and (moderately) high protein and high sucrose diets enhanced lipid turnover in flies at all ages, while (moderately) high fructose and glucose diets only promoted lipid turnover in aged flies. The measured lipid turnover enhancements under diverse diets were due to different mechanisms. High protein diet shortened the lifespan while all other diets extended the lifespan. Downregulating the insulin signaling pathway enhanced lipid turnover, which is likely related to lifespan increase, while upregulating insulin signaling pathway decreased lipid turnover that would shorten the lifespan. Our study offers the first approach to directly visualize spatiotemporal alterations of lipid turnover in aging Drosophila in situ, for a better understanding of the interconnections between lipid metabolism, diets, and aging.  相似文献   

8.
The bacterial chromosome trafficking apparatus or the segrosome participates in the mitotic-like segregation of the chromosomes prior to cell division in several bacteria. ParB, which is the parS DNA-binding component of the segrosome, polymerizes on the parS-adjacent chromosome to form a nucleoprotein filament of unknown nature for the segregation function. We combined static light scattering, circular dichroism and small-angle X-ray scattering to present evidence that the apo form of the mycobacterial ParB forms an elongated dimer with intrinsically disordered regions as well as folded domains in solution. A comparison of the solution scattering of the apo and the parS-bound ParBs indicates a rather drastic compaction of the protein upon DNA binding. We propose that this binding-induced conformational transition is priming the ParB for polymerization on the DNA template.  相似文献   

9.
Cytotoxicity of insulin within its self-assembly and amyloidogenic pathways   总被引:2,自引:0,他引:2  
Solvational perturbations were employed to selectively tune the aggregational preferences of insulin at 60 degrees C in vitro in purely aqueous acidic solution and in the presence of the model co-solvent ethanol (EtOH) (at 40%(w/w)). Dynamic light scattering (DLS), thioflavin T (ThT)-fluorescence, Fourier transform infrared (FTIR) and atomic force microscopy (AFM) techniques were employed to characterize these pathways biophysically with respect to the pre-aggregational assembly of the protein, the aggregation kinetics, and finally the aggregate secondary structure and morphology. Using cell viability assays, the results were subsequently correlated with the cytotoxicity of the insulin species that form in the two distinct aggregation pathways. In the cosolvent-free solution, predominantly dimeric insulin self-assembles via the well-known amyloidogenic pathway, yielding exclusively fibrillar aggregates, whereas in the solution containing EtOH, the aggregation of predominantly monomeric insulin proceeds via a pathway that leads to exclusively non-fibrillar, amorphous aggregates. Initially present native insulin assemblies as well as partially unfolded monomeric species and low molecular mass oligomeric aggregates could be ruled out as direct and major cytotoxic species. Apart from the slower overall aggregation kinetics under amorphous aggregate promoting conditions, which is due to the chaotropic nature of high EtOH concentrations, however, both pathways were unexpectedly found to evoke insulin aggregates that were cytotoxic to cultured rat insulinoma cells. The observed kinetics of the decrease of cell viabilities correlated well with the results of the DLS, ThT, FTIR and AFM studies, revealing that the formation of cytotoxic species correlated well with the formation of large-sized, beta-sheet-rich assemblies (>500 nm) of both fibrillar and amorphous nature. These results suggest that large-sized, beta-sheet-rich insulin assemblies of both fibrillar and amorphous nature are toxic to pancreatic beta-cells. In the light of the ongoing discussion about putative cytotoxic effects of prefibrillar and fibrillar amyloid aggregates, our results support the hypothesis that, in the case of insulin, factors other than the specific secondary or quarternary structural features of the various different aggregates may define their cytotoxic properties. Two such factors might be the aggregate size and the aggregate propensity to expose hydrophobic surfaces to a polar environment.  相似文献   

10.
The manner in which insulin resistance impinges on hepatic mitochondrial function is complex. Although liver insulin resistance is associated with respiratory dysfunction, the effect on fat oxidation remains controversial, and biosynthetic pathways that traverse mitochondria are actually increased. The tricarboxylic acid (TCA) cycle is the site of terminal fat oxidation, chief source of electrons for respiration, and a metabolic progenitor of gluconeogenesis. Therefore, we tested whether insulin resistance promotes hepatic TCA cycle flux in mice progressing to insulin resistance and fatty liver on a high-fat diet (HFD) for 32 weeks using standard biomolecular and in vivo (2)H/(13)C tracer methods. Relative mitochondrial content increased, but respiratory efficiency declined by 32 weeks of HFD. Fasting ketogenesis became unresponsive to feeding or insulin clamp, indicating blunted but constitutively active mitochondrial β-oxidation. Impaired insulin signaling was marked by elevated in vivo gluconeogenesis and anaplerotic and oxidative TCA cycle flux. The induction of TCA cycle function corresponded to the development of mitochondrial respiratory dysfunction, hepatic oxidative stress, and inflammation. Thus, the hepatic TCA cycle appears to enable mitochondrial dysfunction during insulin resistance by increasing electron deposition into an inefficient respiratory chain prone to reactive oxygen species production and by providing mitochondria-derived substrate for elevated gluconeogenesis.  相似文献   

11.
Understanding the heterogeneity of the soluble oligomers and protofibrillar structures that form initially during the process of amyloid fibril formation is a critical aspect of elucidating the mechanism of amyloid fibril formation by proteins. The small protein barstar offers itself as a good model protein for understanding this aspect of amyloid fibril formation, because it forms a stable soluble oligomer, the A form, at low pH, which can transform into protofibrils. The mechanism of formation of protofibrils from soluble oligomer has been studied by multiple structural probes, including binding to the fluorescent dye thioflavin T, circular dichroism and dynamic light scattering, and at different temperatures and different protein concentrations. The kinetics of the increase in any probe signal are single exponential, and the rate measured depends on the structural probe used to monitor the reaction. Fastest is the rate of increase in the mean hydrodynamic radius, which grows from a value of 6 nm for the A form to 20 nm for the protofibril. Slower is the rate of increase in thioflavin T binding capacity, and slowest is the rate of increase in circular dichroism at 216 nm, which occurs at about the same rate as that of the increase in light scattering intensity. The dynamic light scattering measurements suggest that the A form transforms completely into larger size aggregates at an early stage during the aggregation process. It appears that structural changes within the aggregates occur at the late stages of assembly into protofibrils. For all probes, and at all temperatures, no initial lag phase in protofibril growth is observed for protein concentrations in the range of 1 microM to 50 microM. The absence of a lag phase in the increase of any probe signal suggests that aggregation of the A form to protofibrils is not nucleation dependent. In addition, the absence of a lag phase in the increase of light scattering intensity, which changes the slowest, suggests that protofibril formation occurs through more than one pathway. The rate of aggregation increases with increasing protein concentration, but saturates at high concentrations. An analysis of the dependence of the apparent rates of protofibril formation, determined by the four structural probes, indicates that the slowest step during protofibil formation is lateral association of linear aggregates. Conformational conversion occurs concurrently with lateral association, and does so in two steps leading to the creation of thioflavin T binding sites and then to an increase in beta-sheet structure. Overall, the study indicates that growth during protofibril formation occurs step-wise through progressively larger and larger aggregates, via multiple pathways, and finally through lateral association of critical aggregates.  相似文献   

12.
With the escalating prevalence of malaria in recent years, artemisinin demand has placed considerable stress on its production worldwide. At present, the relative low­yield of artemisinin (0.01­1.1 %) in the source plant (Artemisia annua L. plant) has imposed a serious limitation in commercializing the drug. Amorpha­4, 11­diene synthase (ADS) has been reported a key enzyme in enhancing the artemisinin level in Artemisia annua L. An understanding of the structural and functional correlations of Amorpha­4, 11­diene synthase (ADS) may therefore, help in the molecular up­regulation of the enzyme. In this context, an in silico approach was used to study the ADS3963 (3963 bp) gene cloned by us, from high artemisinin (0.7­0.9% dry wt basis) yielding strain of A. annua L. The full­length putative gene of ADS3963 was found to encode a protein consisting of 533 amino acid residues with conserved aspartate rich domain. The isoelectric point (pI) and molecular weight of the protein were 5.25 and 62.2 kDa, respectively. The phylogenetic analysis of ADS genes from various species revealed evolutionary conservation. Homology modeling method was used for prediction of the 3D structure of ADS3963 protein and Autodock 4.0 version was used to study the ligand binding. The predicted 3D model and docking studies may further be used in characterizing the protein in wet laboratory.  相似文献   

13.
Previously, we have shown that residues 73-92 (sequence DRFSVNLDVKHFSPEELKVK) in alphaB-crystallin are involved in preventing the formation of light scattering aggregates by substrate proteins. In this study, we made single substitutions of three conserved amino acid residues (H83 --> A, F84 --> G, and P86 --> A) and a nonconserved amino acid residue (K90 --> C) in the functional region of alphaB-crystallin and evaluated their role in anti-aggregation activity. Mutation of conserved residues led to changes in intrinsic tryptophan intensity, bis-ANS binding, and in the secondary and tertiary structures. The H83A mutation led to a twofold increase in molar mass, while the other mutants did not produce significant changes in the molar mass when compared to that of wild-type protein. The chaperone-like activity of the H83A mutant was enhanced by 15%-20%, and the chaperone-like activity of F84G and P86A mutants was reduced by 50%-65% when compared to the chaperone-like activity of wild-type alphaB-crystallin. The substitution of the nonconserved residue (K90 --> C) did not induce an appreciable change in the structure and function of the mutant protein. Fluorescence resonance energy transfer (FRET) assay demonstrated that destabilized ADH interacted near the K90 region in alphaB-crystallin. The data show that F84 and P86 residues are essential for alphaB-crystallin to effectively prevent the aggregation of substrate proteins. This study further supports the involvement of the residues in the 73-92 region of alphaB-crystallin in substrate protein binding and chaperone-like action.  相似文献   

14.
Diabetes is a chronic lifestyle disorder that affects millions of people worldwide. Diabetes is a condition where the body does not produce sufficient insulin or does not use it efficiently. Insulin resistance in diabetes or obesity causes the pancreatic β-cells to increase the insulin output. Diabetes occurs in multiple forms, including type 1, type 2, type 3 and gestational. Type 2 diabetes accounts for ~90–95% of total affected population and is associated with both impaired insulin production by the β-cells of the pancreas and impaired insulin release in response to high blood glucose levels. Diabetes is tightly linked with genetic mutations and genetic and lifestyle activities, including diet and exercise. Recent epidemiological studies established a close link between the diabetes and progression to Alzheimer's disease. This article summarizes various molecular mechanisms involved in the developments of diabetes, including biochemical characteristics, genetic and molecular links with Alzheimer's disease, β-cell function, and factors associated with diabetes. This will help us in the development of novel therapeutic strategies targeting AD in future.  相似文献   

15.
16.
Aminoacyl-tRNA synthetases are an ancient class of enzymes responsible for the matching of amino acids with anticodon sequences of tRNAs. Eukaryotic tRNA synthetases are often larger than their bacterial counterparts, and several mammalian enzymes use the additional domains to facilitate assembly into a multi-synthetase complex. Human cysteinyl-tRNA synthetase (CysRS) does not associate with the multi-synthetase complex, yet contains a eukaryotic-specific C-terminal extension that follows the tRNA anticodon-binding domain. Here we show by mutational and kinetic analysis that the C-terminal extension of human CysRS is used to selectively improve recognition and binding of the anticodon sequence, such that the specificity of anticodon recognition by human CysRS is higher than that of its bacterial counterparts. However, the improved anticodon recognition is achieved at the expense of a significantly slower rate in the aminoacylation reaction, suggesting a previously unrecognized kinetic quality control mechanism. This kinetic quality control reflects an evolutionary adaptation of some tRNA synthetases to improve the anticodon specificity of tRNA aminoacylation from bacteria to humans, possibly to accommodate concomitant changes in codon usage.  相似文献   

17.
Background: Insulin therapy is the major treatment of glycaemic control in type I diabetes mellitus (DM) and advanced type II DM patients who fail to respond to oral hypoglycemic agents. Nonetheless, insulin therapy is deemed unsuccessful in controlling the incidence of diabetic retinopathy (DR) and is likely a risk factor. Berberine, an isoquinoline alkaloid, has caught great attention towards its anti-diabetic mechanisms. This study aims to investigate the effect of berberine in decelerating DR progression in insulin-treated DM.Methods: To better understand the therapeutic potential of berberine in the presence of insulin, we elaborated the action of mechanism whether berberine inhibited retinal expression of HIF-1α and VEGF through regulating AKT/mTOR pathway. Suppression of insulin-induced neovasculature of retina endothelial cells by berberine was also studied. Lastly, the in vivo efficacy and safety of berberine as adjuvant therapy for the treatment of DR were systemically investigated in experimental type I and type II DM mice with insulin treatment.Results: Among various types of retinal cells, the activity of HIF-1α and VEGF in retinal endothelial cells could be particularly and exclusively stimulated by insulin intervention, which could be inhibited by berberine treatment in a dose- and time-dependent manner. Berberine suppressed Akt/mTOR activity in these cells, and restoration of Akt/mTOR signalling attenuated berberine''s inhibition on HIF-1α and VEGF expression. Berberine suppressed the progression of DR in experimental type I and type II diabetic mice receiving insulin therapy.Conclusion: Berberine improves insulin-induced diabetic retinopathy in type I and II diabetes through inhibiting insulin-induced activation of retinal endotheliocytes via Akt/mTOR/ HIF-1α/VEGF pathway.  相似文献   

18.
Changes in insulin receptors accompanying cell differentiation in human promyelocytic leukemia cells (HL-60) were studied. Cell differentiation was induced by 1α,25-dihydroxyvitamin D3, vitamin A, dimethyl sulfoxide, or phorbol esters. 1α,25-dihydroxy-vitamin D3 increased the ability of HL-60 cells to bind insulin in a dose-dependent manner. The increase in insulin binding was due to an increase in the number of insulin receptors. Vitamin A, dimethyl sulfoxide and phorbol esters were also effective in increaseing insulin receptors. Thus, the differentiation of HL-60 cells was accompanied by an increase in insulin receptors.  相似文献   

19.
PIKfyve is a protein and lipid kinase that plays an important role in membrane trafficking, including TGN to endosome retrograde sorting and in insulin-stimulated translocation of the GLUT4 glucose transporter from intracellular storage vesicles to the plasma membrane. We have previously demonstrated that PIKfyve is phosphorylated in response to insulin in a PI3-kinase and protein kinase B (PKB)-dependent manner. However, it has been implied that this was not due to direct phosphorylation of PIKfyve by PKB, but as a result of an insulin-induced PIKfyve autophosphorylation event. Here we demonstrate that purified PIKfyve is phosphorylated in vitro by a recombinant active PKB on two separate serine residues, S318 and S105, which flank the N-terminal FYVE domain of the protein. Only S318, however, becomes phosphorylated in intact cells stimulated with insulin. We further demonstrate that S318 is phosphorylated in response to hyperosmotic stress in a PI3-kinase- and PKB-independent manner. Importantly, the effects of insulin and sorbitol were not prevented by the presence of an ATP-competitive PIKfyve inhibitor (YM20163) or in a mutant PIKfyve lacking both lipid and protein kinase activity. Our results confirm, therefore, that PIKfyve is directly phosphorylated by PKB on a single serine residue in response to insulin and are not due to autophosphorylation of the enzyme. We further reveal that two stimuli known to promote glucose uptake in cells, both stimulate phosphorylation of PIKfyve on S318 but via distinct signal transduction pathways.  相似文献   

20.
The phase behavior of aqueous mixtures of gelatin and oligosaccharides above their gelation temperature is investigated experimentally, and rationalized according to a simple multicomponent Flory-Huggins model. When the gelatin is only weakly charged, entropic considerations dominate and it is found that the cloud point curve of the mixtures is extremely sensitive to the molecular weight distribution of the oligosaccharide. Even very small quantities of long-chain oligosaccharides present in an otherwise short-chain oligosaccharide population can radically reduce the compatibility. Added salt does not significantly affect the phase diagram, although a strong effect on the kinetics of phase separation is seen. Lowering the pH increases the electrostatic charge on the gelatin and strongly enhances the compatibility. Because the kinetics of gelation and phase separation are different, gelation can freeze in nonequilibrium states. Therefore, all phase diagrams were determined well above the gelation temperature (about 37°C). © 1997 John Wiley & Sons, Inc. Biopoly 41: 607–622, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号