首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short chain amylose (degree of polymerization 22) has been crystallized from aqueous solutiion as sperulites. The spherulites exhibit an X-ray diffraction pattern identical to the B-type crystalline modification of starch. Crystallization of the amylose from aqueous solutiions containing 30% w/w ethanol produced spherulites which crystallized in the A-type crystalline modification.  相似文献   

2.
Binary systems of polymers often display spherulitic morphologies after cooling from the melt, but these phenomena have rarely been reported among food polymers of native-size. Here we report the observation of spherulitic and other morphologies in gelatinized maize starch. The morphology could be manipulated by choosing polymer compositions and kinetic regimes. Spherulites (10 μm diameter) formed from gelatinized high-amylose maize starches and purified amylose at cooling rates of order of magnitude 100 °C/min. They were more numerous and exhibited a higher melting point the greater the ratio of amylose to amylopectin. Rapid cooling rates (150–500 °C/min) resulted in a more even distribution of smaller spherulites. Very rapid (liquid nitrogen quench) or slow (0.1–1 °C/min) cooling rates resulted in mixed morphology, as did addition of 15 or 60% (w/w) sucrose to a 10% (w/w) dispersion of high-amylose starch (HAS). Spherulites were observed in aqueous suspensions of high-amylose maize starch between 5 and 30% (w/w). Lower starch concentrations resulted in a broader size distribution and spherulites of more distinct shape. WAXS patterns of B-type were observed. Negatively birefringent spherulites predominated, but positive spherulites were found. The spherulite melting range overlapped with that for amylose–lipid complex. Evidence indicated that micro-phase separation takes place when a holding period at 95 °C follows gelatinization at 180 °C. Despite the high maximum temperature of treatment (180 °C) there was evidence for a memory effect in samples of 30% HAS. Spherulite morphology closely resembled that of native starch granules in very early stages of development.  相似文献   

3.
Starch dextrins of different molecular sizes (DPn 311, 142 and 39) were prepared by hydrolyzing a high amylose maize starch in acidic alcohol solutions. The dextrins were dissolved in an aqueous dimethyl sulfoxide solution (90% DMSO), and then the solution was allowed to migrate down into n-butanol separated by a membrane filter. The complex was gradually formed between the dextrin and butanol, and precipitated in the butanol layer. The dextrin–butanol complex yielded V6-I type crystals with broad reflections (d-spacings 1.123, 0.657 and 0.429 nm) under X-ray diffractograms. Platelets of average length less than 100 nm, interspersed in amorphous matrices, were observed in complexes of DPn 311 and 142, but that of DPn 39 showed different morphology, and the formation of complexes was limited. By hydrolyzing the complex of DPn 311 with α-amylase, amorphous matrices were selectively removed, and crystallites of 23–72 nm showing a V6-I X-ray diffraction pattern were obtained. However, crystallites in complexes of DPn 142 and 39 were eroded by amylolysis, forming large aggregates.  相似文献   

4.
Graft copolymers (SPAN) of polyacrylonitrile (PAN) onto starch were prepared from gelatinized starch varieties with ammonium ceric nitrate as an initiator. The molecular weight of the PAN branches increased for the varieties of starches in the order high amylose maize starch < maize starch < waxy maize starch. SPAN samples were saponified with aqueous NaOH, and the aqueous solution of the resulting polymer (HSPAN) was cast into film in a forced-air oven at 35°C. The water absorbency of the HSPAN film formed from waxy maize starch was the highest (1200 g H2O (g dry sample)−1) and that from high amylose maize starch was the lowest (530 g g−1). SPAN samples from maize starch were partially hydrolyzed with dilute hydrochloric acid. The resulting polyacrylonitriles with low molecular weight starch end groups (LSPAN) were also saponified. The resulting saponified product (HLSPAN) was cast into film. The absorbencies of HLSPAN films were found to be far larger (up to 6000 g g−1) than those of the corresponding HSPAN films. The absorbency increased with increasing molecular weight of PAN in the initial SPAN up to a molecular weight of 1−1·5 × 106. The absorbency decreased significantly when HSPAN and HLSPAN films were subjected to heat treatment at 135°C or above. The crosslinks present in HSPAN and HLSPAN films prepared at 35°C and those formed during heat treatment were considered to have different structures: the former formed between carbohydrate alkoxide ions and nitrile groups at the early stages of saponification and the latter formed between carbohydrate and copoly(acrylate-acrylamide) chains and/or between copoly(acrylate-acrylamide) chains.  相似文献   

5.
N.K. Matheson 《Phytochemistry》1975,14(9):2017-2021
After removal of granular starch at low centrifugal force, the centrifugation, at increasing forces, of aqueous extracts of su1 corn gave a series of α-glucan precipitates that contained amylose. The amylose content decreased as the force increased. In contrast, in normal corn all the α-glucan precipitated as starch granules at low forces. In the sweet corn precipitates, apart from the granular starch, the branched α-glucan was phytoglycogen. The MW of this decreased as the proportion of amylose decreased. It appears that, as well as starch granules and soluble phytoglycogen, sweet corn contains granules, smaller than starch, of a range of sizes, and these are made up of phytoglycogen and amylose. As granule size decreases, so does the MW of the phytoglycogen and the content of amylose. A method of quantitative extraction of starch giving minimal depolymerization is described. The isopotential iodine absorption of a quantitative extract of sweet corn flour indicated that the total ratio of linear (amylose) fraction to branched (amylopectin + phytoglycogen) fraction was near the normal value of 1:4.  相似文献   

6.
Granular potato starches were methylated in aqueous suspension with dimethyl sulfate to molar substitution (MS) values up to 0.29. Fractions containing mainly amylose or amylopectin were obtained after aqueous leaching of the derivatised starch granules. Amylopectin in these fractions was precipitated with Concanavalin A to separate it from amylose. Amylose remained in solution and was enzymatically converted into D-glucose for quantification, thereby taking into account the decreased digestibility due to the presence of methyl substituents. It was found that the MS of amylose was 1.6-1.9 times higher than that of amylopectin in methylated starch granules. The distributions of methyl substituents in trimers and tetramers, prepared from amylose- or amylopectin-enriched fractions, were determined by FAB mass spectrometry and compared with the outcome of a statistically random distribution. It turned out that substituents in amylopectin were distributed heterogeneously, whereas substitution of amylose was almost random. The results are rationalised on the basis of an organised framework that is built up from amylopectin side chains. The crystalline lamellae are less accessible for substitution than amorphous branching points and amylose.  相似文献   

7.
Amylose fractions were prepared by aqueous leaching from pea, maize and patato starch granules. The fractions were characterised by iodine binding, β-amylolysis and viscometry. Amylose starts to form a gel rather than a precipitate on cooling aqueous solutions to room temperature at concentrations above the coil overlap concentration C1. Amylose gels are almost purely elastic, with negligible viscous flow at room temperature. The rigidity modulus is strongly dependent on concentration, c, in that above 1·5% w/w the modulus increases as a function of c7. The modulus of a matured gel falls only slightly with increasing temperature; at temperatures below 100°C the gel could not be melted. The non-equilibrium nature of the system is shown by the dependence of rigidity on thermal history. The shear modulus is also dependent on amylose type; higher molecular weight amylose fractions produced less rigid gels at a given concentration.  相似文献   

8.
Most starch granules exhibit a natural crystallinity, with different diffraction patterns according to their botanical origin: A‐type from cereals and B‐type from tubers. The V polymorph results essentially from the complexing of amylose with compounds such as iodine, alcohols, or lipids. The intensity and nature of phase transitions (annealing, melting, polymorphic transitions, recrystallization, etc.) induced by hydrothermal treatments in crystalline structures are related to temperature and water content. Despite its small concentration, the lipid phase present mainly in cereal starches has a large influence on starch properties, particularly in complexing amylose. The formation of Vh crystalline structures was observed by synchrotron x‐ray diffraction in native maize starch heated at intermediate and high moisture contents (between 19 and 80%). For the first time, the crystallization of amylose–lipid complexes was evidenced in situ by x‐ray diffraction without any preliminary cooling, at heating rates corresponding to the usual conditions for differential scanning calorimetry experiments. For higher water contents, the crystallization of Vh complexes clearly occurred at 110–115°C. For intermediate water contents, mixed A + Vh (or B + Vh for high amylose starch) diffraction diagrams were recorded. Two mechanisms can be involved in amylose complexing: the first relating to crystallization of the amylose and lipid released during starch gelatinization, and the second to crystalline packing of separate complexed amylose chains (amorphous complexes) present in native cereal starches. © 1999 John Wiley & Sons, Inc. Biopoly 50: 99–110, 1999  相似文献   

9.
Starch suspensions have been treated with dilute, aqueous bromine at 30° in the pH range 6–8; no adsorption of oxidant occurred. The oxidation kinetics were first-order in bromine and in accordance with the rate law d [bromine]/dtk [starch] [bromine], except for a minor, initial rapid-phase in the oxidation of cereal starches, which is attributed to an enhanced reactivity of the granule surface. The apparent first-order rate-constants were 2.0–2.8 x 10?3 min?1, except for retrograded amylose oxidised at pH 8 when the value was 5.6 x 10?3 min?1. The i.r. spectra of the products indicated the presence of carboxylate and aldehyde groups. The functional group contents were determined quantitatively. Oxidation of the amylose at pH 6–7 introduced carbonyl groups, whereas at pH 8 carbonyl and carboxylate were found in equal amounts. For waxy-maize starch oxidised at pH 6–8, the carbonyl content was twice that of carboxylate. Acid hydrolysis of the product obtained by oxidation of amylose proceeded at pH 8 according to first-order kinetics. Chromatographic analysis of the anionic components of the hydrolysate indicated the presence of D-glucurono-6,3-lactone, D-gluconic acid, and an unidentified acidic ketose.  相似文献   

10.
Beta-cyclodextrin (beta-CD) inclusion complexes with carvacrol (1), thymol (2), and eugenol (3) (components of essential oils of vegetable origin) were prepared by the supercritical CO2 technique, and their structural characterization was achieved by means of 1H-NMR in aqueous solution and 13C-CPMAS NMR in the solid state. Evidence of the formation of the inclusion complexes for all the examined systems was obtained by 1H-NMR in solution, while 2D-ROESY-NMR experiments were used to investigate the geometry of inclusion. In addition, the dynamics of these inclusion complexes in the kHz timescale was investigated by analysis of the 1H and 13C spin-lattice relaxation times in the rotating frame.  相似文献   

11.
Mutations that reduced the rate of starch synthesis in pea (Pisum sativum L.) embryos through effects on enzymes on the pathway from sucrose to adenosine 5′-diphosphoglucose (ADPglucose) also led to a reduction in the amylose content of the starch of developing embryos. Evidence is presented that this relationship between rate of synthesis and the composition of starch is due to the fact that amylopectin-synthesising isoforms of starch synthase have higher affinities for ADPglucose than the amylose-synthesising isoform. First, developing mutant embryos (rb, rug3 and rug4 mutants) displayed both reduced amylose contents in their starches and reduced ADPglucose contents relative to wild-type embryos. Second, incubation of detached, wild-type embryos for 6 h at high and low glucose concentrations resulted in differences in both ADPglucose content and the relative rates of amylose and amylopectin synthesis. At 0.25 M glucose both ADPglucose content and the proportion of synthesised starch that was amylose were about twice as great as at 25 μM glucose. Third, S 0.5 values for soluble (amylopectin-synthesising) starch synthases in developing embryos were several-fold lower than that for granule-bound (amylose synthesising) starch synthase. Estimates of the expected amylose contents of the starch of the mutant embryos, based on the reduction in their ADPglucose contents and on the S 0.5 values of the starch synthases, were very similar to the measured amylose contents. The implications of these results for the determination of starch composition are discussed. Received: 6 February 1999 / Accepted: 22 May 1999  相似文献   

12.
Thermoplastic starch was prepared by mixing native high amylose potato starch and normal potato starch in a Buss co-kneading extruder at starch to glycerol ratios of 100:45 and 100:30. The materials were also conditioned to different moisture contents at different relative humidities at 23 °C. After the mixing, the compounds were extruded into sheets with a Brabender laboratory extruder. The thermoplastic high amylose materials exhibited a higher melt viscosity than the normal potato starch materials when conditioned at 53% relative humidity. Increasing the moisture content in HAP from 27% to 30% (by weight) lowered the melt viscosity to the same level as that of normal potato starch with a moisture content of 28%. In general, the high amylose materials were more difficult to extrude than the thermoplastic material based on normal starch. The main extrusion problems encountered with the high amylose starch were unstable flow, insufficient melt tenacity and clogging of the die. By increasing the moisture content, increasing the compression ratio of the screw and increasing the rotation rate of the screw, the problems were reduced or eliminated. However, only with a starch to glycerol ratio of 100:45 was an acceptable extrusion result obtained. Extruded sheets of such high amylose materials had a stress at break of about 5 MPa at room temperature and 53% relative humidity, whereas the corresponding value for normal potato (thermoplastic) starch was 3 MPa. The elongation at break was also higher in the case of the high amylose material. The results are discussed in terms of residual crystallinity of the starch materials.  相似文献   

13.
Complexes of amylose with several kinds of n-aliphatic ketones having different chain lengths, different positions and numbers of carbonyl groups in the molecules were prepared. The unit cell dimensions of the complexes were calculated in both the wet and dried states by means of X-ray diffraction analysis. Both the 61- and 71-helix amyloses were presented in these complexes. It was found that the helix packing diameter of the amylose-ketone complex changes depending upon the linear chain length of the ketone molecule complexed.  相似文献   

14.
Crosslinked starch phosphate carbamates were prepared and used to adsorb Cu(II) ions from an aqueous solution. Scanning electron microscopy (SEM) was used to investigate the changes in the starch granule structure before and after adsorption. Batch adsorption experiments were carried out as a function of adsorption time, adsorbents dose, pH, substitute groups' content, initial Cu(II) ions concentrations, and temperature. The results reveal that 20 min of adsorption time is sufficient for reaching the adsorption equilibrium, the adsorption of Cu(II) ions on crosslinked starch phosphate carbamate is endothermic in nature, and the adsorption equilibrium data correlate well with the Langmuir isotherm model with the maximum adsorption capacity of 1.60 mmol/g. Moreover, the adsorbed Cu(II) ions can be desorbed by treating with HCl solution and the desorption percentage reached above 96% when desorbing with 1 N HCl solution for 1 h.  相似文献   

15.
The film-forming ability of chitosan and binary mixtures of chitosan and native amylose corn starch (Hylon VII) was evaluated with free films prepared by a casting/solvent evaporation method. Unplasticized and plasticized free chitosan films in aqueous acetic acid and respective films containing a mixture of chitosan and native amylose starch in acetic acid were prepared. Glycerol, sorbitol, and i-erythritol were used as plasticizers. Solid-state and mechanical properties of the films were studied by powder x-ray diffractometry (XPRD), differential scanning calorimetry (DSC), and a materials testing machine. The films composed of a mixture of chitosan and native amylose starch in acetic acid were clear and colorless. A plasticizer concentration of 20% wt/wt (of the polymer weight) ws sufficient to obtain flexible films with all samples tested. X-ray diffraction patterns and DSC thermograms indicated an amorphous state of the films independent of the type of plasticizer used. In conclusion, incorporation of native amylose com starch into chitosan films improves the consistency and the mechanical properties of the films.  相似文献   

16.
The aim of this study is to confirm the formation of inclusion complexes between miconazole (MCZ) and two derivatives of beta-cyclodextrin, methyl-beta-cyclodextrin (MβCD) and 2-hydroxypropyl-beta-cyclodextrin (HPβCD) in aqueous solution by phase solubility studies. Inclusion complexes with MβCD in the solid state were then prepared by different methods, i.e., kneading, coevaporation (COE), spray-drying (SD), and lyophilization (LPh). The physicochemical properties of these complexes were subsequently studied by means of differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction techniques. Phase solubility diagrams with MβCD and HPβCD were classified as AP type, indicating the formation of 1:1 and 1:2 stoichiometric inclusion complexes. The apparent stability constants (KS) calculated from the phase solubility diagram were 145.69 M−1 (K 1:1) and 11.11 M−1 (K 1:2) for MβCD and 126.94 M−1 (K 1:1) and 2.20 M−1 (K 1:2) for HPβCD. The method of preparation of the inclusion complexes in the solid state was shown to greatly affect the properties of the formed complex. Hence, the LPh, SD, and COE methods produce true inclusion complexes between MCZ and MβCD. In contrast, crystalline drug was still clearly detectable in the kneaded (KN) product.  相似文献   

17.
The iodine which is added to an aqueous amylose solution is bound only partly by the amylose while forming the blue complex and partly remains free. The equilibrium normality of the free and the bound iodine at half-saturation of amylose by iodine is designated as [If]v and [Ib]w, respectively. The stability of the poly iodine chain formed within the axis of amylose helices depends on its length, i.e., indirectly on the DP of the amylose helices: the greater this stability, the lower the [If]v value. The amylose molecule consists of helical segments. Such a molecule may behave as a random coil. The average length of the helical segments in freshly prepared amylose-iodine complexes depends on temperature, pH, iodide concentration, the presence of other complex-forming agents, and the DP of the amylose. This latter factor is investigated in the present paper. By the aid of an automatically recording photometrictitrating device the coherent values of [Ib] and [If] were determined. Plotting these values against DP n for mechanochemically degraded as well as for periodateo-xidized amyloses resulted in curves consisting of two linear sections. The break of the curves occurred between DP n 110 and 130. It was concluded that below DP n = 100 the DP of helical segments (= sDP n) is identical to the DP n of the total molecule, i.e., the molecule consists of only a single, relatively stiff helix. Above this limit the molecule contains several helical segments. The DP of these helical segments can be calculated as follows: sDP n = 141.1 ? 10.2 × 105[If]v. This equation is considered to be valid for 0.5–0.6 mg. amylose in 100 ml. 0.1N HCl at 20°C., λ = 650 mμ, euuvet diameter 3.4 cm., the feed rate of the iodate-iodide titrating solution (in acid medium resulting in a 5 × 10?3N I2 solution with a molar iodide to iodine ratio of 1.5) is 0.4ml./min. Amylose molecules of, e.g., DP n = 1380 consist of an average of 11.4 segments having a DP of about 120 and consisting of an average of 15–18 helical turns.  相似文献   

18.
The objectives of this research were to prepare and characterize inclusion complexes of clonazepam with β-cyclodextrin and hydroxypropyl-β-cyclodextrin and to study the effect of complexation on the dissolution rate of clonazepam, a water-insoluble lipid-lowering drug. The phase-solubility profiles with both cyclodextrins were classified as AP-type, indicating the formation of 2:1 stoichiometric inclusion complexes. Gibbs free energy ( DGtro ) \left( {\Delta {G_{tr}}^o} \right) values were all negative, indicating the spontaneous nature of clonazepam solubilization, and they decreased with increase in the cyclodextrins concentration, demonstrating that the reaction conditions became more favorable as the concentration of cyclodextrins increased. Complexes of clonazepam were prepared with cyclodextrins by various methods such as kneading, coevaporation, and physical mixing. The complexes were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry studies. These studies indicated that complex prepared kneading and coevaporation methods showed successful inclusion of the clonazepam molecule into the cyclodextrins cavity. The complexation resulted in a marked improvement in the solubility and wettability of clonazepam. Among all the samples, complex prepared with hydroxypropyl-β-cyclodextrin by kneading method showed highest improvement in in vitro dissolution rate of clonazepam. Mean dissolution time of clonazepam decreased significantly after preparation of complexes and physical mixture of clonazepam with cyclodextrins. Similarity factor indicated significant difference between the release profiles of clonazepam from complexes and physical mixture and from plain clonazepam. Tablets containing complexes prepared with cyclodextrins showed significant improvement in the release profile of clonazepam as compared to tablet containing clonazepam without cyclodextrins.  相似文献   

19.
Complexes of amylose, the linear starch polysaccharide, with linear alcohols having chain lengths varying from 4 to 8 carbon atoms, were prepared. Either crystalline or amorphous complexes could be formed depending on preparation conditions. Crystalline complexes gave sharp X-ray diffraction patterns, characteristic of the VH form of amylose, whereas no observable pattern was obtained from the amorphous form. Thermal dissociation of the complexes occurred at increasing temperatures with increasing alcohol chain length. Crystalline complexes dissociated at temperatures approximately 23°C higher than their amorphous counterparts and the enthalpy of dissociation was also greater for the crystalline samples. Enthalpy values were independent of alcohol chain length. Differences in thermal behaviour of the two types of complex may be described in terms of the polymer crystal lattice energy and may explain the variability of reported results for complex dissociation in the literature.  相似文献   

20.
In this study, we investigated the preparation of polysaccharide supramolecular films through the formation of inclusion complexes by amylose in vine-twining polymerization using carboxymethyl cellulose-graft-poly(?-caprolactone) (CMC-g-PCL) as a new guest polymer. First, hydrogels were prepared by phosphorylase-catalyzed enzymatic polymerization in the presence of CMC-g-PCL according to the vine-twining polymerization manner. The XRD result of a powdered sample obtained by lyophilization of the resulting hydrogel indicated the presence of inclusion complexes of amylose with the PCL graft-chains between intermolecular (CMC-g-PCL)s, which acted as supramolecular cross-linking points for the hydrogelation. Then, the supramolecular films were obtained by adding water to the powdered samples, followed by drying. The mechanical properties of the selected films examined by tensile testing were superior to those of a CMC film. The effect of the supramolecular cross-linking structures on the mechanical properties of the films was evaluated further by several investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号