首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aims to establish a cellulose pretreatment process using ionic liquids (ILs) for efficient enzymatic hydrolysis. The IL 1-ethyl-3-methyl imidazolium diethyl phosphate ([EMIM]DEP) was selected in view of its low viscous and the potential of accelerating enzymatic hydrolysis, and it could be recyclable. The yield of reducing sugars from wheat straw pretreated with this IL at 130 °C for 30 min reached 54.8% after being enzymatically hydrolyzed for 12 h. Wheat straw regenerated were hydrolyzed more easily than that treated with water. The fermentability of the hydrolyzates, obtained after enzymatic saccharification of the regenerated wheat straw, was evaluated using Saccharomyces cerevisiae. This microbe could ferment glucose efficiently, and the ethanol production was 0.43 g/g glucose within 26 h. In conclusion, the IL [EMIM]DEP shows promise as pretreatment solvent for wheat straw, although its cost should be reduced and in-depth exploration of this subject is needed.  相似文献   

2.
Konjac glucomannan was extruded and subsequently ground under four conditions denoted: KGM1 (33% solids, 90 °C), KGM2 (24% solids, 90 °C), KGM3 (24% solids, 90 °C, die restriction), and KGM4 (24% solids, 110 °C). SEM and particle size analysis showed that extruded KGM had slightly larger and rougher particles. The water absorption index was decreased to 47.92-128.80, as compared to 153.64 for the control (KGMC). The crystallinity index increased to 2.97 and 3.42 for KGM3 and KGM4 samples, as compared to 1.72 for the control. Zero-shear viscosity of 0.5% solutions decreased to 0.36-3.01 Pa s. All samples were shear-thinning and data were best fitted by the Cross model. Based on capillary viscometry, molecular weights were decreased to 2.7 × 105-9.9 × 105, as compared to 1.2 × 106 for the control. In most cases, properties were most altered by higher temperature and shear, and to a lesser extent by lower solids in the feed.  相似文献   

3.
Effects of different physical pretreatments on water hyacinth for dilute acid hydrolysis process (121 ± 3 °C, 5% H2SO4, 60 min) were comparatively investigated. Untreated sample had produced 24.69 mg sugar/g dry matter. Steaming (121 ± 3 °C) and boiling (100 ± 3 °C) for 30 min had provided 35.9% and 52.4% higher sugar yield than untreated sample, respectively. The highest sugar yield (132.96 mg sugar/g dry matter) in ultrasonication was obtained at 20 min irradiation using 100% power. The highest sugar production (155.13 mg sugar/g dry matter) was obtained from pulverized samples. Hydrolysis time was reduced when using samples pretreated by drying, mechanical comminution and ultrasonication. In most methods, prolonging the pretreatment period was ineffective and led to sugar degradations. Morphology inspection and thermal analysis had provided evidences of structure disruption that led to higher sugar recovery in hydrolysis process.  相似文献   

4.
In this study the comparative destruction of municipal biosolids using thermal hydrolysis (140 or 165 °C) and wet oxidation (220 °C) was followed by biological degradation via mesophilic anaerobic digestion (36 °C). Wet oxidation (WO) destroyed more than 93% of the VSS, while thermal hydrolysis (TH) at 140 and 165 °C destroyed 9% and 22%, respectively. Combined TH and anaerobic digestion resulted in approximately 50% VSS destruction. The ultimate methane potential of the combined fractions from the thermal hydrolysis at 140 and 165 °C improved by 12-13% relative to the untreated control sample. Methane production from the WO material was 53% of the control yield and wholly attributable to soluble organic carbon in the liquid fraction, indicating that the WO destroyed all putrescible carbon from the solids fraction. Point sampling during the BMP assay revealed that methanogenic development, not solids hydrolysis, was the kinetic barrier during anaerobic digestion in this study.  相似文献   

5.
Wan C  Zhou Y  Li Y 《Bioresource technology》2011,102(10):6254-6259
Soybean straw was pretreated with either liquid hot water (LHW) (170-210 °C for 3-10 min) or alkaline soaking (4-40 g NaOH/100 g dry straw) at room temperature to evaluate the effects on cellulose digestibility. Nearly 100% cellulose was recovered in pretreated solids for both pretreatment methods. For LHW pretreatment, xylan dissolution from the raw material increased with pretreatment temperature and time. Cellulose digestibility was correlated with xylan dissolution. A maximal glucose yield of 70.76%, corresponding to 80% xylan removal, was obtained with soybean straw pretreated at 210 °C for 10 min. NaOH soaking at ambient conditions removed xylan up to 46.37% and the subsequent glucose yield of pretreated solids reached up to 64.55%. Our results indicated LHW pretreatment was more effective than NaOH soaking for improving cellulose digestibility of soybean straw.  相似文献   

6.
Pasting viscosity and in vitro digestibility of oven-dried powders of waxy and normal corn starch gels (40% solids) retrograded under an isothermal (4 °C) or temperature cycled (4/30 °C) storage were investigated. Temperature cycling induced higher onset temperature for melting of amylopectin crystals than isothermal storage under a differential scanning calorimeter whereas little difference in crystalline type was observed under X-ray diffraction analysis. Temperature cycling caused higher pasting temperature and viscosity for the retrograded starches than isothermal storage. The retrograded waxy corn starch powders exhibited pasting behaviors similar to that of native waxy corn starch. However, the retrograded normal corn starch powders showed very much different pasting patterns with lower pasting viscosity but higher pasting temperature than native starch counterpart. The retrogradation increased slowly digestible starch content without changing resistant starch content, more effectively by the temperature cycling than the isothermal storage.  相似文献   

7.
We explore how the presence of urea can influence the kinetics of amylolysis, with a long-term objective of developing practical and energy efficient bioconversion protocols. In this study, triticale and corn starches were hydrolyzed by a granular starch hydrolyzing enzyme with or without addition of urea and a pre-heating treatment at subgelatinization temperature. Differential scanning calorimetry showed that the gelatinization parameters of triticale and corn starches were negatively correlated with the urea concentration in the starch suspension. Addition of urea did not significantly affect starch amylolysis by the granular starch hydrolyzing enzyme at 30 °C. However when pre-heating at a higher yet sub-gelatinization temperature (50 °C for triticale and 61 °C for corn, 5 °C below the onset of starch gelatinization) for 30 min, the presence of urea greatly facilitated the amylolysis of both tricticale and corn starches. Scanning electron microcopy revealed starch granule mophological changes to a porous structure in residual starch granules/fragments rich in resistant starch. This means that the amylolysis pattern in the presence of urea was fundamentally changed, and urea disrupts starch hydrogen bonds effectively with heating treatment at a sub-gelatinization temperature. This treatment combination increased both starch hydrolysis rate and extent. Since extra energy was not necessary to gelatinize starch, this method may benefit starch and bio-enthanol industries to reduce the costs of starch hydrolysis.  相似文献   

8.
An α-amylase produced by Paecilomyces variotii was purified by DEAE-cellulose ion exchange chromatography, followed by Sephadex G-100 gel filtration and electroelution. The α-amylase showed a molecular mass of 75 kDa (SDS-PAGE) and pI value of 4.5. Temperature and pH optima were 60 °C and 4.0, respectively. The enzyme was stable for 1 h at 55 °C, showing a t50 of 53 min at 60 °C. Starch protected the enzyme against thermal inactivation. The α-amylase was more stable in alkaline pH. It was activated mainly by calcium and cobalt, and it presented as a glycoprotein with 23% carbohydrate content. The enzyme preferentially hydrolyzed starch and, to a lower extent, amylose and amylopectin. The Km of α-amylase on Reagen® and Sigma® starches were 4.3 and 6.2 mg/mL, respectively. The products of starch hydrolysis analyzed by TLC were oligosaccharides such as maltose and maltotriose. The partial amino acid sequence of the enzyme presented similarity to α-amylases from Bacillus sp. These results confirmed that the studied enzyme was an α-amylase ((1→4)-α-glucan glucanohydrolase).  相似文献   

9.
In this study the pulp from Solanum lycocarpum fruits was used as raw material for extraction of starch, resulting in a yield of 51%. The starch granules were heterogeneous in size, presenting a conical appearance, very similar to a high-amylose cassava starch. The elemental analysis (CHNS) revealed 64.33% carbon, 7.16% hydrogen and 0.80% nitrogen. FT-IR spectroscopy showed characteristic peaks of polysaccharides and NMR analysis confirmed the presence of the α-anomer of d-glucose. The S. lycocarpum starch was characterized by high value of intrinsic viscosity (3515 mPa s) and estimated molecular weight around 645.69 kDa. Furthermore, this starch was classified as a B-type and high amylose content starch, presenting 34.66% of amylose and 38% crystallinity. Endothermic transition temperatures (To = 61.25 °C, Tp = 64.5 °C, Tc = 67.5 °C), gelatinization temperature (ΔT = 6.3 °C) ranges and enthalpy changes (ΔH = 13.21 J g−1) were accessed by DCS analysis. These results make the S. lycocarpum fruit a very promising source of starch for biotechnological applications.  相似文献   

10.
Summary Sunflower seed husks were chosen as a typical lignocellulosic waste product of low value. This model substrate was hydrolyzed with sulphuric acid at 120°C. The hydrolysis was carried out in two steps: hydrolysis of the pentosan fraction and subsequent hydrolysis of the cellulose fraction. The pentosan fraction was nearly quantitatively hydrolyzed. For the cellulose hydrolysis the yield was 79% of the theoretical yield. The hydrolyzates were neutralized to pH 5 with solid calcium hydroxide and used for preparation of growth media forCandida yeasts andPaecilomyces variotii. For the pentosan hydrolyzates the yields of yeast biomass were 35–36 g per 100 g available reducing sugars (supplied to the medium). In cellulose hydrolyzates the corresponding yields were 45–48 g withCandida utilis andC. tropicalis and about 30 g withC. pseudotropicalis. P. variotii was noticeably superior to the yeasts. In pentosan hydrolyzates it produced 63 g dry mycelium from 100 g reducing sugars supplied; in cellulose hydrolyzates, 94 g. This suggests that it must be an effective utilizer of a wide range of compounds, for example, organic acids in the medium.  相似文献   

11.
Niemann-Pick disease and drug-induced phospholipidosis are examples of lysosomal storage disorders in which serious respiratory infections are brought on by high levels of the phospholipid phosphatidylcholine in the acidic lamellar bodies and lysosomes of pulmonary cells. One approach to developing an effective therapeutic agent could involve the use of a metal to preferentially hydrolyze phospholipid phosphate ester bonds at mildly acidic, lysosomal pH values (~ pH 4.8). Towards this end, here we have investigated phosphatidylcholine hydrolysis by twelve metal ion salts at 60 °C. Using a malachite green/molybdate-based colorimetric assay to detect inorganic phosphate released upon metal-assisted phosphate ester bond hydrolysis, Ce(IV) was shown to possess outstanding reactivity in comparison to the eleven other metals. We then utilized cerium(IV) to hydrolyze phosphatidylcholine at normal, core body temperature (37 °C). The malachite green/molybdate assay was used to quantitate free phosphate and an Amplex® Red-based colorimetric assay and matrix-assisted laser desorption ionization time-of-flight mass spectrometry were employed to detect choline. Ce(IV) hydrolyzed phosphatidylcholine more efficiently at lysosomal pH: i.e., at a Triton X-100:phosphatidylcholine molar mixing ratio of 1.57, yields of choline and phosphate were 51 ± 4% and 40 ± 4% at ~ pH 4.8, compared to 28 ± 4% and 27 ± 5% at ~ pH 7.2.  相似文献   

12.
To improve the performance of an upflow anaerobic sludge blanket (UASB) reactor treating raw domestic wastewater under temperate climates conditions, the addition of a sludge digester to the process was investigated. With the decrease in temperature, the COD removal decreased from 78% at 28 °C to 42% at 10 °C for the UASB reactor operating alone at a hydraulic retention time of 6 h. The decrease was attributed to low hydrolytic activity at lower temperatures that reduced suspended matter degradation and resulted in solids accumulation in the top of the sludge blanket. Solids removed from the upper part of the UASB sludge were treated in an anaerobic digester. Based on sludge degradation kinetics at 30 °C, a digester of 0.66 l per liter of UASB reactor was design operating at a 3.20 days retention time. Methane produced by the sludge digester is sufficient to maintain the temperature at 30 °C.  相似文献   

13.
Cold enzymatic hydrolysis conditions for bioethanol production were optimized using multi-objective optimization. Response surface methodology was used to optimize the effects of α-amylase, glucoamylase, liquefaction temperature and liquefaction time on S. cerevisiae biomass, ethanol concentration and starch utilization ratio. The optimum hydrolysis conditions were: 224 IU/gstarch α-amylase, 694 IU/gstarch glucoamylase, 77 °C and 104 min for biomass; 264 IU/gstarch α-amylase, 392 IU/gstarch glucoamylase, 60 °C and 85 min for ethanol concentration; 214 IU/gstarch α-amylase, 398 IU/gstarch glucoamylase, 79 °C and 117 min for starch utilization ratio. The hydrolysis conditions were subsequently evaluated by multi-objectives optimization utilizing the weighted coefficient methods. The Pareto solutions for biomass (3.655-4.380 × 108 cells/ml), ethanol concentration (15.96-18.25 wt.%) and starch utilization ratio (92.50-94.64%) were obtained. The optimized conditions were shown to be feasible and reliable through verification tests. This kind of multi-objective optimization is of potential importance in industrial bioethanol production.  相似文献   

14.
SnO2 and SnO2 + Co-porphyrin solids were prepared from SnCl4 in propanol and hydrolyzed to sol. Thermal behavior of samples obtained at 110 °C was studied in the 20-600 °C interval by thermal analysis coupled with mass spectrometry for identification of released species. The original samples maintain residual Sn-OR, Sn-OH and Sn-Cl groups up to 350 °C. The sample doped with 1% Co-porphyrin differs for a significant presence of residual Sn-Cl species, accounting for SnCl4 release in the 300-340 °C range.119Sn solid state NMR analysis reveals disordered SnO2 species in the sample heated at 250 °C and non-uniform SnO6 units in the SnO2 + Co-porphyrin sample at 110 °C, due to persistence of Sn-OR and Sn-OH groups. This complexity is lost at 250 °C. X-ray diffraction analysis confirms all these data. The sensing efficiency of these materials versus alcohols is ascribed to the presence of an open, incomplete SnO2 structure, which is more pronounced in the Co-porphyrin-doped sample.  相似文献   

15.
Because starch crystallinity influences the physical, mechanical, and technological aspects of numerous starch-based products during production and storage, rapid techniques for its assessment are vital. Samples of different levels of crystallinity were obtained by debranching gelatinized cassava starch, followed by subjection to various hydrothermal treatments. The recrystallized products were further subjected to partial hydrolysis with a mixture of α-amylase and glucoamylase prior to freeze-drying. Crystallinities were determined using X-ray diffraction (XRD) and 13C CP/MAS NMR spectroscopy, and correlated with FT-Raman spectra features. XRD crystallinities ranged between 0 and 58%, and agreed with crystalline-phase fractions (R2 = 0.99) derived from the respective 13C CP/MAS NMR spectra. A strong linear correlation was found between crystallinities and integrated areas of the skeletal mode Raman band at 480 cm−1 (R2 = 0.99). With appropriate calibration, FT-Raman spectroscopy is a promising tool for rapid determination of starch crystallinity.  相似文献   

16.
The interacting effects of Focused Pulsed (FP) treatment and solids retention time (SRT) were evaluated in laboratory-scale digesters operated at SRTs of 2-20 days. Anaerobic digestion and methanogenesis of waste activated sludge (WAS) were stable for SRT ? 5 days, but the effluent soluble organic compounds increased significantly for SRT = 2 days due to a combination of faster hydrolysis kinetics and washout of methanogens. FP treatment increased the CH4 production rate and TCOD removal efficiency by up to 33% and 18%, respectively, at a SRT of 20 days. These effects were the result of an increase in the hydrolysis rate, since the concentrations of soluble components remained low for SRT ? 5 days. Alternately, FP pre-treatment of WAS allowed the same conversion of TCOD to CH4 with a smaller SRT and digester size: e.g., 40% size savings with a CH4 conversion of 0.23 g CH4-COD/g CODin.  相似文献   

17.
Lipase-coupling esterification of starch with octenyl succinic anhydride   总被引:1,自引:0,他引:1  
Enzymatic modification of starch was conducted by lipase-coupling esterification with octenyl succinic anhydride (OSA). Parameters affecting the esterification were systematically studied. Products were characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction, differential scanning calorimetry (DSC) and viscosity analysis (VA). Optimum condition for lipase-coupling OSA starch preparation was as follows: starch pretreatment at 65 °C for 15 min, starch concentration 35%, amount of lipase and OSA, 0.6% and 3%, reaction pH, temperature and time, 8.0, 40 °C and 30 min respectively, which resulted in 0.0195 of the degree of substitution and 84.05 ± 2.07% of the reaction efficiency. FT-IR spectroscopy confirmed the formation of OSA starch. SEM and X-ray diffraction showed apparent surface change, but no crystalline change. DSC and VA results indicated the synthesized OSA starch gelatinized rapidly with high viscosity. Attractively, reaction time drastically reduced to 30 min, showing vast potential for scale production of OSA starch.  相似文献   

18.
This study demonstrates for the first time that the enzymatic hydrolysis of cellulose is drastically enhanced following ultrasonic pretreatment of lignocellulosic material in ionic liquids (ILs) when compared to conventional thermal pretreatment. Five types of ILs, 1-buthyl-3-methylimidazolium chloride (BmimCl), 1-allyl-3-methylimidazolium chloride (AmimCl), 1-ethyl-3-methylimidazolium chloride (EmimCl), 1-ethyl-3-methylimidazolium diethyl phosphate (EmimDep), and 1-ethyl-3-methylimidazolium acetate (EmimOAc) were tested. Cellulose saccharification ratio was about 20% for kenaf powders pretreated in BmimCl, AmimCl, EmimCl, and EmimDep by conventional heating at 110 °C for 120 min. Conversely, 60-95% of cellulose was hydrolyzed to glucose, subsequent to ultrasonic pretreatment in the same ILs for 120 min at 25 °C. The cellulose saccharification ratio of kenaf powder in EmimOAc was 86% after only 15 min of the ultrasonic pretreatment at 25 °C, compared to only 47% in that case of thermal pretreatment in the IL.  相似文献   

19.
Highly substituted sago starch phosphate was synthesized using POCl3 as cross-linking reagent. Titrimetric and Fourier transform infra red (FT-IR) spectral analysis were used to characterize the substitution. Studying the different factors affecting the reaction parameters showed that the optimal conditions for starch phosphorylation were: 4 h reaction time and reagent concentration 1.5% (w/w). The physicochemical properties of cross-linked sago starch (CLSS) were done using Scanning electron micrograph (SEM), X-ray powder diffractometer (XRD and Thermogravimetric analysis (TGA). The results revealed that crystalline nature of native sago starch was transformed after cross-linking. TGA report exhibited higher thermal stability, which makes it suitable for various industrial applications. Swelling behavior showed high swelling at low temperature (30 and 60 °C) as compared to high temperature (90 °C).  相似文献   

20.
This study investigated the optimum thermochemical liquefaction (TCL) operating conditions for producing biocrude from Spirulina platensis. TCL experiments were performed at various temperatures (200-380 °C), holding times (0-120 min), and solids concentrations (10-50%). TCL conversion at 350 °C, 60 min holding time and 20% solids concentration produced the highest biocrude yield of 39.9% representing 98.3% carbon conversion efficiency. Light fraction biocrude (B1) appeared at 300 °C or higher temperatures and represented 50-63% of the total biocrude. Biocrude obtained at 350-380 °C had similar fuel properties to that of petroleum crude with energy density of 34.7-39.9 MJ kg−1 compared to 42.9 MJ kg−1 for petroleum crude. Biocrude from conversion at 300 °C or above had 71-77% elemental carbon, and 0.6-11.6% elemental oxygen and viscosities in the range 40-68 cP. GC/MS of biocrude reported higher hydrocarbons (C16-C17), phenolics, carboxylic acids, esters, aldehydes, amines, and amides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号