首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The usefulness of three sensitive dyes, AuroDye, FerriDye, and India ink, for the quantification of proteins and peptides bound to nitrocellulose paper has been assessed. In general, the staining intensity varies linearly with the logarithm of protein concentrations. The detection limit of small peptides (Mr less than 5000) is higher than that of large peptides and proteins, but the sensitivity is independent of the molecular weight. Oligopeptides of four or less amino acids either stain with very high detection limits or do not stain at all. The detection limit of proteins stained by AuroDye is approximately 1 ng, and in a number of cases even lower. The useful range for quantification of proteins extends to around 100 ng. The FerriDye and India ink staining methods are less sensitive and can be used to quantify proteins over a wide nanogram range. Among the methods tested, the India ink staining method has the highest protein to protein variation in sensitivity.  相似文献   

2.
India ink staining of proteins on nylon and hydrophobic membranes   总被引:2,自引:0,他引:2  
India ink was found to be an acceptable stain for proteins blotted or dotted onto positively charged nylon or hydrophobic membranes. The hydrophobic membrane, Immobilon, was an outstanding matrix for binding proteins and displayed low levels of background staining. The least amount of protein detected by india ink staining was between 1.0 and 10 ng. India ink staining of proteins on nylon membranes is an easy, inexpensive, and quick method for the unequivocal detection of both standards and unknowns in the same blot. However, inks, ink concentrations, fixing conditions, staining times, pH, washing conditions, and membrane lots all need to be controlled to achieve maximum sensitivity for protein detection following india ink staining.  相似文献   

3.
The p16(ink4a) tumor suppressor protein plays a critical role in cell cycle control, tumorogenesis and senescence. The best known activity for p16(ink4a) is the inhibition of the activity of CDK4 and CDK6 kinases, both playing a key role in cell cycle progression. With the aim to study new p16(ink4a) functions we used affinity chromatography and MS techniques to identify new p16(ink4a)-interacting proteins. We generated p16(ink4a) columns by coupling the protein to activated Sepharose 4B. The proteins from MOLT-4 cell line that bind to p16(ink4a) affinity columns were resolved by SDS-PAGE and identified by MS using a MALDI-TOF. Thirty-one p16(ink4a) -interacting proteins were identified and grouped in functional clusters. The identification of two of them, proliferating cell nuclear antigen (PCNA) and minichromosome maintenance protein 6 (MCM6), was confirmed by Western blotting and their in vivo interactions with p16(ink4a) were demonstrated by immunoprecipitation and immunofluorescence studies. Results also revealed that p16(ink4a) interacts directly with the DNA polymerase delta accessory protein PCNA and thereby inhibits the polymerase activity.  相似文献   

4.
A novel microwave-enhanced ink staining method was developed for rapid and sensitive estimation of protein content in sample buffers containing chaotropes, dyes, detergents, and reducing agents. Dye-based Blue-Black ink was used to quantitatively visualize proteins spotted on a nitrocellulose membrane. The total staining time was greatly reduced to 3 min by brief exposure to microwave radiation. The stained membrane was washed with distilled water, baked in a microwave oven for complete desiccation, transparentized with mineral oil, and documented by a desktop scanner or densitometer. Only 1 microL of protein sample (protein solubilized in SDS-PAGE sample buffer or IEF rehydration buffer) was used for protein spotting. The novel solid-phase protein assay gives a 500-fold dynamic range from 19.5 to 10000 ng/microL and can be scaled up for high-throughput protein quantification analysis. The fast, sensitive and low-cost microwave-enhanced ink staining procedure is ideal for protein quantification in proteomic analysis.  相似文献   

5.
A light-dependent tyrosine kinase activity is present in soluble extracts from the cyanobacterium Prochlorothrix hollandica. The substrate of this tyrosine kinase activity is a soluble 88-kD protein that is phosphorylated when cultures of P. hollandica are adapted to high-light conditions. This phosphoprotein was identified by probing western blots of 32P-labeled soluble proteins from P. hollandica with an antibody specific for phosphotyrosine. This specificity was confirmed by competition experiments in which the antibody binding was abolished completely in the presence of excess phosphotyrosine but not phosphoserine and phosphothreonine. The kinetics of phosphorylation in vivo were determined by probing western blots with this antibody. Within 1 h following a switch from extended darkness to high light (200 [mu]mol photons m-2 s-1), the 88-kD protein was detectable upon India ink staining of western blots. After 3 h, the antibody recognized the phosphorylated form of this polypeptide. Within 6 h of a downshift from high to low light, the 88-kD protein was dephosphorylated. In vitro phosphorylation studies also showed that cell extracts can phosphorylate a tyrosine-containing artificial substrate; acid hydrolysis of both the artificial substrate and the 88-kD protein showed that phosphorylation occurred exclusively on tyrosine residues. Finally, experiments with high-light-adapted Synechococcus sp. PCC7942 suggest that a similar tyrosine phosphorylation event occurs in a phycobilisome-containing cyanobacterium.  相似文献   

6.
基因工程抗体融合蛋白的构建   总被引:1,自引:0,他引:1  
抗体融合蛋白可以具有抗体的特性和所融合的功能蛋白的活性,可广泛用于免疫治疗、免疫诊断、抗体纯化及抗体和抗原的分析定量等,特别可用于免疫导向药物的制备。基因工程抗体融合蛋白比传统的化学交联的抗体融合蛋白具有更多的优越性。本文就基因工程抗体融合蛋白的构建和性质做一综述 。  相似文献   

7.
Structural studies of membrane proteins, especially small membrane proteins, are associated with well-known experimental challenges. Complexation with monoclonal antibody fragments is a common strategy to augment such proteins; however, generating antibody fragments that specifically bind a target protein is not trivial. Here we identify a helical epitope, from the membrane-proximal external region (MPER) of the gp41-transmembrane subunit of the HIV envelope protein, that is recognized by several well-characterized antibodies and that can be fused as a contiguous extension of the N-terminal transmembrane helix of a broad range of membrane proteins. To analyze whether this MPER-epitope tag might aid structural studies of small membrane proteins, we determined an X-ray crystal structure of a membrane protein target that does not crystallize without the aid of crystallization chaperones, the Fluc fluoride channel, fused to the MPER epitope and in complex with antibody. We also demonstrate the utility of this approach for single particle electron microscopy with Fluc and two additional small membrane proteins that represent different membrane protein folds, AdiC and GlpF. These studies show that the MPER epitope provides a structurally defined, rigid docking site for antibody fragments that is transferable among diverse membrane proteins and can be engineered without prior structural information. Antibodies that bind to the MPER epitope serve as effective crystallization chaperones and electron microscopy fiducial markers, enabling structural studies of challenging small membrane proteins.  相似文献   

8.
SYPRO Ruby protein blot stain provides a sensitive, gentle, fluorescence-based method for detecting proteins on nitrocellulose or polyvinylidene difluoride (PVDF) membranes. SYPRO Ruby dye is a permanent stain composed of ruthenium as part of an organic complex that interacts noncovalently with proteins. Stained proteins can be excited by ultraviolet light of about 302 nm or with visible light of about 470 nm. Fluorescence emission of the dye is approximately 618 nm. The stain can be visualized using a wide range of excitation sources utilized in image analysis systems including a UV-B transilluminator, 488-nm argon-ion laser, 532-nm yttrium-aluminum-garnet (YAG) laser, blue fluorescent light bulb, or blue light-emitting diode (LED). The detection sensitivity of SYPRO Ruby protein blot stain (0.25-1 ng protein/mm(2)) is superior to that of amido black, Coomassie blue, and india ink staining and nearly matches colloidal gold staining. SYPRO Ruby protein blot stain visualizes proteins more rapidly than colloidal gold stain and the linear dynamic range is more extensive. Unlike colloidal gold stain, SYPRO Ruby protein blot stain is fully compatible with subsequent biochemical applications including colorimetric and chemiluminescent immunoblotting, Edman-based sequencing and mass spectrometry.  相似文献   

9.
Crystallographic studies of membrane proteins have been steadily increasing despite their unique physical properties that hinder crystal formation. Co-crystallization with antibody fragments has emerged as a promising solution to obtain diffraction quality crystals. Antibody binding to the target membrane protein can yield a homogenous population of the protein. Interantibody interactions can also provide additional crystal contacts, which are minimized in membrane proteins due to micelle formation around the transmembrane segments. Rapid identification of antibody fragments that can recognize native protein structure makes phage display a valuable method for crystallographic studies of membrane proteins. Methods that speed the reliable characterization of phage display selected antibody fragments are needed to make the technology more generally applicable. In this report, a phage display biopanning procedure is described to identify Fragments antigen binding (Fabs) for membrane proteins. It is also demonstrated that Fabs can be rapidly grouped based on relative affinities using enzyme linked immunosorbent assay (ELISA) and unpurified Fabs. This procedure greatly speeds the prioritization of candidate binders to membrane proteins and will aid in subsequent structure determinations.  相似文献   

10.
Arraying proteins is often more challenging than creating oligonucleotide arrays. Protein concentration and purity can severely limit the capacity of spots created by traditional pin and ink jet printing techniques. To improve protein printing methods, we have developed a three-dimensional microfluidic system to deposit protein samples within discrete spots (250-microm squares) on a target surface. Our current technology produces a 48-spot array within a 0.5 x 1 cm target area. A chief advantage of this method is that samples may be introduced in continuous flow, which makes it possible to expose each spot to a larger volume of sample than would be possible with standard printing methods. Using Biacore Flexchip (Biacore AB) surface plasmon resonance array-based biosensor as a chip reader, we demonstrate that the microfluidic printer is capable of spotting proteins that are dilute (<0.1 microg/ml) and contain high concentrations of contaminating protein (>10,000-fold molar excess). We also show that the spots created by the microfluidic printer are more uniform and have better-defined borders than what can be achieved with pin printing. The ability to readily print proteins using continuous flow will help expand the application of protein arrays.  相似文献   

11.
Proteolytic digestion of proteins bound to immobilized antibodies, combined with matrix assisted laser desorption (MALDI) mass spectrometric identification of the affinity-bound peptides, can be a powerful technique for epitope determination. Binding of the protein to the antibody is done while the protein is in its native, folded state. A purified protein is not required for this procedure, because only proteins containing the antigenic determinant will bind to the antibody in the initial step. The method makes use of the resistance of the antibody to enzymatic digestion. Enzymatic cleavage products of the antigenic protein not containing the epitope are washed off the beads, leaving the epitope-containing fragments affinity bound to the immobilized antibody. Dissociation of the antigen-antibody complex prior to mass spectrometric analysis is unnecessary because the affinity-bound peptides are released by the MALDI matrix crystallization process, although the antibody remains covalently attached to the sepharose beads. This epitope-mapping protocol has been used in the determination of both continuous and discontinuous epitopes on both glycosylated and unglycosylated proteins.  相似文献   

12.
Development of an internally controlled antibody microarray   总被引:2,自引:0,他引:2  
Antibody microarrays are a high throughput technology used to concurrently screen for protein expression. Most antibody arrays currently used are based on the ELISA sandwich approach that uses two antibodies to screen for the expression of a limited number of proteins. Also because antigen-antibody interactions are concentration-dependent, antibody microarrays need to normalize the amount of antibody that is used. In response to the limitations with the currently existing technology we have developed a single antibody-based microarray where the quantity of antibody spotted is used to standardize the antigen concentration. In addition, this new array utilizes an internally controlled system where one color represents the amount of antibody spotted, and the other color represents the amount of the antigen that is used to quantify the level of protein expression. When compared with median fluorescence intensity alone, normalization for antibody spot intensity decreased variability and lowered the limits of detection. This new antibody array was tested using standard cytokine proteins and also cell lysates obtained from mouse macrophages stimulated in vitro and evaluated for the expression of the cytokine proteins interleukin (IL)-1beta, IL-5, IL-6, and macrophage inflammatory proteins 1alpha and 1beta. The levels of protein expression seen with the antibody microarray was compared with that obtained with Western blot analysis, and the magnitude of protein expression observed was similar with both technologies with the antibody array actually showing a greater degree of sensitivity. In summary, we have developed a new type of antibody microarray to screen for protein expression that utilizes a single antibody and controls for the amount of antibody spotted. This type of array appears at least as sensitive as Western blot analysis, and the technology can be scaled up for high throughput screening for hundreds of proteins in complex biofluids such as blood.  相似文献   

13.
Lin Y  Huang R  Chen LP  Lisoukov H  Lu ZH  Li S  Wang CC  Huang RP 《Proteomics》2003,3(9):1750-1757
Global analysis of protein expression holds great promise in basic research and patient care. Previously we demonstrated that multiple cytokines could be detected simultaneously using an enzyme-linked immunosorbent assay protein array system with high sensitivity and specificity. In this paper, we described a biotin-labeled-based protein array system to detect multiple cytokines simultaneously from biological samples. In this new approach, proteins from a variety of biological sources are labeled with biotin. The biotin-labeled proteins are then incubated with antibody chips. Targeted proteins are captured by the array antibodies spotted on the antibody chips. The presence of targeted proteins is detected using Cy3- or Cy5-conjugated streptavidin and signals are imaged by laser scanner. The system also can be easily adapted to a two-color binding assay, allowing measurement of the levels of proteins in a test sample with respect to a reference sample at the same chip. To demonstrate its potential applications, we applied this technology to profile human cytokines, chemokines, growth factors, angiogenic factors and proteases in estrogen receptor (ER)+ and ER- cells. These results suggest that biotin-labeled-based antibody chip technology can provide a practical and powerful means of profiling hundreds or thousands of proteins for research and clinical purposes.  相似文献   

14.
Screening lambda cDNA libraries from rat liver with antibody to native rat liver sulfite oxidase (RLSO) showed cross-reaction with two proteins that belong to the same gene family: serum albumin and vitamin D-binding protein. Antibodies raised against native RLSO or sodium dodecyl sulfate-denatured protein cross-reacted with these proteins by Western blot analysis. The relative effectiveness of RLSO antibody binding was estimated to be 1/5 for rat serum albumin and 1/10 for rat vitamin D-binding protein. This result was not caused by contaminating proteins in the RLSO used for immunization as the RLSO preparation did not react with rat serum albumin antibody. RLSO antibodies, selected for their ability to bind rat serum albumin immobilized on nitrocellulose, recognized both rat serum albumin and RLSO. RLSO antibody, with albumin-reactive antibody removed, still recognized vitamin D-binding protein, suggesting that multiple determinants specific to each protein are involved in the cross-reaction. Comparison of RLSO antibody binding to the rat and human proteins indicated that the determinants were species-specific. cDNA clones identified by screening cDNA libraries with RLSO antibody demonstrated that these determinants reside in the C-terminal domain of these proteins. These results suggest that these proteins contain some common immunological features and may be evolutionarily related.  相似文献   

15.
T P King  Y Li  L Kochoumian 《Biochemistry》1978,17(8):1499-1506
Conjugates of two unlike proteins can be prepared via the intermolecular disulfide interchange reaction, namely, protein A containing thiol groups reacts with protein B containing 4-dithiopyridyl groups to yield a conjugate with the release of 4-thiopyridone. Thiol groups can be introduced into proteins upon amidination with methyl 3-mercaptopropionimidate ester or 2-iminothiolane, and 4-dithiopyridyl groups can be introduced into proteins with these same reagents in the presence of 4,4'-dithiodipyridine. 2-Iminothiolane is stable on storage in contrast to the known lability of imidate esters; therefore 2-iminothiolane is a more convenient reagent for the modification of protein than are the imidate esters. All the reactions can be carried out easily under mild conditions in good yields. Conjugates of bovine plasma albumin with itself, ribonuclease, or a copolymer of D-glutamic acid and D-lysine and of sheep antibody and horseradish peroxidase were prepared with modified proteins containing an average of 1 to 5 thiol or dithiopyridyl groups per mol. These conjugates formed mainly dimers, trimers, and tetramers. The peroxidase labeled antibody retained more than 80% of its enzymatic and antigenic binding activities.  相似文献   

16.
We have developed an approach that allows peptide mass mapping by matrix-assisted laser desorption ionization-mass spectrometry of proteins visualized on a nitrocellulose membrane by immunochemical detection. Proteins are separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), electroblotted onto a nitrocellulose membrane and after blocking with a nonprotein-containing polymer such as polyvinylpyrrolidone 40 (PVP-40) or Tween 20, the proteins are stained with fount India ink. After incubation with primary and, if required, secondary peroxidase-coupled antibodies, immunochemically reactive proteins can be visualized using conventional enhanced chemiluminescence detection and assigned to the India ink-stained membrane by simple superposition. The proteins of interest are excised, submitted to "on-membrane" cleavage and the peptides are analyzed by mass spectrometry. Protein-based blocking reagents normally used in standard immunodetection protocols, such as skimmed milk, can be employed. We have obtained high-quality mass spectra of bovine serum albumin (BSA) detected on an immunoblot with an estimated amount of 100 fmol applied onto the gel, indicating the sensitivity of the present method. In addition, the approach is demonstrated with two other commercially available proteins, a serum protein, the successful identification of a tyrosine phosphorylated protein from total rat liver homogenate and serine phosphorylated proteins from an EcR 293 nuclear extract separated by two-dimensional (2-D) SDS-PAGE.  相似文献   

17.
Mouse monoclonal antibody MON-100 was raised against the neuroendocrine protein 7B2 using bacterially produced hybrid proteins. In Western blot analysis, MON-100 reacted with 3 different 7B2 hybrid proteins and not with the respective carrier proteins. Furthermore, MON-100 was reactive with recombinant 7B2 cleaved from a hybrid protein. In an immunohistochemical study, MON-100 exhibited strong reactivity with the intermediate lobe of the Xenopus pituitary gland, a tissue previously shown to contain 7B2 mRNA. Using MON-100, immunoprecipitation analysis of newly synthesized proteins produced by in vitro incubated Xenopus neurointermediate lobes revealed the biosynthesis of a single protein of Mr 24 kDa, the expected size of the 7B2 protein. It appears, therefore, that the anti-7B2 monoclonal antibody MON-100 can be successfully used for Western blot analysis and immunohistochemical analysis as well as for immunoprecipitation experiments.  相似文献   

18.
Atg8 is a yeast protein involved in the autophagic process and in particular in the elongation of autophagosomes. In mammals, several orthologs have been identified and are classed into two subfamilies: the LC3 subfamily and the GABARAP subfamily, referred to simply as the LC3 or GABARAP families. GABARAPL1 (GABARAP-like protein 1), one of the proteins belonging to the GABARAP (GABA(A) receptor-associated protein) family, is highly expressed in the central nervous system and implicated in processes such as receptor and vesicle transport as well as autophagy. The proteins that make up the GABARAP family demonstrate conservation of their amino acid sequences and protein structures. In humans, GABARAPL1 shares 86% identity with GABARAP and 61% with GABARAPL2 (GATE-16). The identification of the individual proteins is thus very limited when working in vivo due to a lack of unique peptide sequences from which specific antibodies can be developed. Actually, and to our knowledge, there are no available antibodies on the market that are entirely specific to GABARAPL1 and the same may be true of the anti-GABARAP antibodies. In this study, we sought to examine the specificity of three antibodies targeted against different peptide sequences within GABARAPL1: CHEM-CENT (an antibody raised against a short peptide sequence within the center of the protein), PTG-NTER (an antibody raised against the N-terminus of the protein) and PTG-FL (an antibody raised against the full-length protein). The results described in this article demonstrate the importance of testing antibody specificity under the conditions for which it will be used experimentally, a caution that should be taken when studying the expression of the GABARAP family proteins.  相似文献   

19.
The early applications of microarrays and detection technologies have been centered on DNA-based applications. The application of array technologies to proteomics is now occurring at a rapid rate. Numerous researchers have begun to develop technologies for the creation of microarrays of protein-based screening tools. The stability of antibody molecules when bound to surfaces has made antibody arrays a starting point for proteomic microarray technology. To minimize disadvantages due to size and availability, some researchers have instead opted for antibody fragments, antibody mimics or phage display technology to create libraries for protein chips. Even further removed from antibodies are libraries of aptamers, which are single-stranded oligonucleotides that express high affinity for protein molecules. A variation on the theme of protein chips arrayed with antibody mimics or other protein capture ligand is that of affinity MS where the protein chips are directly placed in a mass spectrometer for detection. Other approaches include the creation of intact protein microarrays directly on glass slides or chips. Although many of the proteins may likely be denatured, successful screening has been demonstrated. The investigation of protein-protein interactions has formed the basis of a technique called yeast two-hybrid. In this method, yeast "bait" proteins can be probed with other yeast "prey" proteins fused to DNA binding domains. Although the current interpretation of protein arrays emphasizes microarray grids of proteins or ligands on glass slides or chips, 2-D gels are technically macroarrays of authentic proteins. In an innovative departure from the traditional concept of protein chips, some researchers are implementing microfluidic printing of arrayed chemistries on individual protein spots blotted onto membranes. Other researchers are using in-jet printing technology to create protein microarrays on chips. The rapid growth of proteomics and the active climate for new technology is driving a new generation of companies and academic efforts that are developing novel protein microarray techniques for the future.  相似文献   

20.
In this study, we describe an effective protocol for use in a multiplexed high-throughput antibody microarray with glycan binding protein detection that allows for the glycosylation profiling of specific proteins. Glycosylation of proteins is the most prevalent post-translational modification found on proteins, and leads diversified modifications of the physical, chemical, and biological properties of proteins. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases. However, current methods to study protein glycosylation typically are too complicated or expensive for use in most normal laboratory or clinical settings and a more practical method to study protein glycosylation is needed. The new protocol described in this study makes use of a chemically blocked antibody microarray with glycan-binding protein (GBP) detection and significantly reduces the time, cost, and lab equipment requirements needed to study protein glycosylation. In this method, multiple immobilized glycoprotein-specific antibodies are printed directly onto the microarray slides and the N-glycans on the antibodies are blocked. The blocked, immobilized glycoprotein-specific antibodies are able to capture and isolate glycoproteins from a complex sample that is applied directly onto the microarray slides. Glycan detection then can be performed by the application of biotinylated lectins and other GBPs to the microarray slide, while binding levels can be determined using Dylight 549-Streptavidin. Through the use of an antibody panel and probing with multiple biotinylated lectins, this method allows for an effective glycosylation profile of the different proteins found in a given human or animal sample to be developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号