首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The x-ray crystal structure of the cAMP-ligated T127L/S128A double mutant of cAMP receptor protein (CRP) was determined to a resolution of 2.2 A. Although this structure is close to that of the x-ray crystal structure of cAMP-ligated CRP with one subunit in the open form and one subunit in the closed form, a bound syn-cAMP is clearly observed in the closed subunit in a third binding site in the C-terminal domain. In addition, water-mediated interactions replace the hydrogen bonding interactions between the N(6) of anti-cAMP bound in the N-terminal domains of each subunit and the OH groups of the Thr(127) and Ser(128) residues in the C alpha-helix of wild type CRP. This replacement induces flexibility in the C alpha-helix at Ala(128), which swings the C-terminal domain of the open subunit more toward the N-terminal domain in the T127L/S128A double mutant of CRP (CRP*) than is observed in the open subunit of cAMP-ligated CRP. Isothermal titration calorimetry measurements on the binding of cAMP to CRP* show that the binding mechanism changes from an exothermic independent two-site binding mechanism at pH 7.0 to an endothermic interacting two-site mechanism at pH 5.2, similar to that observed for CRP at both pH levels. Differential scanning calorimetry measurements exhibit a broadening of the thermal denaturation transition of CRP* relative to that of CRP at pH 7.0 but similar to the multipeak transitions observed for cAMP-ligated CRP. These properties and the bound syn-cAMP ligand, which has only been previously observed in the DNA bound x-ray crystal structure of cAMP-ligated CRP by Passner and Steitz (Passner, J. M., and Steitz, T. A. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 2843-2847), imply that the cAMP-ligated CRP* structure is closer to the conformation of the allosterically activated structure than cAMP-ligated CRP. This may be induced by the unique flexibility at Ala(128) and/or by the bound syn-cAMP in the hinge region of CRP*.  相似文献   

2.
3.
S F Leu  C H Baker  E J Lee  J G Harman 《Biochemistry》1999,38(19):6222-6230
The lacP DNA binding and activation characteristics of CRP having amino acid substitutions at position 127 were investigated. Wild-type (WT) and T127C CRP footprinted lacP DNA in the presence of DNase I in a cAMP-dependent manner. The T127G, T127I, and T127S forms of CRP failed to footprint lacP both in the absence and in the presence of cAMP. Consistent with these data, WT and T127C CRP:cAMP complexes exhibited high affinity for the lacP CRP site whereas T127G, T127I, or T127S CRP:cAMP complexes exhibited low affinity for the lacP CRP site. CRP:cAMP:RNA polymerase (RNAP) complexes formed at lacP in reactions that contained WT, T127C, T127G, T127I, or T127S CRP. These results demonstrate that allosteric changes important for cAMP-mediated CRP activation are differentially affected by amino acid substitution at position 127. Proper cAMP-mediated reorientation of the DNA binding helices required either threonine or cysteine at position 127. However, cAMP-dependent interaction of CRP with RNAP was accomplished regardless of the amino acid at position 127. RNAP:lacP complexes that supported high-level lac RNA synthesis formed rapidly in reactions that contained WT or T127C CRP whereas RNAP:lacP complexes that supported only low-level lac RNA synthesis formed at slower rates in reactions that contained T127I or T127S CRP. The T127G CRP:cAMP:RNAP:lacP complex failed to activate lacP. The results of this study lead us to conclude that threonine 127 plays an important role in transduction of the signal from the CRP cyclic nucleotide binding pocket that promotes proper orientation of the DNA binding helices and only a minor, if any, role in the functional exposure of the CRP RNAP interaction domain.  相似文献   

4.
Sites of allosteric shift in the structure of the cyclic AMP receptor protein   总被引:32,自引:0,他引:32  
S Garges  S Adhya 《Cell》1985,41(3):745-751
We have characterized crp mutations in E. coli that allow CRP to function without cAMP. crp* mutants carrying a deletion of the gene encoding adenylate cyclase (cya) show significant lac expression. Cyclic GMP, normally an ineffective activator of CRP+, can stimulate these mutant CRP*s to permit greater lac expression in vivo. Cyclic AMP binding to the amino-terminal domain of CRP+ induces an allosteric transition that changes the DNA-binding property of the carboxy domain. The CRP* phenotype is caused by substitution of amino acids with bulkier side chains in the D alpha-helix of the protein's carboxy domain, near the hinge connecting the two domains. These results are consistent with a model in which the mutant CRP*s assume, in part, a conformation normally evoked only by cAMP binding: one in which the relative orientation of the C, D, and F alpha-helices is altered. We define precisely the amino acids of these alpha-helices that interact to cause the allosteric shift.  相似文献   

5.
6.
The cAMP receptor protein (CRP) of Escherichia coli undergoes a conformational change in response to cAMP binding that allows it to bind specific DNA sequences. Using an in vivo screening method following the simultaneous randomization of the codons at positions 127 and 128 (two C-helix residues of the protein interacting with cAMP), we have isolated a series of novel constitutively active CRP variants. Sequence analysis showed that this group of variants commonly possesses leucine or methionine at position 127 with a beta-branched amino acid at position 128. One specific variant, T127L/S128I CRP, showed extremely high cAMP-independent DNA binding affinity comparable with that of cAMP-bound wild-type CRP. Further biochemical analysis of this variant and others revealed that Leu(127) and Ile(128) have different roles in stabilizing the active conformation of CRP in the absence of cAMP. Leu(127) contributes to an improved leucine zipper at the dimer interface, leading to an altered intersubunit interaction in the C-helix region. In contrast, Ile(128) stabilizes the proper position of the beta4/beta5 loop by functionally communicating with Leu(61). By analogy, the results suggest two direct local effects of cAMP binding in the course of activating wild-type CRP: (i) C-helix repositioning through direct interaction with Thr(127) and Ser(128) and (ii) the concomitant reorientation of the beta4/beta5 loop. Finally, we also report that elevated expression of T127L/S128I CRP markedly perturbed E. coli growth even in the absence of cAMP, which suggests why comparably active variants have not been described previously.  相似文献   

7.
Lactobacillus casei L ‐lactate dehydrogenase (LCLDH) is activated through the homotropic and heterotropic activation effects of pyruvate and fructose 1,6‐bisphosphate (FBP), respectively, and exhibits unusually high pH‐dependence in the allosteric effects of these ligands. The active (R) and inactive (T) state structures of unliganded LCLDH were determined at 2.5 and 2.6 Å resolution, respectively. In the catalytic site, the structural rearrangements are concerned mostly in switching of the orientation of Arg171 through the flexible intersubunit contact at the Q‐axis subunit interface. The distorted orientation of Arg171 in the T state is stabilized by a unique intra‐helix salt bridge between Arg171 and Glu178, which is in striking contrast to the multiple intersubunit salt bridges in Lactobacillus pentosus nonallosteric L ‐lactate dehydrogenase. In the backbone structure, major structural rearrangements of LCLDH are focused in two mobile regions of the catalytic domain. The two regions form an intersubunit linkage through contact at the P‐axis subunit interface involving Arg185, replacement of which with Gln severely decreases the homotropic and hetertropic activation effects on the enzyme. These two regions form another intersubunit linkage in the Q‐axis related dimer through the rigid NAD‐binding domain, and thus constitute a pivotal frame of the intersubunit linkage for the allosteric motion, which is coupled with the concerted structural change of the four subunits in a tetramer, and of the binding sites for pyruvate and FBP. The unique intersubunit salt bridges, which are observed only in the R state structure, are likely involved in the pH‐dependent allosteric equilibrium. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Fic E  Polit A  Wasylewski Z 《Biochemistry》2006,45(2):373-380
The cAMP receptor protein, allosterically activated by cAMP, regulates the expression of more than 100 genes in Escherichia coli. CRP is a homodimer of two-domain subunits. It has been suggested that binding of cAMP to CRP leads to a long-distance signal transduction from the N-terminal cAMP binding domain to the C-terminal domain of the protein responsible for interaction with specific sequences of DNA. In this study, the stopped-flow and time-resolved fluorescence lifetime measurements were used to observe the kinetics of the distance changes between the N-terminal and C-terminal domain of CRP induced by binding of cAMP to high-affinity binding sites. In these measurements, we used the constructed CRP heterodimer, which possesses a single Trp85 residue localized at the N-terminal domain of one CRP subunit, and fluorescently labeled by 1,5-I-AEDANS Cys178 localized at the C-terminal domain of the same subunit or at the opposite one. The F?rster resonance energy transfer method has been used to study the distance changes, induced by binding of cAMP, between Trp85 (fluorescence donor) and Cys178-AEDANS (fluorescence acceptor) in the CRP structure. The obtained results show that the allosteric transitions of CRP at micromolar cAMP concentrations follow the sequential binding model, in which binding of cAMP to high-affinity sites causes a 4 A movement of the C-terminal domain toward N-terminal domains of the protein, with kinetics faster than 2 ms, and CRP adopts the "closed" conformation. This fast process is followed by the slower reorientation of both CRP subunits.  相似文献   

9.
The cyclic 3', 5' adenosine monophosphate (cAMP) binding pocket of the cAMP receptor protein (CRP) of Escherichia coli was mutagenized to substitute cysteine or glycine for serine 83; cysteine, glycine, isoleucine, or serine for threonine 127; and threonine or alanine for serine 128. Cells that expressed the binding pocket residue-substituted forms of CRP were characterized by measurements of beta-galactosidase activity. Purified wild-type and mutant CRP preparations were characterized by measurement of cAMP binding activity and by their capacity to support lacP activation in vitro. CRP structure was assessed by measurement of sensitivity to protease and DTNB-mediated subunit crosslinking. The results of this study show that cAMP interactions with serine 83, threonine 127 and serine 128 contribute to CRP activation and have little effect on cAMP binding. Amino acid substitutions that introduce hydrophobic amino acid side chain constituents at either position 127 or 128 decrease CRP discrimination of cAMP and cGMP. Finally, cAMP-induced CRP structural change(s) that occur in or near the CRP hinge region result from cAMP interaction with threonine 127; substitution of threonine 127 by cysteine, glycine, isoleucine, or serine produced forms of CRP that contained, independently of cAMP binding, structural changes similar to those of the wild-type CRP:cAMP complex.  相似文献   

10.
Lin SH  Lee JC 《Biochemistry》2002,41(39):11857-11867
The binding of adenosine 3',5'-cyclic monophosphate (cAMP) and its nonfunctional analogue, guanosine 3',5'-cyclic monophosphate (cGMP), to the adenosine 3',5'-cyclic monophosphate receptor protein (CRP) from Escherichia coli was investigated by means of fluorescence and isothermal titration calorimetry (ITC) at pH 7.8 and 25 degrees C. A biphasic fluorescence titration curve was observed, confirming the previous observation reported by this laboratory (Heyduk and Lee (1989) Biochemistry 28, 6914-6924). However, the triphasic titration curve obtained from the ITC study suggests that the cAMP binding to CRP is more complicated than the previous conclusion that CRP binds sequentially two molecules of cAMP with negative cooperativity. The binding data can best be represented by a model for two identical interactive high-affinity sites and one low-affinity binding site. Unlike cAMP, the binding of cGMP to CRP exhibits no cooperativity between the high-affinity sites. The effects of mutations on the bindings of cAMP and cGMP to CRP were also investigated. The eight CRP mutants studied were K52N, D53H, S62F, T127L, G141Q, L148R, H159L, and K52N/H159L. These sites are located neither in the ligand binding site nor at the subunit interface. The binding was monitored by fluorescence. Although these mutations are at a variety of locations in CRP, the basic mechanism of CRP binding to cyclic nucleotides has not been affected. Two cyclic nucleotide molecules bind to the high-affinity sites of CRP. The cooperativity of cAMP binding is affected by mutation. It ranges from negative to positive cooperativity. The binding of cGMP shows none. With the exception of the T127L mutant, the free energy change for DNA-CRP complex formation increases linearly with increasing free energy change associated with the cooperativity of cAMP binding. This linear relationship implies that the protein molecule modulates the signal in the binding of cAMP, even though the mutation is not directly involved in cAMP or DNA binding. In addition, the significant differences in the amplitude of fluorescent signal indicate that the mutations also affect the surface characteristics of CRP. These results imply that these mutations are not perturbing specific pathways of signal transmission. Instead, these results are more consistent with the concept that CRP exists as an ensemble of native states, the distribution of which can be altered by these mutations.  相似文献   

11.
E Heyduk  T Heyduk  J C Lee 《Biochemistry》1992,31(14):3682-3688
Escherichia coli cAMP receptor protein (CRP) is a homodimer in which each subunit is composed of two domains. The C-terminal domain is responsible for DNA recognition, whereas the larger N-terminal domain is involved in cAMP binding. Biochemical and genetic evidence suggests that both intersubunit and interdomain interactions play important roles in the regulatory mechanism of this protein. Essentially all intersubunit contacts occur via a long C-helix which is a part of the N-terminal domain. In this work, intersubunit interactions in CRP were studied with the use of two proteolytic fragments of the protein. Subtilisin digestion produces a fragment (S-CRP) which includes residues 1-117 and in which about 85% of the C-helix is removed, whereas chymotrypsin digestion produces a fragment (CH-CRP) consisting of residues 1-136, in which the whole C-helix is preserved. Both fragments were purified and subjected to functional tests which included cAMP binding, subunit assembly, and hydrodynamic properties in the presence and absence of cAMP. S-CRP binds cAMP with a similar affinity to that of native CRP but with reduced cooperativity. CH-CRP exhibits about 1 order of magnitude tighter binding of cAMP than S-CRP or CRP and the highest degree of negative cooperativity. Both fragments are dimeric with dimerization constants around 10(8) M-1. Ligand binding promotes dimerization and induces a small contraction of both S-CRP and CH-CRP. There is no apparent correlation between dimer stability and cooperativity of ligand binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Z H Yang  S Bobin    J S Krakow 《Nucleic acids research》1991,19(15):4253-4257
CRP is resistant to attack by carboxypeptidase Y at 37 degrees C, whereas cAMP-CRP is digested yielding a core terminating at Thr-202 and lacking the seven carboxyl-terminal amino acid residues. A similar core (CRPCY) is formed when CRP is incubated with carboxypeptidase Y at 47 degrees C in the absence of cAMP. CRPCY has a more open conformation than CRP at 37 degrees C. While unliganded CRP is resistant to trypsin, CRPCY is sensitive to tryptic attack. Dithionitrobenzoic acid-mediated intersubunit disulfide crosslinking of CRP requires cAMP, CRPCY subunits are crosslinked in the absence of cAMP. The carboxyl-terminal region of unliganded CRP is conformationally restricted at 37 degrees C. The CRPCY retains cAMP binding activity. The CRPCY which terminates at Thr-202, no longer binds lac P+ DNA nor stimulates abortive initiation by RNA polymerase from the lac P+ promoter. The results indicate that the C-terminal region of CRP participates in the conformational stability of the closed form of CRP and indirectly in DNA binding by the open cAMP-CRP conformer.  相似文献   

13.
A truncated regulatory subunit of cAMP-dependent protein kinase I was constructed which contained deletions at both the carboxyl terminus and at the amino terminus. The entire carboxyl-terminal cAMP-binding domain was deleted as well as the first 92 residues up to the hinge region. This monomeric truncated protein still forms a complex with the catalytic subunit, and activation of this complex is mediated by cAMP. The affinity of this mutant holoenzyme for cAMP and its activation by cAMP are nearly identical to holoenzyme formed with a regulatory subunit having only the carboxyl-terminal deletion and very similar to native holoenzyme. The off rate for cAMP from both mutant regulatory subunits, however, is monophasic and very fast relative to the biphasic off rate seen for the native regulatory subunit. The effects of NaCl, urea, and pH on cAMP binding are also very similar for the mutant and native holoenzymes. Like the native type I holoenzyme, both mutant holoenzymes bind ATP with a high affinity. The positive cooperativity seen for MgATP binding to the native holoenzyme, however, is abolished in the double deletion mutant. The Hill coefficient for ATP binding to this mutant holoenzyme is 1.0 in contrast to 1.6 for the native holoenzyme. The Kd (cAMP) is increased by approximately 1 order of magnitude for both mutant forms of the holoenzyme in the presence of MgATP. A similar shift is seen for the native holoenzyme. Further characterization of the MgATP-binding properties of the wild-type holoenzyme indicates that a binary complex containing catalytic subunit and MgATP is required, in particular, for reassociation with the cAMP-bound regulatory subunit. This binary complex is required for rapid dissociation of the bound cAMP and is probably responsible for the observed reduction in cAMP-binding affinity for the type I holoenzyme in the presence of MgATP.  相似文献   

14.
15.
16.
Bell JK  Grant GA  Banaszak LJ 《Biochemistry》2004,43(12):3450-3458
Phosphoglycerate dehydrogenase (PGDH) catalyzes the first step in the serine biosynthetic pathway. In lower plants and bacteria, the PGDH reaction is regulated by the end-product of the pathway, serine. The regulation occurs through a V(max) mechanism with serine binding and inhibition occurring in a cooperative manner. The three-dimensional structure of the serine inhibited enzyme, determined by previous work, showed a tetrameric enzyme with 222 symmetry and an unusual overall toroidal appearance. To characterize the allosteric, cooperative effects of serine, we identified W139G PGDH as an enzymatically active mutant responsive to serine but not in a cooperative manner. The position of W139 near a subunit interface and the active site cleft suggested that this residue is a key player in relaying allosteric effects. The 2.09 A crystal structure of W139G-PGDH, determined in the absence of serine, revealed major quaternary and tertiary structural changes. Contrary to the wildtype enzyme where residues encompassing residue 139 formed extensive intersubunit contacts, the corresponding residues in the mutant were conformationally flexible. Within each of the three-domain subunits, one domain has rotated approximately 42 degrees relative to the other two. The resulting quaternary structure is now in a novel conformation creating new subunit-to-subunit contacts and illustrates the unusual flexibility in this V(max) regulated enzyme. Although changes at the regulatory domain interface have implications in other enzymes containing a similar regulatory or ACT domain, the serine binding site in W139G PGDH is essentially unchanged from the wildtype enzyme. The structural and previous biochemical characterization of W139G PGDH suggests that the allosteric regulation of PGDH is mediated not only by changes occurring at the ACT domain interface but also by conformational changes at the interface encompassing residue W139.  相似文献   

17.
Li J  Lee JC 《Biophysical chemistry》2011,159(1):210-216
The communication mechanism(s) responsible for the allosteric behavior of E.coli cAMP binding receptor protein, CRP, is still a subject of intense investigation. As a tool to explore the communication mechanism, the mutations at various positions in the cAMP-binding (K52N, D53H, S62F and T127L) or the DNA- binding (H159L) domain or both (K52N/H159L) were generated. The sites and specific nature of side chain substitutions were defined by earlier genetic studies, the results of which show that these mutants have a similar phenotype i.e. they are activated without exogenous cAMP. Presently, no significant changes in the structures of WT and mutant CRPs have been observed. Hence, the pressing issue is to identify a physical parameter that reflects the effects of mutations. In this study, the stability of these various CRP species in the presence of GuHCl was monitored by three spectroscopic techniques, namely, CD, tryptophan fluorescence and FT-IR which could provide data on the stability of α-helices and β-strands separately. Results of this study led to the following conclusions: 1. The α-helices can be grouped into two families with different stabilities. Mutations exert a differential effect on the stability of helices as demonstrated by a biphasic unfolding curve for the helices. 2. Regardless of the locations of mutations, the effects can be communicated to the other domain resulting in a perturbation of the stability of both domains, although the effects are more significantly expressed in the stability of the helices. 3. Although in an earlier study [Gekko, et al. Biochemistry 43 (2004) 3844] we showed that cooperativity of cAMP binding is generally correlated to the global dynamics of the protein and DNA binding affinity, in this study we found that generally there is no clear correlation between functional energetics and stability of secondary structures. Thus, results of this study imply that modulation of allostery in CRP is entropic in nature.  相似文献   

18.
19.
Cyclic AMP receptor protein (CRP) regulates the expression of more then 100 genes in Escherichia coli. It is known that the allosteric activation of CRP by cAMP involves a long-distance signal transmission from the N-terminal cAMP-binding domain to the C-terminal domain of CRP responsible for the interactions with specific sequences of DNA. In this report we have used a CRP mutant containing a single Trp13 located in the N-terminal domain of the protein. We applied the iodide and acrylamide fluorescence quenching method in order to study how different DNA sequences and cAMP binding induce the conformational changes in the CRP molecule. The results presented provide evidence for the occurrence of a long-distance conformational signal transduction within the protein from the C-terminal DNA-binding domain to the N-terminal domain of CRP. This conformational signal transmission depends on the promoter sequence. We also used the stopped-flow and Forster resonance energy transfer between labeled Cys178 of CRP and fluorescently labeled DNA sequences to study the kinetics of DNA-CRP interactions. The results thus obtained lead to the conclusion that CRP can exist in several conformational states and that their distribution is affected by binding of both the cAMP and of specific DNA sequences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号