首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Extracellular ATP dose dependently stimulated 45Ca2+ influx even in the presence of nifedipine, a Ca2+ antagonist that inhibits voltage-dependent Ca2+ channel, in osteoblast-like MC3T3-E1 cells. ATP stimulated arachidonic acid release and the synthesis of prostaglandin E2 (PGE2). However, the ATP-induced arachidonic acid release was significantly reduced by chelating extracellular Ca2+ with EGTA. On the other hand, ATP induced DNA synthesis of these cells in a dose-dependent manner in the range between 1μM and 1 mM. The pretreatment with indomethacin, a cyclooxygenase inhibitor, suppressed both ATP-induced PGE2 synthesis and DNA synthesis in these cells. The inhibitory effect by 50μM indomethacin on the DNA synthesis was reversed by adding 10μM PGE2. These results strongly suggest that extracellular ATP stimulates Ca2+ influx resulting in the release of arachidonic acid in osteoblast-like cells and that extracellular ATP-induced proliferative effect is mediated, at least in part, by ATP-stimulated PGE2 synthesis.  相似文献   

2.
Store-operated Ca2+ entry (SOCE) from the extracellular space plays a critical role in agonist-mediated Ca2+ signaling in non-excitable cells. Here we show that SOCE is enhanced in COS-7 cells treated with staurosporine (ST), a protein kinase inhibitor. In COS-7 cells, stimulation with ATP induced Ca2+ release from intracellular Ca2+ stores and Ca2+ entry from the extracellular space. Ca2+ release was not affected by treatment with ST, but Ca2+ entry continued in the ST-treated cells even after the removal of ATP. ST did not inhibit Ca2+ sequestration into Ca2+ stores. The Ca2+ entry induced by cyclopiazonic acid (CPA), a reversible ER Ca2+ pump inhibitor, was maintained in ST-treated cells even after the removal of CPA, but was not maintained in the control cells. The sustained Ca2+ entry in ST-treated cells was completely attenuated by the SOCE inhibitors, La3+ and 2-APB. The large increase in Ca2+ entry produced in the cells co-expressing Venus-Orai1 and STIM1-mKO1 was stabilized with ST treatment, and confocal imaging of these cells suggested that the complex between Orai1 and STIM1 did not completely dissociate following the refilling of Ca2+ stores. These results show that SOCE remains activated even after the refilling of Ca2+ stores in ST-treated cells and that the effect of ST on SOCE may result from a stabilization of the Orai1–STIM1 interaction.  相似文献   

3.
Acidic Ca2+ stores, particularly lysosomes, are newly discovered players in the well-orchestrated arena of Ca2+ signaling and we are at the verge of understanding how lysosomes accumulate Ca2+ and how they release it in response to different chemical, such as NAADP, and physical signals. Additionally, it is now clear that lysosomes play a key role in autophagy, a process that allows cells to recycle components or to eliminate damaged structures to ensure cellular well-being. Moreover, lysosomes are being unraveled as hubs that coordinate both anabolism via insulin signaling and catabolism via AMPK. These acidic vesicles have close contact with the ER and there is a bidirectional movement of information between these two organelles that exquisitely regulates cell survival. Lysosomes also connect with plasma membrane where caveolae are located as specialized regions involved in Ca2+ and insulin signaling. Alterations of all these signaling pathways are at the core of insulin resistance and diabetes.  相似文献   

4.
Using m-calpain antibody, we have identified two major bands corresponding to the 80 kDa large and the 28 kDa small subunit of m-calpain in caveolae vesicles isolated from bovine pulmonary artery smooth muscle plasma membrane. In addition, 78, 35, and 18 kDa immunoreactive bands of m-calpain have also been detected. Casein zymogram studies also revealed the presence of m-calpain in the caveolae vesicles. We have also identified Na+/Ca2+ exchanger-1 (NCX1) in the caveolae vesicles. Purification and N-terminal sequence analyses of these two proteins confirmed their identities as m-calpain and NCX1, respectively. We further sought to determine the role of m-calpain on calcium-dependent proteolytic cleavage of NCX1 in the caveolae vesicles. Treatment of the caveolae vesicles with the calcium ionophore, A23187 (1 μM) in presence of CaCl2 (1 mM) appears to cleave NCX1 (120 kDa) to an 82 kDa fragment as revealed by immunoblot study using NCX1 monoclonal antibody; while pretreatment with the calpain inhibitors, calpeptin or MDL28170; or the Ca2+ chelator, BAPTA-AM did not cause a discernible change in the NCX protein profile. In vitro cleavage of the purified NCX1 by the purified m-calpain supports this finding. The cleavage of NCX1 by m-calpain in the caveolae vesicles may be interpreted as an important mechanism of Ca2+ overload, which could arise due to inhibition of Ca2+ efflux by the forward-mode NCX and that could lead to sustained Ca2+ overload in the smooth muscle leading to pulmonary hypertension.  相似文献   

5.
In smooth muscle cells, oscillations of intracellular Ca2+ concentration ([Ca2+]i) are controlled by inositol 1,4,5-trisphosphate (InsP3) and ryanodine (Ry) receptors on the sarcoplasmic reticulum (SR). Here we show that these Ca2+ oscillations are regulated differentially by InsP3 and Ry receptors in cells dispersed from the main trunk of the pulmonary artery (conduit myocytes) or from tertiary and quaternary arterial branches (resistance myocytes). Ry receptor antagonists inhibit either spontaneous or ATP-induced Ca2+ oscillations in resistance myocytes but they do not affect the oscillations in most conduit myocytes. In contrast, agents that inhibit InsP3 production or activation of InsP3 receptors do not alter the oscillations is resistance myocytes but block them in conduit myocytes. We have also examined the degree of overlap of Ry- and InsP3-sensitive stores in myocytes along the pulmonary arterial tree. In conduit myocytes, depletion of Ry-sensitive stores with repeated application of caffeine in the presence of Ry or in Ca2+ free solutions did not prevent the ATP-induced Ca2+ release from InsP3-dependent stores. However, responsiveness to ATP was completely abolished in resistance myocytes subjected to the same experimental protocol. Thus, InsP3- and Ry-dependent stores appear to be separated in conduit myocytes but joined in resistance myocytes. These data demonstrate for the first time differential properties of intracellular Ca2+ stores and receptors in myocytes distributed along the pulmonary arterial tree and help to explain the distinct functional responses of large and small pulmonary vessels to vasoactive agents.  相似文献   

6.
Calcium Modulates Osmosensitive Taurine Efflux in HeLa Cells   总被引:2,自引:0,他引:2  
The role of Ca2+ in the signaling transduction pathway involved in osmosensitive taurine efflux in HeLa cells was studied using radiotracer efflux techniques. Taurine efflux induced by extracellular hypotonicity was decreased by 85% by removal of extracellular Ca2+ and simultaneous depletion of intracellular Ca2+ stores with thapsigargin. Extracellular Ca2+ removal, thapsigargin treatment, or addition of Gd3+ all decreased taurine efflux by ~50%. To explore the putative signal transduction pathways involved in swelling-induced taurine efflux, HeLa cells were exposed to PP1, an inhibitor of the Src family of tyrosine kinases, the phospholipase C inhibitor U73122, the IP3 receptor antagonist 2-APB, and the generic protein kinase C inhibitor chelerythrine. All of these treatments caused ~50% inhibition of taurine release in Ca2+-rich extracellular medium and ~85%–90% in Ca2+-free conditions. The inhibitors of the conventional protein kinase C isoforms BIM-1 and Gö6976 reduced taurine efflux to a lesser extent. Acute (10-min) exposure to the phorbol ester tetradecanoyl phorbol acetate (TPA) increased taurine efflux in 25%, whilst overnight exposure had an inhibitory effect decreasing efflux by 22%. A working model for activation of osmosensitive taurine efflux in HeLa cells involving different Ca2+ signaling pathways is presented.  相似文献   

7.
Store-operated Ca2+ channels (SOCs) are activated by depletion of intracellular Ca2+ stores following agonist-mediated Ca2+ release. Previously we demonstrated that Ca2+ influx through SOCs elicits exocytosis efficiently in pancreatic duct epithelial cells (PDEC). Here we describe the biophysical, pharmacological, and molecular properties of the duct epithelial SOCs using Ca2+ imaging, whole-cell patch-clamp, and molecular biology. In PDEC, agonists of purinergic, muscarinic, and adrenergic receptors coupled to phospholipase C activated SOC-mediated Ca2+ influx as Ca2+ was released from intracellular stores. Direct measurement of [Ca2+] in the ER showed that SOCs greatly slowed depletion of the ER. Using IP3 or thapsigargin in the patch pipette elicited inwardly rectifying SOC currents. The currents increased ∼8-fold after removal of extracellular divalent cations, suggesting competitive permeation between mono- and divalent cations. The current was completely blocked by high doses of La3+ and 2-aminoethoxydiphenyl borate (2-APB) but only partially depressed by SKF-96365. In polarized PDEC, SOCs were localized specifically to the basolateral membrane. RT-PCR screening revealed the expression of both STIM and Orai proteins for the formation of SOCs in PDEC. By expression of fluorescent STIM1 and Orai1 proteins in PDEC, we confirmed that colocalization of the two proteins increases after store depletion. In conclusion, basolateral Ca2+ entry through SOCs fills internal Ca2+ stores depleted by external stimuli and will facilitate cellular processes dependent on cytoplasmic Ca2+ such as salt and mucin secretion from the exocrine pancreatic ducts.  相似文献   

8.
Autophagy is the main lysosomal catabolic process that becomes activated under stress conditions, such as amino acid starvation and cytosolic Ca2+ upload. However, the molecular details on how both conditions control autophagy are still not fully understood. Here we link essential amino acid starvation and Ca2+ in a signaling pathway to activate autophagy. We show that withdrawal of essential amino acids leads to an increase in cytosolic Ca2+, arising from both extracellular medium and intracellular stores, which induces the activation of adenosine monophosphate-activated protein kinase (AMPK) via Ca2+/calmodulin-dependent kinase kinase-β (CaMKK-β). Furthermore, we show that autophagy induced by amino acid starvation requires AMPK, as this induction is attenuated in its absence. Subsequently, AMPK activates UNC-51-like kinase (ULK1), a mammalian autophagy-initiating kinase, through phosphorylation at Ser-555 in a process that requires CaMKK-β. Finally, the mammalian target of rapamycin complex C1 (mTORC1), a negative regulator of autophagy downstream of AMPK, is inhibited by amino acid starvation in a Ca2+-sensitive manner, and CaMKK-β appears to be important for mTORC1 inactivation, especially in the absence of extracellular Ca2+. All these results highlight that amino acid starvation regulates autophagy in part through an increase in cellular Ca2+ that activates a CaMKK-β-AMPK pathway and inhibits mTORC1, which results in ULK1 stimulation.  相似文献   

9.
STIM1 is a transmembrane protein essential for the activation of store-operated Ca2+ entry (SOCE), a major Ca2+ influx mechanism. STIM1 is either located in the endoplasmic reticulum, communicating the Ca2+ concentration in the stores to plasma membrane channels or in the plasma membrane, where it might sense the extracellular Ca2+ concentration. Plasma membrane-located STIM1 has been reported to mediate the SOCE sensitivity to extracellular Ca2+ through its interaction with Orai1. Here we show that plasma membrane lipid raft domains are essential for the regulation of SOCE by extracellular Ca2+. Treatment of platelets with the SERCA inhibitor thapsigargin (TG) induced Mn2+ entry, which was inhibited by increasing concentrations of extracellular Ca2+. Platelet treatment with methyl-β-cyclodextrin, which removes cholesterol and disrupts the lipid raft domains, impaired the inactivation of Ca2+ entry induced by extracellular Ca2+. Methyl-β-cyclodextrin also abolished translocation of STIM1 to the plasma membrane stimulated by treatment with TG and prevented TG-evoked co-immunoprecipitation between plasma membrane-located STIM1 and the Ca2+ permeable channel Orai1. These findings suggest that lipid raft domains are essential for the inactivation of SOCE by extracellular Ca2+ mediated by the interaction between plasma membrane-located STIM1 and Orai1.  相似文献   

10.
AimsWe sought to determine the mechanisms of an increase in Ca2+ level in caveolae vesicles in pulmonary smooth muscle plasma membrane during Na+/K+-ATPase inhibition by ouabain.Main methodsThe caveolae vesicles isolated by density gradient centrifugation were characterized by electron microscopic and immunologic studies and determined ouabain induced increase in Na+ and Ca2+ levels in the vesicles with fluorescent probes, SBFI-AM and Fura2-AM, respectively.Key findingsWe identified the α2β1 and α1β1 isozymes of Na+/K+-ATPase in caveolae vesicles, and only the α1β1 isozyme in noncaveolae fraction of the plasma membrane. The α2-isoform contributes solely to the enzyme inhibition in the caveolae vesicles at 40 nM ouabain. Methylisobutylamiloride (Na+/H+-exchange inhibitor) and tetrodotoxin (voltage-gated Na+-channel inhibitor) pretreatment prevented ouabain induced increase in Na+ and Ca2+ levels. Ouabain induced increase in Ca2+ level was markedly, but not completely, inhibited by KB-R7943 (reverse-mode Na+/Ca2+-exchange inhibitor) and verapamil (L-type Ca2+-channel inhibitor). However, pretreatment with tetrodotoxin in conjunction with KB-R7943 and verapamil blunted ouabain induced increase in Ca2+ level in the caveolae vesicles, indicating that apart from Na+/Ca+-exchanger and L-type Ca2+-channels, “slip-mode conductance” of Na+ channels could also be involved in this scenario.SignificanceInhibition of α2 isoform of Na+/K+-ATPase by ouabain plays a crucial role in modulating the Ca2+ influx regulatory components in the caveolae microdomain for marked increase in (Ca2+)i in the smooth muscle, which could be important for the manifestation of pulmonary hypertension.  相似文献   

11.
NS1619 (1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazole-2-one) is widely used as a large-conductance Ca2+-activated K+ (BKCa) channel opener. It was previously reported that activation of BKCa channels by NS1619 could protect the cardiac muscle against ischaemia and reperfusion injury. This study reports the effects of NS1619 on intracellular Ca2+ homeostasis in H9C2 and C2C12 cells as well as its molecular mechanism of action. The effects of NS1619 on Ca2+ homeostasis in C2C12 and H9C2 cells were assessed using the Fura-2 fluorescence method. Ca2+ uptake by sarcoplasmic reticulum (SR) vesicles isolated from rat skeletal muscles and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity were measured. The effect of NS1619 on the isometric force of papillary muscle contraction in the guinea pig heart was also examined. H9C2 and C2C12 cells treated with NS1619 released Ca2+ from internal stores in a concentration-dependent manner. Ca2+ accumulation by the SR vesicles was inhibited by NS1619 treatment. NS1619 also decreased the activity of SERCA derived from rat skeletal muscle. The calcium release from cell internal stores and inhibition of SERCA by NS1619 are pH dependent. Finally, NS1619 had a profound effect on the isometric force of papillary muscle contraction in the guinea pig heart. These results indicate that NS1619 is a potent modulator of the intracellular Ca2+ concentration in H9C2 and C1C12 cells due to its interaction with SRs. The primary target of NS1619 is SERCA, which is located in SR vesicles. The effect of NS1619-mediated SERCA inhibition on cytoprotective processes should be considered.  相似文献   

12.
In mouse intestine, caveolae and caveolin‐1 (Cav‐1) are present in smooth muscle (responsible for executing contractions) and in interstitial cells of Cajal (ICC; responsible for pacing contractions). We found that a number of calcium handling/dependent molecules are associated with caveolae, including L‐type Ca2+ channels, Na+‐Ca2+ exchanger type 1 (NCX1), plasma membrane Ca2+ pumps and neural nitric oxide synthase (nNOS), and that caveolae are close to the peripheral endo‐sarcoplasmic reticulum (ER‐SR). Also we found that this assemblage may account for recycling of calcium from caveolar domains to SR through L‐type Ca + channels to sustain pacing and contractions. Here we test this hypothesis further comparing pacing and contractions under various conditions in longitudinal muscle of Cav‐1 knockout mice (lacking caveolae) and in their genetic controls. We used a procedure in which pacing frequencies (indicative of functioning of ICC) and contraction amplitudes (indicative of functioning of smooth muscle) were studied in calcium‐free media with 100 mM ethylene glycol tetra‐acetic acid (EGTA). The absence of caveolae in ICC inhibited the ability of ICC to maintain frequencies of contraction in the calcium‐free medium by reducing recycling of calcium from caveolar plasma membrane to SR when the calcium stores were initially full. This recycling to ICC involved primarily L‐type Ca2+ channels; i.e. pacing frequencies were enhanced by opening and inhibited by closing these channels. However, when these stores were depleted by block of the sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) pump or calcium release was activated by carbachol, the absence of Cav‐1 or caveolae had little or no effect. The absence of caveolae had little impact on contraction amplitudes, indicative of recycling of calcium to SR in smooth muscle. However, the absence of caveolae slowed the rate of loss of calcium from SR under some conditions in both ICC and smooth muscle, which may reflect the loss of proximity to store operated Ca channels. We found evidence that these channels were associated with Cav‐1. These changes were all consistent with the hypothesis that a reduction of the extracellular calcium associated with caveolae in ICC of the myenteric plexus, the state of L‐type Ca2+ channels or an increase in the distance between caveolae and SR affected calcium handling.  相似文献   

13.
KRAS-induced actin-interacting protein (KRAP) was originally characterized as a filamentous- actin-interacting protein. We have recently found that KRAP is an associated molecule with inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and is responsible for the proper subcellular localization of IP3R. Since it remains unknown whether KRAP regulates the IP3R-mediated Ca2+ signaling, we herein examined the effects of KRAP on the IP3R-mediated Ca2+ release by Ca2+ imagings in the cultured HEK293 or MCF7 cells. Reduction of KRAP protein by KRAP-specific siRNA diminishes ATP-induced Ca2+ release and the ATP-induced Ca2+ release is completely quenched by the pretreatment with the IP3R inhibitor but not with the ryanodine receptor inhibitor, indicating that KRAP regulates IP3R-mediated Ca2+ release. To further reveal mechanistic insights into the regulation of IP3R-mediated Ca2+ release by KRAP, we examined the effects of the KRAP-knockdown on the releasable Ca2+ content of intracellular Ca2+ stores. Consequently, reduction of KRAP does not affect the amount of ionophore- or Ca2+-ATPase inhibitor-induced Ca2+ release in the HEK293 cells, indicating that releasable Ca2+ content of intracellular Ca2+ stores is not altered by KRAP. Thus, KRAP is involved in the proper regulation of IP3R-mediated Ca2+ release.  相似文献   

14.
An increase in the intracellular calcium ion concentration ([Ca2+]) impacts a diverse range of cell functions, including adhesion, motility, gene expression and proliferation. Elevation of intracellular calcium ion (Ca2+) regulates various cellular events after the stimulation of cells. Initial increase in Ca2+ comes from the endoplasmic reticulum (ER), intracellular storage space. However, the continuous influx of extracellular Ca2+ is required to maintain the increased level of Ca2+ inside cells. Store-operated Ca2+ entry (SOCE) manages this process, and STIM1, a newly discovered molecule, has a unique and essential role in SOCE. STIM1 can sense the exhaustion of Ca2+ in the ER, and activate the SOC channel in the plasma membrane, leading to the continuous influx of extracellular Ca2+. STIM1 senses the status of the intracellular Ca2+ stores via a luminal N-terminal Ca2+-binding EF-hand domain. Dissociation of Ca2+ from this domain induces the clustering of STIM1 to regions of the ER that lie close to the plasma membrane, where it regulates the activity of the store-operated Ca2+ channels/entry (calcium-release-activated calcium channels/entry). In this review, we summarize the mechanism by which STIM1 regulates SOCE, and also its role in the control of mast cell functions and allergic responses.  相似文献   

15.
In contrast to terminally differentiated cardiomyocytes, relatively little is known about the characteristics of mammalian cardiac cells before the initiation of spontaneous contractions (precursor cells). Functional studies on these cells have so far been impossible because murine embryos of the corresponding stage are very small, and cardiac precursor cells cannot be identified because of the lack of cross striation and spontaneous contractions.In the present study, we have used the murine embryonic stem (ES, D3 cell line) cell system for the in vitro differentiation of cardiomyocytes. To identify the cardiac precursor cells, we have generated stably transfected ES cells with a vector containing the gene of the green fluorescent protein (GFP) under control of the cardiac α-actin promoter. First, fluorescent areas in ES cell–derived cell aggregates (embryoid bodies [EBs]) were detected 2 d before the initiation of contractions. Since Ca2+ homeostasis plays a key role in cardiac function, we investigated how Ca2+ channels and Ca2+ release sites were built up in these GFP-labeled cardiac precursor cells and early stage cardiomyocytes. Patch clamp and Ca2+ imaging experiments proved the functional expression of the L-type Ca2+ current (ICa) starting from day 7 of EB development. On day 7, using 10 mM Ca2+ as charge carrier, ICa was expressed at very low densities 4 pA/pF. The biophysical and pharmacological properties of ICa proved similar to terminally differentiated cardiomyocytes. In cardiac precursor cells, ICa was found to be already under control of cAMP-dependent phosphorylation since intracellular infusion of the catalytic subunit of protein kinase A resulted in a 1.7-fold stimulation. The adenylyl cyclase activator forskolin was without effect. IP3-sensitive intracellular Ca2+ stores and Ca2+-ATPases are present during all stages of differentiation in both GFP-positive and GFP-negative cells. Functional ryanodine-sensitive Ca2+ stores, detected by caffeine-induced Ca2+ release, appeared in most GFP-positive cells 1–2 d after ICa. Coexpression of both ICa and ryanodine-sensitive Ca2+ stores at day 10 of development coincided with the beginning of spontaneous contractions in most EBs.Thus, the functional expression of voltage-dependent L-type Ca2+ channel (VDCC) is a hallmark of early cardiomyogenesis, whereas IP3 receptors and sarcoplasmic Ca2+-ATPases are expressed before the initiation of cardiomyogenesis. Interestingly, the functional expression of ryanodine receptors/sensitive stores is delayed as compared with VDCC.  相似文献   

16.
Modulation of calcium signalling by mitochondria   总被引:1,自引:0,他引:1  
Ciara Walsh 《BBA》2009,1787(11):1374-1382
In this review we will attempt to summarise the complex and sometimes contradictory effects that mitochondria have on different forms of calcium signalling. Mitochondria can influence Ca2+ signalling indirectly by changing the concentration of ATP, NAD(P)H, pyruvate and reactive oxygen species — which in turn modulate components of the Ca2+ signalling machinery i.e. buffering, release from internal stores, influx from the extracellular solution, uptake into cellular organelles and extrusion by plasma membrane Ca2+ pumps. Mitochondria can directly influence the calcium concentration in the cytosol of the cell by importing Ca2+ via the mitochondrial Ca2+ uniporter or transporting Ca2+ from the interior of the organelle into the cytosol by means of Na+/Ca2+ or H+/Ca2+ exchangers. Considerable progress in understanding the relationship between Ca2+ signalling cascades and mitochondrial physiology has been accumulated over the last few years due to the development of more advanced optical techniques and electrophysiological approaches.  相似文献   

17.
Jun Nakamura 《BBA》1983,723(2):182-190
The effects of ATP on Ca2+ binding in the absence of added Mg2+ to the purified sarcoplasmic reticulum Ca2+-ATPase were studied at pH 7.0 and 0°C. ATP increased the number of Ca2+-binding sites of the enzyme from 2 to 3 mol per mol of phosphorylatable enzyme. The association constant for the ATP-induced Ca2+ binding was 4·105 M?1, which was not significantly different from that obtained in the absence of ATP. AdoP[CH2]PP has little effect on the Ca2+-binding process. The amount of phosphoenzyme formed was equivalent to the level of ATP-induced Ca2+ binding. ADP decreased the level of ATP-induced Ca2+ binding and phosphoenzyme by the same amount. These results suggest that ATP-induced Ca2+ binding exists in the form of an ADP-reactive phosphoenzyme·Ca complex. In addition, the Ca2+ bound to the enzyme in the presence of ATP was released on the addition of 1 mM MgCl2; after the release of Ca2+, the phosphoenzyme decayed. These observations suggest that Mg2+, added after the ATP-induced Ca2+-binding process, may replace the Ca2+ on the phosphoenzyme and initiate phosphoenzyme decomposition.  相似文献   

18.
Golgi antiapoptotic protein (GAAP) is a novel regulator of cell death that is highly conserved in eukaryotes and present in some poxviruses, but its molecular mechanism is unknown. Given that alterations in intracellular Ca2+ homeostasis play an important role in determining cell sensitivity to apoptosis, we investigated if GAAP affected Ca2+ signaling. Overexpression of human (h)-GAAP suppressed staurosporine-induced, capacitative Ca2+ influx from the extracellular space. In addition, it reduced histamine-induced Ca2+ release from intracellular stores through inositol trisphosphate receptors. h-GAAP not only decreased the magnitude of the histamine-induced Ca2+ fluxes from stores to cytosol and mitochondrial matrices, but it also reduced the induction and frequency of oscillatory changes in cytosolic Ca2+. Overexpression of h-GAAP lowered the Ca2+ content of the intracellular stores and decreased the efficacy of IP3, providing possible explanations for the observed results. Opposite effects were obtained when h-GAAP was knocked down by siRNA. Thus, our data demonstrate that h-GAAP modulates intracellular Ca2+ fluxes induced by both physiological and apoptotic stimuli.  相似文献   

19.

Background

The extracellular ATP-gated cation channel, P2X7 receptor, has an emerging role in neoplasia, however progress in the field is limited by a lack of malignant cell lines expressing this receptor.

Methods

Immunofluorescence labelling and a fixed-time ATP-induced ethidium+ uptake assay were used to screen a panel of human malignant cell lines for the presence of functional P2X7. The presence of P2X7 was confirmed by RT-PCR, immunoblotting and pharmacological approaches. ATP-induced cell death was measured by colourimetric tetrazolium-based and cytofluorometric assays. ATP-induced CD23 shedding was measured by immunofluorescence labelling and ELISA.

Results

RPMI 8226 multiple myeloma cells expressed P2X7 mRNA and protein, as well as P2X1, P2X4 and P2X5 mRNA. ATP induced ethidium+ uptake into these cells with an EC50 of ~ 116 μM, and this uptake was reduced in the presence of extracellular Ca2+ and Mg2+. The P2X7 agonist 2'- and 3'-0(4-benzoylbenzoyl) ATP, but not UTP, induced ethidium+ uptake. ATP-induced ethidium+ uptake was impaired by the P2X7 antagonists, KN-62 and A-438079. ATP induced death and CD23 shedding in RPMI 8226 cells, and both processes were impaired by P2X7 antagonists. The metalloprotease antagonists, BB-94 and GM6001, impaired ATP-induced CD23 shedding but not ethidium+ uptake.

Conclusions

P2X7 receptor activation induces cell death and CD23 shedding in RPMI 8226 cells.

General significance

RPMI 8226 cells may be useful to study the role of P2X7 in multiple myeloma and B-lymphocytes.  相似文献   

20.
In this study, we examined the response of glioma C6 cells to 2′,3′-O-(4-benzoylbenzoyl)-ATP (BzATP) and showed that the BzATP-induced calcium signaling does not involve the P2X7 receptor activity. We show here that in the absence of extracellular Ca2+, BzATP-generated increase in [Ca2+]i via Ca2+ release from intracellular stores. In the presence of calcium ions, BzATP established a biphasic Ca2+ response, in a manner typical for P2Y receptors. Brilliant Blue G, a selective antagonist of the rat P2X7 receptor, did not reduce any of the two components of the Ca2+ response elicited by BzATP. Periodate-oxidized ATP blocked not only BzATP- but also UTP-induced Ca2+ elevation. Moreover, BzATP did not open large transmembrane pores. What is more, a cross-desensitization between UTP and BzATP occurred, which clearly shows that in glioma C6 cells BzATP activates most likely the P2Y2 but not the P2X7 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号