首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
We studied the effect of insulin resistance (IR) induced by administration of a fructose-rich diet (FRD) to normal Wistar rats for 21 days, upon islet plasma membrane calcium ATPases (PMCAs) and insulin secretion. FRD rats showed significantly higher triglyceride and insulin levels, insulin:glucose ratio and HOMA-IR index than controls. FRD islets released significantly more insulin in response to glucose and showed (a) marked changes in PMCA isoform protein content (decreased PMCA 2 and increased PMCA 3), (b) a decrease in total PMCAs activity, and (c) higher levels of cytosolic calcium [Ca2+]i. The lower PMCAs activity with the resultant increase in [Ca2+]i would favor the compensatory greater release of insulin necessary to cope with the IR state present in FRD rats and to maintain normal glucose homeostasis. Thus, changes in PMCAs activity and isoform expression play a modulatory role upon insulin secretion during long-term adaptation to an increased hormone demand.  相似文献   

3.
In skeletal muscle, dysfunctional contractile activity has been linked to impaired intracellular Ca2+ concentration ([Ca2+]i) regulation. Muscle force production is impaired and fatigability and muscle fragility deteriorate with diabetes. Use of a novel in vivo model permits investigation of [Ca2+]i homeostasis in diabetic skeletal muscle. Within this in vivo environment we have shown that diabetes perturbs the Ca2+ regulatory system such that resting [Ca2+]i homeostasis following muscle contractions is compromised and elevations of [Ca2+]i are exacerbated. This review considers the impact of diabetes on the capacity of skeletal muscle to regulate [Ca2+]i, following muscle contractions and, in particular, the relationship between muscle fatigue and elevated [Ca2+]i in a highly ecologically relevant circulation-intact environment. Importantly, the role of mitochondria in calcium sequestration and the possibility that diabetes impacts this process is explored. Given the profound microcirculatory dysfunction in diabetes this preparation offers the unique opportunity to study the interrelationships among microvascular function, blood-myocyte oxygen flux and [Ca2+]i as they relate to enhanced muscle fatigability and exercise intolerance.  相似文献   

4.
5.
Rewarming patients from accidental hypothermia are regularly complicated with cardiovascular instability ranging from minor depression of cardiac output to fatal circulatory collapse also termed “rewarming shock”. Since altered Ca2+ handling may play a role in hypothermia-induced heart failure, we studied changes in Ca2+ homeostasis in in situ hearts following hypothermia and rewarming. A rat model designed for studies of the intact heart in a non-arrested state during hypothermia and rewarming was used. Rats were core cooled to 15 °C, maintained at 15 °C for 4 h and thereafter rewarmed. As time-matched controls, one group of animals was kept at 37 °C for 5 h. Total intracellular myocardial Ca2+ content ([Ca2+]i) was measured using 45Ca2+. Following rewarming we found a significant reduction of stroke volume and cardiac output compared to prehypothermic control values as well as to time-matched controls. Likewise, we found that hypothermia and rewarming resulted in a more than six-fold increase in [Ca2+]i to 3.01 ± 0.43 μmol/g dry weight compared to 0.44 ± 0.05 μmol/g dry weight in normothemia control. These findings indicate that hypothermia-induced alterations in the Ca2+-handling result in Ca2+ overload during hypothermia, which may contribute to myocardial failure during and after rewarming.  相似文献   

6.
Functional positive cooperative activation of the extracellular calcium ([Ca2+]o)-sensing receptor (CaSR), a member of the family C G protein-coupled receptors, by [Ca2+]o or amino acids elicits intracellular Ca2+ ([Ca2+]i) oscillations. Here, we report the central role of predicted Ca2+-binding site 1 within the hinge region of the extracellular domain (ECD) of CaSR and its interaction with other Ca2+-binding sites within the ECD in tuning functional positive homotropic cooperativity caused by changes in [Ca2+]o. Next, we identify an adjacent l-Phe-binding pocket that is responsible for positive heterotropic cooperativity between [Ca2+]o and l-Phe in eliciting CaSR-mediated [Ca2+]i oscillations. The heterocommunication between Ca2+ and an amino acid globally enhances functional positive homotropic cooperative activation of CaSR in response to [Ca2+]o signaling by positively impacting multiple [Ca2+]o-binding sites within the ECD. Elucidation of the underlying mechanism provides important insights into the longstanding question of how the receptor transduces signals initiated by [Ca2+]o and amino acids into intracellular signaling events.  相似文献   

7.
Pancreatic cancer is an aggressive cancer with poor prognosis and limited treatment options. Cancer cells rapidly proliferate and are resistant to cell death due, in part, to a shift from mitochondrial metabolism to glycolysis. We hypothesized that this shift is important in regulating cytosolic Ca2+ ([Ca2+]i), as the ATP-dependent plasma membrane Ca2+ ATPase (PMCA) is critical for maintaining low [Ca2+]i and thus cell survival. The present study aimed to determine the relative contribution of mitochondrial versus glycolytic ATP in fuelling the PMCA in human pancreatic cancer cells. We report that glycolytic inhibition induced profound ATP depletion, PMCA inhibition, [Ca2+]i overload, and cell death in PANC1 and MIA PaCa-2 cells. Conversely, inhibition of mitochondrial metabolism had no effect, suggesting that glycolytic ATP is critical for [Ca2+]i homeostasis and thus survival. Targeting the glycolytic regulation of the PMCA may, therefore, be an effective strategy for selectively killing pancreatic cancer while sparing healthy cells.  相似文献   

8.
The ubiquitous bacterium Pseudomonas aeruginosa frequently causes hospital-acquired infections. P. aeruginosa also infects the lungs of cystic fibrosis (CF) patients and secretes N-(3-oxo-dodecanoyl)-S-homoserine lactone (3O-C12) to regulate bacterial gene expression critical for P. aeruginosa persistence. In addition to its effects as a quorum-sensing gene regulator in P. aeruginosa, 3O-C12 elicits cross-kingdom effects on host cell signaling leading to both pro- or anti-inflammatory effects. We find that in addition to these slow effects mediated through changes in gene expression, 3O-C12 also rapidly increases Cl and fluid secretion in the cystic fibrosis transmembrane regulator (CFTR)-expressing airway epithelia. 3O-C12 does not stimulate Cl secretion in CF cells, suggesting that lactone activates the CFTR. 3O-C12 also appears to directly activate the inositol trisphosphate receptor and release Ca2+ from the endoplasmic reticulum (ER), lowering [Ca2+] in the ER and thereby activating the Ca2+-sensitive ER signaling protein STIM1. 3O-C12 increases cytosolic [Ca2+] and, strikingly, also cytosolic [cAMP], the known activator of CFTR. Activation of Cl current by 3O-C12 was inhibited by a cAMP antagonist and increased by a phosphodiesterase inhibitor. Finally, a Ca2+ buffer that lowers [Ca2+] in the ER similar to the effect of 3O-C12 also increased cAMP and ICl. The results suggest that 3O-C12 stimulates CFTR-dependent Cl and fluid secretion in airway epithelial cells by activating the inositol trisphosphate receptor, thus lowering [Ca2+] in the ER and activating STIM1 and store-operated cAMP production. In CF airways, where CFTR is absent, the adaptive ability to rapidly flush the bacteria away is compromised because the lactone cannot affect Cl and fluid secretion.  相似文献   

9.
We investigated whether alterations in the mechanisms involved in intracellular pH (pHin) and intracellular calcium ([Ca2+]in) homeostasis are associated with the metastatic potential of poorly (A375P) and highly (C8161) metastatic human melanoma cells. We monitored pHin and [Ca2+]in simultaneously, using the fluorescence of SNARF-1 and Fura-2, respectively. Our results indicated that steady-state pHin and [Ca2+]in between these cell types were not significantly different. Treatment of cells with NH4Cl resulted in larger pHin increases in highly than in poorly metastatic cells, suggesting that C8161 cells have a lower H+ buffering capacity than A375P. NH4Cl treatment also increased [Ca2+]in only in C8161 cells. To determine if the changes in [Ca2+]in triggered by NH4Cl treatment were due to alterations in either H+- or Ca2+-buffering capacity, cells were treated with the Ca2+-ionophore 4Br-A23187, to alter [Ca2+]in. The magnitude of the ionophore-induced [Ca2+]in increase was slightly greater in C8161 cells than in A375P. Moreover, A375P cells recover from the ionophore-induced [Ca2+]in load, whereas C8161 cells did not, suggesting that A375P may exhibit distinct [Ca2+]in regulatory mechanisms than C8161 cells, to recover from Ca2+ loads. Removal of extracellular Ca2+ ([Ca2+]ex) decreased [Ca2+]in in both cell types at the same extent. Ionophore treatment in the absence of [Ca2+]ex transiently increased [Ca2+]in in C8161, but not in A375P cells. Endoplasmic reticulum (ER) Ca2+-ATPase inhibitors such as cyclopiazonic acid (CPA) and thapsigargin (TG) increased steady-state [Ca2+]in only in C8161 cells. Together, these data suggest that the contribution of intracellular Ca2+ stores for [Ca2+]in homeostasis is greater in highly than in poorly metastatic cells. Bafilomycin treatment, to inhibit V-type H+-ATPases, corroborated our previous results that V-H+-ATPases are functionally expressed at the plasma membranes of highly metastatic, but not in poorly metastatic cells in and [Ca2+]in regulatory mechanisms are present in poorly and highly metastatic human melanoma cells. J. Cell. Physiol. 176:196–205, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Considerable insight into intracellular Ca2+ responses has been obtained through the development of whole cell models that are based on molecular mechanisms, e.g., single channel kinetics of the inositol 1,4,5-trisphosphate (IP3) receptor Ca2+ channel. However, a limitation of most whole cell models to date is the assumption that IP3 receptor Ca2+ channels (IP3Rs) are globally coupled by a “continuously stirred” bulk cytosolic [Ca2+], when in fact open IP3Rs experience elevated “domain” Ca2+ concentrations. Here we present a 2N+2-compartment whole cell model of local and global Ca2+ responses mediated by N=100,000 diffusely distributed IP3Rs, each represented by a four-state Markov chain. Two of these compartments correspond to bulk cytosolic and luminal Ca2+ concentrations, and the remaining 2N compartments represent time-dependent cytosolic and luminal Ca2+ domains associated with each IP3R. Using this Monte Carlo model as a starting point, we present an alternative formulation that solves a system of advection-reaction equations for the probability density of cytosolic and luminal domain [Ca2+] jointly distributed with IP3R state. When these equations are coupled to ordinary differential equations for the bulk cytosolic and luminal [Ca2+], a realistic but minimal model of whole cell Ca2+ dynamics is produced that accounts for the influence of local Ca2+ signaling on channel gating and global Ca2+ responses. The probability density approach is benchmarked and validated by comparison to Monte Carlo simulations, and the two methods are shown to agree when the number of Ca2+ channels is large (i.e., physiologically realistic). Using the probability density approach, we show that the time scale of Ca2+ domain formation and collapse (both cytosolic and luminal) may influence global Ca2+ oscillations, and we derive two reduced models of global Ca2+ dynamics that account for the influence of local Ca2+ signaling on global Ca2+ dynamics when there is a separation of time scales between the stochastic gating of IP3Rs and the dynamics of domain Ca2+.  相似文献   

11.
Globular adiponectin (gAd) induces the generation of reactive oxygen species (ROS) and nitric oxide (NO) in the murine macrophage cell line RAW 264. We investigated the role of Ca2+ in gAd-induced ROS and NO generation. Pretreatment with BAPTA-AM, a selective chelator of intracellular Ca2+ ([Ca2+]i), partially reduced gAd-induced generation of ROS and NO in gAd-treated RAW 264 cells. The lowest [Ca2+]i occurred 30 min after gAd treatment, after which [Ca2+]i increased continually and exceeded the initial level. The mitochondrial Ca2+ ([Ca2+]m) detected by Rhod-2 fluorescence started to increase at 6 h after gAd treatment. Pretreatment with a NAD(P)H oxidase inhibitor, diphenyleneiodonium, prevented the reduction of [Ca2+]i in the early phase after gAd treatment. Calcium depletion by BAPTA-AM had no effect on the gAd-induced [Ca2+]m oscillation. The administration of a specific calmodulin inhibitor, calmidazolium, significantly suppressed gAd-induced ROS and NO generation and NOS activity.  相似文献   

12.
The importance of Ca2+ signaling in astrocytes is undisputed but a potential role of Ca2+ influx via L-channels in the brain in vivo is disputed, although expression of these channels in cultured astrocytes is recognized. This study shows that an increase in free cytosolic Ca2+ concentration ([Ca2+]i) in astrocytes in primary cultures in response to an increased extracellular K+ concentration (45 mM) is inhibited not only by nifedipine (confirming previous observations) but also to a very large extent by ryanodine, inhibiting ryanodine receptor-mediated release of Ca2+, known to occur in response to an elevation in [Ca2+]i. This means that the actual influx of Ca2+ is modest, which may contribute to the difficulty in demonstrating L-channel-mediated Ca2+ currents in astrocytes in intact brain tissue. Chronic treatment with any of the 3 conventional anti-bipolar drugs lithium, carbamazepine or valproic acid similarly causes a pronounced inhibition of K+-mediated increase in [Ca2+]i. This is shown to be due to an inhibition of capacitative Ca2+ influx, reflected by decreased mRNA and protein expression of the ‘transient receptor potential channel’ (TRPC1), a constituent of store-operated channels (SOCEs). Literature data are cited (i) showing that depolarization-mediated Ca2+ influx in response to an elevated extracellular K+ concentration is important for generation of Ca2+ oscillations and for the stimulatory effect of elevated K+ concentrations in intact, non-cultured brain tissue, and (ii) that Ca2+ channel activity is dependent upon availability of metabolic substrates, including glycogen. Finally, expression of mRNA for Cav1.3 is demonstrated in freshly separated astrocytes from normal brain.  相似文献   

13.
Acute pancreatitis is a serious and sometimes fatal inflammatory disease where the pancreas digests itself. The non-oxidative ethanol metabolites palmitoleic acid (POA) and POA-ethylester (POAEE) are reported to induce pancreatitis caused by impaired mitochondrial metabolism, cytosolic Ca2+ ([Ca2+]i) overload and necrosis of pancreatic acinar cells. Metabolism and [Ca2+]i are linked critically by the ATP-driven plasma membrane Ca2+-ATPase (PMCA) important for maintaining low resting [Ca2+]i. The aim of the current study was to test the protective effects of insulin on cellular injury induced by the pancreatitis-inducing agents, ethanol, POA, and POAEE. Rat pancreatic acinar cells were isolated by collagenase digestion and [Ca2+]i was measured by fura-2 imaging. An in situ [Ca2+]i clearance assay was used to assess PMCA activity. Magnesium green (MgGreen) and a luciferase-based ATP kit were used to assess cellular ATP depletion. Ethanol (100 mm) and POAEE (100 μm) induced a small but irreversible Ca2+ overload response but had no significant effect on PMCA activity. POA (50–100 μm) induced a robust Ca2+ overload, ATP depletion, inhibited PMCA activity, and consequently induced necrosis. Insulin pretreatment (100 nm for 30 min) prevented the POA-induced Ca2+ overload, ATP depletion, inhibition of the PMCA, and necrosis. Moreover, the insulin-mediated protection of the POA-induced Ca2+ overload was partially prevented by the phosphoinositide-3-kinase (PI3K) inhibitor, LY294002. These data provide the first evidence that insulin directly protects pancreatic acinar cell injury induced by bona fide pancreatitis-inducing agents, such as POA. This may have important therapeutic implications for the treatment of pancreatitis.  相似文献   

14.
Malignant hyperthermia (MH) is potentially fatal pharmacogenetic disorder of skeletal muscle caused by intracellular Ca2+ dysregulation. NCX is a bidirectional transporter that effluxes (forward mode) or influxes (reverse mode) Ca2+ depending on cellular activity. Resting intracellular calcium ([Ca2+]r) and sodium ([Na+]r) concentrations are elevated in MH susceptible (MHS) swine and murine muscles compared with their normal (MHN) counterparts, although the contribution of NCX is unclear. Lowering [Na+]e elevates [Ca2+]r in both MHN and MHS swine muscle fibers and it is prevented by removal of extracellular Ca2+ or reduced by t-tubule disruption, in both genotypes. KB-R7943, a nonselective NCX3 blocker, reduced [Ca2+]r in both swine and murine MHN and MHS muscle fibers at rest and decreased the magnitude of the elevation of [Ca2+]r observed in MHS fibers after exposure to halothane. YM-244769, a high affinity reverse mode NCX3 blocker, reduces [Ca2+]r in MHS muscle fibers and decreases the amplitude of [Ca2+]r rise triggered by halothane, but had no effect on [Ca2+]r in MHN muscle. In addition, YM-244769 reduced the peak and area under the curve of the Ca2+ transient elicited by high [K+]e and increased its rate of decay in MHS muscle fibers. siRNA knockdown of NCX3 in MHS myotubes reduced [Ca2+]r and the Ca2+ transient area induced by high [K+]e. These results demonstrate a functional NCX3 in skeletal muscle whose activity is enhanced in MHS. Moreover reverse mode NCX3 contributes to the Ca2+ transients associated with K+-induced depolarization and the halothane-triggered MH episode in MHS muscle fibers.  相似文献   

15.
《Cell calcium》2016,59(6):577-588
Rises in cytosolic Ca2+ concentration ([Ca2+]cyt) are central in platelet activation, yet many aspects of the underlying mechanisms are poorly understood. Most studies examine how experimental manipulations affect agonist-evoked rises in [Ca2+]cyt, but these only monitor the net effect of manipulations on the processes controlling [Ca2+]cyt (Ca2+ buffering, sequestration, release, entry and removal), and cannot resolve the source of the Ca2+ or the transporters or channels affected. To investigate the effects of protein kinase C (PKC) on platelet Ca2+ signalling, we here monitor Ca2+ flux around the platelet by measuring net Ca2+ fluxes to or from the extracellular space and the intracellular Ca2+ stores, which act as the major sources and sinks for Ca2+ influx into and efflux from the cytosol, as well as monitoring the cytosolic Na+ concentration ([Na+]cyt), which influences platelet Ca2+ fluxes via Na+/Ca2+ exchange. The intracellular store Ca2+ concentration ([Ca2+]st) was monitored using Fluo-5N, the extracellular Ca2+ concentration ([Ca2+]ext) was monitored using Fluo-4 whilst [Ca2+]cyt and [Na+]cyt were monitored using Fura-2 and SFBI, respectively. PKC inhibition using Ro-31-8220 or bisindolylmaleimide I potentiated ADP- and thrombin-evoked rises in [Ca2+]cyt in the absence of extracellular Ca2+. PKC inhibition potentiated ADP-evoked but reduced thrombin-evoked intracellular Ca2+ release and Ca2+ removal into the extracellular medium. SERCA inhibition using thapsigargin and 2,5-di(tert-butyl) l,4-benzohydroquinone abolished the effect of PKC inhibitors on ADP-evoked changes in [Ca2+]cyt but only reduced the effect on thrombin-evoked responses. Thrombin evokes substantial rises in [Na+]cyt which would be expected to reduce Ca2+ removal via the Na+/Ca2+ exchanger (NCX). Thrombin-evoked rises in [Na+]cyt were potentiated by PKC inhibition, an effect which was not due to altered changes in non-selective cation permeability of the plasma membrane as assessed by Mn2+ quench of Fura-2 fluorescence. PKC inhibition was without effect on thrombin-evoked rises in [Ca2+]cyt following SERCA inhibition and either removal of extracellular Na+ or inhibition of Na+/K+-ATPase activity by removal of extracellular K+ or treatment with digoxin. These data suggest that PKC limits ADP-evoked rises in [Ca2+]cyt by acceleration of SERCA activity, whilst rises in [Ca2+]cyt evoked by the stronger platelet activator thrombin are limited by PKC through acceleration of both SERCA and Na+/K+-ATPase activity, with the latter limiting the effect of thrombin on rises in [Na+]cyt and so forward mode NCX activity. The use of selective PKC inhibitors indicated that conventional and not novel PKC isoforms are responsible for the inhibition of agonist-evoked Ca2+ signalling.  相似文献   

16.
The heterogenous subcellular distribution of a wide array of channels, pumps and exchangers allows extracellular stimuli to induce increases in cytoplasmic Ca2+ concentration ([Ca2+]c) with highly defined spatial and temporal patterns, that in turn induce specific cellular responses (e.g. contraction, secretion, proliferation or cell death). In this extreme complexity, the role of mitochondria was considered marginal, till the direct measurement with targeted indicators allowed to appreciate that rapid and large increases of the [Ca2+] in the mitochondrial matrix ([Ca2+]m) invariably follow the cytosolic rises. Given the low affinity of the mitochondrial Ca2+ transporters, the close proximity to the endoplasmic reticulum (ER) Ca2+-releasing channels was shown to be responsible for the prompt responsiveness of mitochondria. In this review, we will summarize the current knowledge of: i) the mitochondrial and ER Ca2+ channels mediating the ion transfer, ii) the structural and molecular foundations of the signaling contacts between the two organelles, iii) the functional consequences of the [Ca2+]m increases, and iv) the effects of oncogene-mediated signals on mitochondrial Ca2+ homeostasis. Despite the rapid progress carried out in the latest years, a deeper molecular understanding is still needed to unlock the secrets of Ca2+ signaling machinery.  相似文献   

17.
Most of the signaling effectors located downstream of receptor activator of NF-κB (RANK) activation are calcium-sensitive. However, the early signaling events that lead to the mobilization of intracellular calcium in human osteoclasts are still poorly understood. The Ca2+-sensitive fluorescent probe Fura2 was used to detect changes in the intracellular concentration of Ca2+ ([Ca2+]i) in a model of human osteoclasts. Stimulating these cells with receptor activator of NF-κB ligand (RANKL) induced a rapid and significant increase in [Ca2+]i. Adding extracellular Ca2+ chelators, depleting intracellular stores, and the use of a phospholipase C inhibitor all indicated that the Ca2+ was of extracellular origin, suggesting the involvement of a Ca2+ channel. We showed that none of the classical Ca2+ channels (L-, T-, or R-type) were involved in the RANKL-induced Ca2+ spike. However, the effect of high doses of Gd3+ did suggest that TRP family channels were present in human osteoclasts. The TRPV-5 channel was expressed in osteoclasts and was mainly located in the cellular area in contact with the bone surface. Furthermore, the RNA inactivation of TRPV-5 channel completely inhibited the RANKL-induced increase in [Ca2+]i, which was accompanied in the long term by marked activation of bone resorption. Overall, our results show that RANKL induced a significant increase in [Ca2+]i of extracellular origin, probably as a result of the opening of TRPV-5 calcium channels on the surface of human osteoclasts. Our findings suggest that TRPV-5 contributes to maintaining the homeostasis of the human skeleton via a negative feedback loop in RANKL-induced bone resorption.  相似文献   

18.
P-type ATPases are a large family of enzymes that actively transport ions across biological membranes by interconverting between high (E1) and low (E2) ion-affinity states; these transmembrane transporters carry out critical processes in nearly all forms of life. In striated muscle, the archetype P-type ATPase, SERCA (sarco(endo)plasmic reticulum Ca2+-ATPase), pumps contractile-dependent Ca2+ ions into the lumen of sarcoplasmic reticulum, which initiates myocyte relaxation and refills the sarcoplasmic reticulum in preparation for the next contraction. In cardiac muscle, SERCA is regulated by phospholamban (PLB), a small inhibitory phosphoprotein that decreases the Ca2+ affinity of SERCA and attenuates contractile strength. cAMP-dependent phosphorylation of PLB reverses Ca2+-ATPase inhibition with powerful contractile effects. Here we present the long sought crystal structure of the PLB-SERCA complex at 2.8-Å resolution. The structure was solved in the absence of Ca2+ in a novel detergent system employing alkyl mannosides. The structure shows PLB bound to a previously undescribed conformation of SERCA in which the Ca2+ binding sites are collapsed and devoid of divalent cations (E2-PLB). This new structure represents one of the key unsolved conformational states of SERCA and provides a structural explanation for how dephosphorylated PLB decreases Ca2+ affinity and depresses cardiac contractility.  相似文献   

19.
Elinor J. Griffiths  Guy A. Rutter 《BBA》2009,1787(11):1324-1333
Mitochondrial Ca2+ transport was initially considered important only in buffering of cytosolic Ca2+ by acting as a “sink” under conditions of Ca2+ overload. The main regulator of ATP production was considered to be the relative concentrations of high energy phosphates. However, work by Denton and McCormack in the 1970s and 1980s showed that free intramitochondrial Ca2+ ([Ca2+]m) activated dehydrogenase enzymes in mitochondria, leading to increased NADH and hence ATP production. This leads them to propose a scheme, subsequently termed a “parallel activation model” whereby increases in energy demand, such as hormonal stimulation or increased workload in muscle, produced an increase in cytosolic [Ca2+] that was relayed by the mitochondrial Ca2+ transporters into the matrix to give an increase in [Ca2+]m. This then stimulated energy production to meet the increased energy demand. With the development of methods for measuring [Ca2+]m in living cells that proved [Ca2+]m changed over a dynamic physiological range rather than simply soaking up excess cytosolic [Ca2+], this model has now gained widespread acceptance. However, work by ourselves and others using targeted probes to measure changes in both [Ca2+] and [ATP] in different cell compartments has revealed variations in the interrelationships between these two in different tissues, suggesting that metabolic regulation by Ca2+ is finely tuned to the demands and function of the individual organ.  相似文献   

20.
The PPARγ agonist Rosiglitazone exerts anti-hyperglycaemic effects by regulating the long-term expression of genes involved in metabolism, differentiation and inflammation. In the present study, Rosiglitazone treatment rapidly inhibited (5-30 min) the ER Ca2+ ATPase SERCA2b in monocytic cells (IC50 = 1.88 μM; p < 0.05), thereby disrupting short-term Ca2+ homeostasis (resting [Ca2+]cyto = 121.2 ± 2.9% basal within 1 h; p < 0.05). However, extended Rosiglitazone treatment (72 h) induced dose-dependent SERCA2b up-regulation, and restored calcium homeostasis, in monocytic cells (SERCA2b mRNA: 138.7 ± 5.7% basal (1 μM)/215.0 ± 30.9% basal (10 μM); resting [Ca2+]cyto = 97.3 ± 8.3% basal (10 μM)). As unfavourable cardiovascular outcomes, possibly related to disrupted cellular Ca2+ homeostasis, have been linked to Rosiglitazone, this effect may be of clinical interest. In contrast, in PPRE-luciferase reporter-gene assays, Rosiglitazone induced non-dose-dependent PPARγ-dependent effects (1 μM: 152.5 ± 4.9% basal; 10 μM: 136.1 ± 5.1% basal (p < 0.05 for 1 μM vs. 10 μM)). Thus, we conclude that Rosiglitazone can exert PPARγ-independent non-genomic effects, such as the SERCA2b inhibition seen here, but that long-term Rosiglitazone treatment did not perturb resting [Ca]cyto in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号