首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Graft copolymer of xanthan gum (XG) and ethylacrylate (EA) has been synthesized by free radical polymerization using potassium peroxydisulfate (KPS) as an initiator in an air atmosphere. The grafting parameters, i.e. grafting ratio and efficiency decrease with increase in concentration of xanthan gum from 0.050 mg/25 mL to 0.350 mg/25 mL, but these grafting parameters increase with increase in concentration of ethylacrylate from 9 × 10−2 to 17 × 10−2 ML−1, and KPS from 15 × 10−3 to 35 × 10−3 ML−1. The graft copolymer has been characterized by FTIR, XRD, TGA and SEM analysis. The grafted copolymer was also evaluated as efficient Zn2+ metal binder. The grafted copolymer shows improvement in the stability, solubility as well as their sorbing capacity. Thus graft copolymer formed could find applications in metal ion removal and in drug delivery.  相似文献   

2.
A poly (acrylamide-allylglycidyl ether) [p(AAm-AGE)] cryogel was prepared by radical polymerization of acrylamide (AAm) and allylglycidyl ether (AGE). Cibacron Blue F3GA (CB) was covalently attached to the p(AAm-AGE) cryogel via the reaction between the chloride groups of the reactive dyes and the epoxide groups of the AGE. The CB-attached p(AAm-AGE) cryogel was chelated with Fe3+ ions. This immobilized metal ion affinity chromatography (IMAC) cryogel carrying 25.8 ± 2.0 μmol Fe3+ ions was used in adsorption studies to interrogate the effects of pH, protein initial concentration, flow rate, temperature and ionic strength on enzyme activity. Maximum adsorption capacities were found to be 75.7 ± 1.2 mg/g for p(AAm-AGE)-CB-Fe3+ cryogels and 60.6 ± 1.0 mg/g for p(AAm-AGE)-CB cryogels, respectively. The adsorbed amounts of catalase per unit mass of cryogel reached a plateau value at about 1.5 mg/mL at pH 6.0. The Km values were found to be 0.73 ± 0.02 g/L for the free catalase and 0.18 ± 0.02 g/L for the immobilized catalase. The Vmax value of free catalase (2.0 × 103 U/mg enzyme) was found to be lower than that of the immobilized catalase (2.5 × 103 U/mg enzyme). It was also observed that the enzyme could be repeatedly adsorbed and desorbed onto the p(AAm-AGE)-CB-Fe3+ cryogel.  相似文献   

3.
The utility of p-sulphonatocalix[4]arene (s-CX[4]) as a drug delivery vehicle for multinuclear platinum anticancer agents, using trans-[{PtCl(NH3)2}2μ-dpzm]2+ (di-Pt; where dpzm = 4,4′-dipyrazolylmethane) as a model complex, has been examined using 1H nuclear magnetic resonance, electrospray ionisation mass spectrometry, molecular modelling and in vitro growth inhibition assays. s-CX[4] binds di-Pt in a side-on fashion in a ratio of 1:1, with the dpzm ligand of the metal complex located within the s-CX[4] cavity with binding further stabilised by ion-ion interactions and hydrogen bonding between the metal complex am(m)ine groups and the s-CX[4] sulphate groups. Partial encapsulation of di-Pt within the cavity does not prevent binding of 5′-guanosine monophosphate to the metal complex. When bound to two individual guanosine molecules, di-Pt also remains partially bound by s-CX[4]. The cytotoxicity of free di-Pt and s-CX[4] and their host guest complex was examined using in vitro growth inhibition assays in the A2780 and A2780cis human ovarian cancer cell lines. Free di-Pt has an IC50 of 100 and 60 μM, respectively, in the cell lines, which is significantly less active than cisplatin (1.9 and 8.1 μM, respectively). s-CX[4] displays no cytotoxicity at concentrations up to 1.5 mM and does not affect the cytotoxicity of di-Pt, probably because its low binding constant to the metal complex (6.8 × 104 M−1) means the host-guest complex is mostly disassociated at biologically relevant concentrations.  相似文献   

4.
A new polymer bearing aldehyde groups was designed and synthesized by grafting 4-pyridinecarboxaldehyde onto poly(epichlorohydrin). Antibodies can be directly immobilized on the surface of the polymer film through the covalent bonding of aldehyde groups of the film with amino groups of antibodies. In this study, human immunoglobulin G (IgG) was used as a model analyte for the fabrication of an electrochemical impedance immunosensor. Using the proposed immunosensor, IgG in the range from 0.1 to 80 ng ml−1 was detected with a detection limit of 0.07 ng ml−1 (signal/noise [S/N] = 3). In addition, the electrochemical impedance immunosensor displays good stability and reproducibility.  相似文献   

5.
Effect of high boron application on boron content and growth of melons   总被引:4,自引:0,他引:4  
Synthetic chelates, such as ethylene diamine tetraacetic acid (EDTA), have been shown to enhance phytoextraction of Pb from contaminated soil but also cause leaching of heavy metal-chelate complexes, posing a groundwater contamination threat. In a soil column study, we examined the effect of EDTA and a biodegradable chelate [S,S] isomere of ethylene diamine disuccinate ([S,S]-EDDS), newly introduced in phytoextraction research, on the uptake of Pb by the Chinese cabbage (Brassica rapa) and Pb leaching through the soil profile. Soil water sorption characteristics were modified by acrylamide hydrogel. The addition of 0.1 and 0.2% (w/w) of hydrogel amendments increased soil field water capacity from initial 24.6% to 28.5% and 31.3%, respectively. The additions of 2.5, 5 and 10 mmol EDTA kg–1 soil were more effective in enhancing Pb plant uptake than comparable [S,S]-EDDS treatments, but caused (as also 10 mmol kg–1 [S,S]-EDDS additions) unacceptably high Pb leaching in treatments with any soil water sorption conditions tested. The most efficient level of EDTA (10 mmol kg–1) enhanced plant Pb uptake by 97 times compared to the control. Shoots Pb concentrations reached 500 mg kg–1 of dry biomass. However, in this treatment 36.2% of total initial Pb was leached from the soil during the first four weeks after chelate addition. Hydrogel soil amendments were more effective in treatments with [S,S]-EDDS than with EDTA. In treatments with 10 mmol kg–1[S,S]-EDDS hydrogel amended soils, plant Pb uptake was significantly reduced and Pb leach was as high as 44.2% of total initial soil Pb. At lower [S,S]-EDDS concentrations, the effect of hydrogel soil amendment on Pb leaching was the opposite. The addition of 5 mmol kg–1 [S,S]-EDDS soil to the soil amended with 0.2% hydrogel increased Pb uptake by 18 times while only 0.2% of total initial Pb was leached. In all treatments, the concentrations of Pb in dry plant biomass were far from concentrations required for efficient soil remediation within a reasonable time span.  相似文献   

6.
As the greenhouse effect increases, the development of systems able to convert with high efficiency CO2 to energetically rich molecules owns a crucial weight in the technological and environmental domain. As catalyst, rhenium complexes, of the type fac-[Re(L)(CO)3Cl] (i.e. L = 2,2′-bipyridyl or 4,4′-bipyridyl), have attracted a large interest demonstrating promising catalytic properties. fac-[Re(v-bpy)(CO)3Cl]-based polymer deposited onto a solid support has been already investigated as heterogeneous catalyst in the reduction of CO2. Here, we deposited by electrochemical polymerization fac-[Re(v-bpy)(CO)3Cl] onto a nanocrystalline TiO2 film on glass and we investigated by cyclic voltammetry the properties of such heterogeneous catalyst in the electrochemical reduction of CO2. We demonstrated that the nanoporous nature of the substrate allows to increase the two-dimensional number of redox sites per surface area and hence to get a significant enhancement of the catalytic yield.  相似文献   

7.
Two ruthenium nitrosyl bis-pyridyl/biscarboxamido compounds, [Ru(NO)(bpp)Cl · 2H2O] [bpp = N,N′-bis(2-pyridinecarboxamide)-1,3-propane dianion] and [Ru(NO)(bpe)Cl · 2H2O] [bpe = N,N′-(bis-2-pyridinecarboxamide)-1,2-ethane dianion] have been characterized by 1H NMR, 13C{1H} NMR, and IR spectroscopies, electrospray ionizaton mass spectrometry, and X-ray crystallography.  相似文献   

8.
Functionalization of rayon fibre has been carried out by grafting acrylic acid (AAC) both by a chemical method using a Ce4+-HNO3 redox initiator and by a mutual irradiation (γ-rays) method. The reaction conditions affecting the grafting percentage have been optimized for both methods, and the results are compared. The maximum percentage of grafting (50%) by the chemical method was obtained utilizing 18.24 × 10−3 moles/L of ceric ammonium nitrate (CAN), 39.68 × 10−2 moles/L of HNO3, and 104.08 × 10−2 moles/L of AAc in 20 mL of water at 45 °C for120 min. For the radiation method, the maximum grafting percentage (60%) was higher, and the product was obtained under milder reaction conditions using a lower concentration of AAc (69.38 × 10−2 moles/L) in 10 mL of water at an optimum total dose of 0.932 kGy. Swelling studies showed higher swelling for the grafted rayon fibre in water (854.54%) as compared to the pristine fibre (407%), while dye uptake studies revealed poor uptake of the dye (crystal violet) by the grafted fibre in comparison with the pristine fibre. The graft copolymers were characterized by IR, TGA, and scanning electron micrographic methods. Grafted fibre, prepared by the radiation-induced method, showed better thermal behaviour. Comparison of the two methods revealed that the radiation method of grafting of acrylic acid onto rayon fibre is a better method of grafting in comparison with the chemical method.  相似文献   

9.

Background

Rapid enzymatic degradation of the incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), limits therapeutic use of the native peptide for diabetes. However, enzymatically stable analogues of GIP, such as (d-Ala2)GIP, have been generated, but are still susceptible to renal filtration.

Methods

The present study examines the in vitro and in vivo biological actions of a novel, acylated GIP analogue, (d-Ala2)GIP[Lys37PAL].

Results

In BRIN-BD11 cells, (d-Ala2)GIP[Lys37PAL] concentration-dependently stimulated (p < 0.05 to p < 0.001) insulin secretion at 5.6 and 16.7 mM glucose. Intraperitoneal administration of (d-Ala2)GIP[Lys37PAL] to normal mice 8 h prior to a glucose load significantly reduced (p < 0.05) the overall glycaemic excursion compared to controls, and increased (p < 0.001) the insulinotropic response compared to (d-Ala2)GIP and saline treated high fat control mice. Once daily administration of (d-Ala2)GIP[Lys37PAL] for 21 days in high fat fed mice did not affect energy intake, body weight or fat deposition. However, circulating blood glucose was significantly lower (p < 0.05) accompanied by increased (p < 0.05) insulin concentrations by day 21. In addition, (d-Ala2)GIP[Lys37PAL] treatment significantly (p < 0.01) reduced the overall glycaemic excursion and increased pancreatic insulin content (p < 0.05) and the insulinotropic response (p < 0.01) to an exogenous glucose challenge on day 21. Chronic treatment with (d-Ala2)GIP[Lys37PAL] did not result in resistance to the metabolic effects of a bolus injection of native GIP. Finally, insulin sensitivity was significantly improved (p < 0.001) in (d-Ala2)GIP[Lys37PAL] treated mice compared to high fat controls.

Conclusions

These data confirm that (d-Ala2)GIP[Lys37PAL] is a stable, long-acting potent GIP agonist.

General significance

(d-Ala2)GIP[Lys37PAL] may be suitable for further evaluation and future clinical development.  相似文献   

10.
Sulfated polysaccharides potently inhibit the infectivity of herpes simplex virus (HSV) in cultured cells. In this study, we have analyzed sulfated xylogalactofucan and alginic acid containing fractions generated from Laminaria angustata, a marine alga. The xylogalactofucan that has apparent molecular mass of 56 ± 5 kDa and unusually low sulfate content contains, inter alia, 1,3-, 1,4- and 1,2-linked fucopyranosyl residues. The algin (molecular mass: 32 ± 5 kDa) contains gulo- (55.5%) and mannuronic (44.5%) acid residues. Introduction of sulfate groups enhanced the macromolecules capability to inhibit the infection of cells by HSV-1. The 50% inhibitory concentration (IC50) values of these macromolecules against HSV-1 were in the range of 0.2-25 μg ml−1 and they lacked cytotoxicity at concentrations up to 1000 μg ml−1. The sulfate content appeared to be an important hallmark of anti-HSV-1 activity. Our results suggest the feasibility of inhibiting HSV attachment to cells by direct interaction of polysaccharides with viral particles.  相似文献   

11.
The reaction between [Mn(CO)5Br] and di-2-pyridylketone-p-nitrophenylhydrazone (dpknph) in diethyl ether under ultrasonic conditions gave fac-[Mn(CO)3(dpknph)Br] in good yield. Optical and thermodynamic measurements on fac-[Mn(CO)3(dpknph)Br] in non-aqueous polar solvents revealed reversible interconversion between two intense charge transfer absorption bands due to π-π* (dpk), followed by dpk → nitro intraligand charge transfer transition (ILCT), mixed with metal ligand charge transfer transition (MLCT) due to . In non-polar solvents, a single absorption band appeared. Extinction coefficients of 46 200 ± 2000 and 28 400 ± 2000 M−1 cm−1 were calculated in DMSO for the low- and high-energy electronic states of fac-[Mn(CO)3(dpknph)Br] using excess NaBF4. Changes in enthalpy (ΔHø) of +14.0 and −12.1 kJ mol−1, entropy (ΔSø) of +28.65 and −64.30 J mol−1 K−1, and free energy (ΔGø) of +5.48 and +7.08 kJ mol−1 at 298 K were calculated for the interconversion between the high and low energy electronic states of fac-[Mn(CO)3(dpknph)Br]. These results allow for the use of these systems (fac-[Mn(CO)3(dpknph)Br] and surrounding solvent or solute molecules) as optical sensors for a variety of physical and chemical stimuli that include metal ions. Group 12 metal ions in concentrations as low as 1.00 × 10−9 M can be detected and determined using fac-[Mn(CO)3(dpknph)Br] in dmso in the presence and absence of NaBH4.  相似文献   

12.
The molecular structure of copper(II) chloride complex with acrylamide (AAmCH2CHCONH2), [Cu(AAm)4Cl2], was determined using X-ray diffraction analysis. The complex crystallizes in the cubic space group I-43d with a = 17. 8310(2) Å, β = 90°, and V = 5669.27(11) Å3 for Z = 12. The acrylamide molecules bind to the metal center via the carbonyl oxygen atom (Cu-O 1.996 Å). The coordination geometry of the metal center in the complex involves a tetragonally distorted octahedral structure with four O-donor atoms of acrylamide bonded in the equatorial positions and two chlorides in the apical positions. Comparison of crystal structure data of acrylamide and metal acrylamide complexes of those formed with divalent transition metal chlorides has been summarized.  相似文献   

13.
Statistics-based experimental designs were applied to optimize the culture conditions for tetrahydrofuran (THF) degradation by a newly isolated Rhodococcus sp. YYL that tolerates high THF concentrations. Single factor experiments were undertaken for determining the optimum range of each of four factors (initial pH and concentrations of K2HPO4 · 3H2O, NH4Cl and yeast extract) and these factors were subsequently optimized using the response surface methodology. The Plackett–Burman design was used to identify three trace elements (Mg2+, Zn2+and Fe2+) that significantly increased the THF degradation rate. The optimum conditions were found to be: 1.80 g/L NH4Cl, 0.81 g/L K2HPO4 · 3H2O, 0.06 g/L yeast extract, 0.40 g/L MgSO4 · 7H2O, 0.006 g/L ZnSO4 · 7H2O, 0.024 g/L FeSO4 · 7H2O, and an initial pH of 8.26. Under these optimized conditions, the maximum THF degradation rate increased to 137.60 mg THF h−1 g dry weight in Rhodococcus sp. YYL, which was nearly five times of that by the previously described THF degrading Rhodococcus strain.  相似文献   

14.

Background

Acetate metabolism in skeletal muscle is regulated by acetylCoA synthetase (ACS). The main function of ACS is to provide cells with acetylCoA, a key molecule for numerous metabolic pathways including fatty acid and cholesterol synthesis and the Krebs cycle.

Methods

Hyperpolarized [1-13C]acetate prepared via dissolution dynamic nuclear polarization was injected intravenously at different concentrations into rats. The 13C magnetic resonance signals of [1-13C]acetate and [1-13C]acetylcarnitine were recorded in vivo for 1 min. The kinetic rate constants related to the transformation of acetate into acetylcarnitine were deduced from the 3 s time resolution measurements using two approaches, either mathematical modeling or relative metabolite ratios.

Results

Although separated by two biochemical transformations, a kinetic analysis of the 13C label flow from [1-13C]acetate to [1-13C]acetylcarnitine led to a unique determination of the activity of ACS. The in vivo Michaelis constants for ACS were KM = 0.35 ± 0.13 mM and Vmax = 0.199 ± 0.031 μmol/g/min.

Conclusions

The conversion rates from hyperpolarized acetate into acetylcarnitine were quantified in vivo and, although separated by two enzymatic reactions, these rates uniquely defined the activity of ACS. The conversion rates associated with ACS were obtained using two analytical approaches, both methods yielding similar results.

General significance

This study demonstrates the feasibility of directly measuring ACS activity in vivo and, since the activity of ACS can be affected by various pathological states such as cancer or diabetes, the proposed method could be used to non-invasively probe metabolic signatures of ACS in diseased tissue.  相似文献   

15.
A series of new nickel complexes and palladium complexes bearing ortho-phenoxy modified anilido-imine ligands have been synthesized and characterized. X-ray diffraction analyses of the single crystal structures reveal that there are no direct metal-O interactions in all of the complexes. The steric hindrance of complexes has an importance influence on their coordinated geometries. The bulky complexes with 2,6-diisopropylphenyl substituent exist as a dimers with bromine-bridged structure while those with 2,6-dimethylphenyl or phenyl substituents adopt a distorted tetrahedral geometry with four nitrogen atoms of two anilido-imine ligands. The nickel complexes exhibited high activity up to 7.33 × 106 g/(mol of Ni · h) and palladium complexes showed very high activity up to 2.63 × 108 g/(mol of Pd · h) for norbornene polymerization with methylaluminoxane as cocatalyst. The nickel catalysts were attempted to polymerize ethylene at atmosphere pressure, however, only oligomers were produced.  相似文献   

16.
A new distorted square planar (two CuN2 planes making an angle of ∼43°) copper(II) complex [Cu(L4)] · 0.5EtOH · 0.5MeOH (1) of a deprotonated tetradentate pyridine amide ligand [H2L4 = N,N′-bis(2-pyridinecarboxamide)-2,2′-biphenyl] has been synthesized and structurally characterized. Absorption and EPR spectroscopic properties have also been studied. The E1/2 values (CuII/CuI redox process) of the title complex along with a selected group of structurally characterized CuN4 pyridine amide complexes with systematically varied structural, electronic/steric, and chelate-ring size effects, imposed by the coordinating ligands, have been determined and the observed trend has been rationalized.  相似文献   

17.
In this study, the effect of ionic liquids, 1-ethyl-3-methylimidazolium acetate [EMIM][Ac], 1-ethyl-3-methylimidazolium diethylphosphate [EMIM][DEP], and 1-methyl-3-methylimidazolium dimethylphosphate [MMIM][DMP] on the growth and glucose fermentation of Clostridium sp. was investigated. Among the three ionic liquids tested, [MMIM][DMP] was found to be least toxic. Growth of Clostridium sp. was not inhibited up to 2.5, 4 and 4 g L−1 of [EMIM][Ac], [EMIM][DEP] and [MMIM][DMP], respectively. [EMIM][Ac] at <2.5 g L−1, showed hormetic effect and stimulated the growth and fermentation by modulating medium pH. Total organic acid production increased in the presence of 2.5 and 2 g L−1 of [EMIM][Ac] and [MMIM][DMP]. Ionic liquids had no significant influence on alcohol production at <2.5 g L−1. Total gas production was affected by ILs at ?2.5 g L−1 and varied with type of methylimidazolium IL. Overall, the results show that the growth and fermentative metabolism of Clostridium sp. is not impacted by ILs at concentrations below 2.5 g L−1.  相似文献   

18.
The proligands PicMe-AaR (PicMe = methoxipicolyl-5-amide, where the amide substituent is an amino acid AaR = HisH, HisMe, IleH, IleMe, TrpH, TrpMe, HTyrEt, tBuTyrMe, HThrMe, tBuThrMe) and the complexes [VO(Pic-AaR)2] have been synthesised and characterised. A detailed EPR study of the VO2+/Pic-His systems in water revealed the predominance of the complex [VO(Pic-His)H2O] in the pH range 2-6, with tridentate coordination of Pic-His via the picolinate moiety and imidazole-Nδ. Speciation analyses of the binary systems VO2+/Pic-Aa (Aa = His, Ile, Trp) and the ternary systems VO2+/Pic-Aa/B (Aa = His, Ile; B = citrate (cit), lactate (lac), phosphate) showed a predominance of the ternary complexes [VO(Pic-Aa)(cit/lac)] and [VO(Pic-Aa)(cit/lac)OH] in the physiological pH regime. If, in addition, human serum albumin (HAS) and apotransferrin (Tf) are present, with all of the low and high molecular mass constituents in their blood serum concentrations, about two thirds of VO2+ is bound to the protein, while there is still a sizable amount of ternary complex [VO(Pic-Aa)(cit/lac)] present (about 1/4 for Pic-His and 1/3 for Pic-Ile) when the vanadium(IV) concentration is relatively high; at lower concentrations Tf is the predominant binder. Insulin-mimetic studies for VO2+/Pic-Aa (Aa = His, Ile, Tyr and Trp), based on a lipolysis assay with rat adipocytes, provided IC50 values of 0.41(1) for VO2+/Pic-His and VO2+/Pic-Ile, which compares with 0.87(17) for VOSO4.  相似文献   

19.
Juvenile Pacific herring, Clupea pallasi, were exposed both acutely (96 h) and chronically (9 weeks) to three concentrations of the water-soluble fraction (WSF) of North Slope crude oil. Mean (± S.E.) total PAH (TPAH) concentrations at the beginning of the acute exposure experiment were: 9.7 ± 6.5, 37.9 ± 8.6 and 99.3 ± 5.6 μg/L. TPAH concentrations declined with time and the composition of the WSF shifted toward larger and more substituted PAHs. Significant induction of hepatic cytochrome P450 content, ethoxyresorufin O-deethylase and glutathione-S-transferase activities in WSF-exposed fish indicated that hydrocarbons were biologically available to herring. Significant but temporary, elevations in plasma cortisol (4.9-fold and 8.5-fold increase over controls in the 40 and 100 μg/L groups, respectively), lactate (2.2-fold and 3.1-fold over controls in the 40 and 100 μg/L groups) and glucose (1.3-fold, 1.4-fold and 1.6-fold over controls in the 10, 40 and 100 μg/L groups) occurred in fish exposed acutely to WSF. All values returned to baseline levels by 96 h. Similar responses were seen with the first of several sequential WSF pulses in the chronic exposure study. Subsequent WSF pulses resulted in muted cortisol responses and fewer significant elevations in both plasma lactate and glucose concentrations. Hematocrit, leucocrit, hemoglobin concentration and liver glycogen content were not affected by acute or chronic WSF exposure. Plasma [Cl], [Na+] and [K+] were significantly higher in the 100 μg/L WSF-exposed group by 96 h compared to control fish, and continued to be elevated through the entire chronic exposure period. Unlike the measured stress parameters, ionoregulatory dysfunction was not modulated by WSF pulses. The results of this study suggest that chronic exposure to WSF affects at least two important physiological systems in herring: the ability of fish to maintain ion homeostasis and the interrenally-mediated organismal stress response.  相似文献   

20.
Chitosan (CS)-polyvinyl alcohol (PVA) blend hydrogels were prepared using glutaraldehyde as the cross-linking agent. The obtained hydrogels, which have the advantages of both PVA and CS, can be used as a material for the transdermal drug delivery (TDD) of insulin. The nano-insulin-loaded hydrogels were prepared under the following conditions: 1.2 g of polyethylene glycol, 1.5 g of CS, 1.2 g of PVA, 1.2 mL of 1% glutaraldehyde solution, 16 mL of water, and 40 mg of nano-insulin with 12 min of mixing time and 3 min of cross-linking time. The nano-insulin-loaded hydrogels were characterized using scanning electron microscopy, energy dispersive spectrometry, Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and its mechanical properties were analyzed. The results show that all molecules in the hydrogel have good compatibility and they formed a honeycomb-like structure. The hydrogel also showed good mechanical and thermal properties. The in vitro drug release of the hydrogel showed that the nano-insulin accorded with Fick's first law of diffusion and it has a high permeation rate (4.421 μg/(cm2 h)). These results suggest that the nano-insulin-loaded hydrogels are a promising non-invasive TDD system for diabetes chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号