首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serotype G9 rotaviruses have been detected in about 0.5% of the circulating strains worldwide. However, G9 strains emerged globally in the middle of the 90s and thereafter. A rotavirus, contained in stool specimen 95H115, possessing a G9 VP7 emerged in Japan in the 1994-1995 season for the first time after a 9-year interval since prototype G9 strains AU32 and F45 were discovered in the 1985-1986 season. In comparison with other G9 VP7 genes thus far published, the sequencing of the VP7 genes of AU32 and 95H115 revealed that the 95H115 VP7 gene did not directly evolve from the AU32 VP7 gene but was much more closely related to the contemporary G9 VP7 genes found in the United States of America. Thus, recently emerging G9 VP7 genes were not direct descendants of the VP7 genes of the prototype strains in the 80s, rather they evolved independently into 4 phylogenetic clusters from a common ancestor.  相似文献   

2.
A human rotavirus strain, designated AU32, that belongs to serotype 9 was isolated and was compared by RNA-RNA hybridization with recently established two serotype 9 strains (WI61 and F45) as well as other prototype human strains. These three strains exhibited a very high degree of homology with one another and shared a high degree of homology with strains belonging to the Wa genogroup but not with strains belonging to either the DS-1 or AU-1 genogroup. These results suggest that genetic constellation of the serotype 9 strains is similar to that of the commonest human rotavirus despite the recent recognition of this serotype.  相似文献   

3.
Of 335 rotavirus isolates associated with diarrheal disease in Bangladesh that were culture adapted and subsequently characterized for electropherotype, subgroup, and serotype, 9 had properties that suggested they may be natural reassortants between human rotaviruses belonging to different "genogroups." Two of these were examined in greater detail by RNA-RNA hybridization with prototype strains representative of each of the three proposed human rotavirus genogroups. One subgroup II isolate, 248, with a "long" electrophoretic pattern was neutralized by hyperimmune antisera to both serotype 2 and 4 strains. Consistent with these results, seven RNA segments of this isolate formed hybrids with human strains belonging to the Wa genogroup and four segments hybridized with strains belonging to the DS-1 genogroup. The second isolate examined, 456, belonged to subgroup II and had a long electrophoretic pattern but was found to be a serotype 2 strain. This isolate also appeared to be an intergenogroup reassortant because three of its segments formed hybrids with strains belonging to the Wa genogroup and eight hybridized with viruses of the DS-1 genogroup. On the basis of the relative migration rates of these RNA-RNA hybrids during gel electrophoresis, a suggested origin for each gene segment was proposed which was consistent with the results expected from electrophoretic, subgroup, and serotypic analyses.  相似文献   

4.
A 4-year (1996-2000) survey of rotavirus infection involving 2,218 diarrheal fecal specimens of children collected from five regions of Japan was conducted. A total of 642 (28.9%) specimens were found to be rotavirus positive. A changed prevalence pattern of rotavirus G serotype was found with an increase of G9 and G2 and a decrease of G1, although G1 remained the prevailing serotype. Serotype G9 was unexpectedly determined to be the prevailing serotype in Sapporo (62.5%) and Tokyo (52.9%) in 1998-1999, and in Saga (78.4%) in 1999-2000. G9 strains isolated from 1998-1999 belonged to the P[8]-NSP4-Wa-group with long RNA pattern, while, G9 strains isolated from 1999-2000 belonged to three groups, the P[8]-NSP4-Wa-group with long RNA pattern, the P[4]-NSP4-KUN-group with short RNA pattern and a mixed-type group (P[4]/P[8]-NSP4-KUN/Wa-group with long RNA pattern). Both sequence and immunological analysis of VP7 revealed that the G9 strains from 1999-2000 were much more closely related to the G9 strains isolated worldwide in the 1990s, including G9 strains found in Thailand in 1997. However, the G9 strains from 1998-1999 were distinct from these and more closely related to the G9 prototype strains F45, AU32 and WI61 discovered in Japan and the US in the 1980s. Thus the G9 strains isolated in 1998-1999 had progenitors common to the G9 prototype strains, while the strains isolated in 1999-2000 did not directly evolve from them but were related to global G9 strains that have emerged in recent years. These data supported our previous report that G9 rotavirus might exist as two or more subtypes with diverse RNA patterns, P-genotype and NSP4 genogroup combinations (Y.M. Zhou et al., J. Med. Virol. 65: 619-628, 2001) and suggested that G9 rotavirus prevalent in Japan during two successive years belonged to different subtypes. The nucleotide sequences presented in this paper were submitted to DDBJ, EMBL and GenBank nucleotide sequence databases. The accession numbers are: 00-Ad2863VP7 (AB091746), 00-OS2986VP7 (AB091747), 00-SG2509VP7 (AB091748), 00-SG2518VP7 (AB091749), 00-SG2541 (AB091750), 00-SG2864 (AB091751), 00-SP2737VP7 (AB091752), 99-SP1542VP7 (AB091753), 99-SP1904VP7 (AB091754), 99-TK2082VP7 (AB091755) and 99-TK2091VP7 (AB091756).  相似文献   

5.
A safe and effective group A rotavirus vaccine that could prevent severe diarrhea or ameliorate its symptoms in infants and young children is urgently needed in both developing and developed countries. Rotavirus VP7 serotypes G1, G2, G3, and G4 have been well established to be of epidemiologic importance worldwide. Recently, serotype G9 has emerged as the fifth globally common type of rotavirus of clinical importance. Sequence analysis of the VP7 gene of various G9 isolates has demonstrated the existence of at least three phylogenetic lineages. The goal of our study was to determine the relationship of the phylogenetic lineages to the neutralization specificity of various G9 strains. We generated eight single VP7 gene substitution reassortants, each of which bore a single VP7 gene encoding G9 specificity of one of the eight G9 strains (two lineage 1, one lineage 2 and five lineage 3 strains) and the remaining 10 genes of bovine rotavirus strain UK, and two hyperimmune guinea pig antisera to each reassortant, and we then analyzed VP7 neutralization characteristics of the eight G9 strains as well as an additional G9 strain belonging to lineage 1; the nine strains were isolated in five countries. Antisera to lineage 1 viruses neutralized lineage 2 and 3 strains to at least within eightfold of the homotypic lineage viruses. Antisera to lineage 2 virus neutralized lineage 3 viruses to at least twofold of the homotypic lineage 2 virus; however, neutralization of lineage 1 viruses was fourfold (F45 and AU32) to 16- to 64-fold (WI61) less efficient. Antisera to lineage 3 viruses neutralized the lineage 2 strain 16- to 64-fold less efficiently, the lineage 1 strains F45 and AU32 8- to 128-fold less efficiently, and WI61 (prototype G9 strain) 128- to 1024-fold less efficiently than the homotypic lineage 3 viruses. These findings may have important implications for the development of G9 rotavirus vaccine candidates, as the strain with the broadest reactivity (i.e., a prime strain) would certainly be the ideal strain for inclusion in a vaccine.  相似文献   

6.
G12 rotaviruses are emerging rotavirus strains causing severe diarrhea in infants and young children worldwide. However, the whole genomes of only a few G12 strains have been fully sequenced and analyzed. In this study, we sequenced and characterized the complete genomes of six G12 strains (RVA/Human-tc/MMR/A14/2011/G12P[8], RVA/Human-tc/MMR/A23/2011/G12P[6], RVA/Human-tc/MMR/A25/2011/G12P[8], RVA/Human-tc/MMR/P02/2011/G12P[8], RVA/Human-tc/MMR/P39/2011/G12P[8], and RVA/Human-tc/MMR/P43/2011/G12P[8]) detected in six stool samples from children with acute gastroenteritis in Myanmar. On whole genomic analysis, all six Myanmarese G12 strains were found to have a Wa-like genetic backbone: G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 for strains A14, A25, P02, P39, and P43, and G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1 for strain A23. Phylogenetic analysis showed that most genes of the six strains examined in this study were genetically related to globally circulating human G1, G3, G9, and G12 strains. Of note is that the NSP4 gene of strain A23 exhibited the closest relationship with the cognate genes of human-like bovine strains as well as human strains, suggesting the occurrence of reassortment between human and bovine strains. Furthermore, strains A14, A25, P02, P39, and P43 were very closely related to one another in all the 11 gene segments, indicating derivation of the five strains from a common origin. On the other hand, strain A23 consistently formed distinct clusters as to all the 11 gene segments, indicating a distinct origin of strain A23 from that of strains A14, A25, P02, P39, and P43. To our knowledge, this is the first report on whole genome-based characterization of G12 strains that have emerged in Myanmar. Our observations will provide important insights into the evolutionary dynamics of spreading G12 rotaviruses in Asia.  相似文献   

7.
The emergence and rapid spread of novel DS-1-like G1P[8] human rotaviruses in Japan were recently reported. More recently, such intergenogroup reassortant strains were identified in Thailand, implying the ongoing spread of unusual rotavirus strains in Asia. During rotavirus surveillance in Thailand, three DS-1-like intergenogroup reassortant strains having G3P[8] (RVA/Human-wt/THA/SKT-281/2013/G3P[8] and RVA/Human-wt/THA/SKT-289/2013/G3P[8]) and G2P[8] (RVA/Human-wt/THA/LS-04/2013/G2P[8]) genotypes were identified in fecal samples from hospitalized children with acute gastroenteritis. In this study, we sequenced and characterized the complete genomes of strains SKT-281, SKT-289, and LS-04. On whole genomic analysis, all three strains exhibited unique genotype constellations including both genogroup 1 and 2 genes: G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strains SKT-281 and SKT-289, and G2-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strain LS-04. Except for the G genotype, the unique genotype constellation of the three strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) is commonly shared with DS-1-like G1P[8] strains. On phylogenetic analysis, nine of the 11 genes of strains SKT-281 and SKT-289 (VP4, VP6, VP1-3, NSP1-3, and NSP5) appeared to have originated from DS-1-like G1P[8] strains, while the remaining VP7 and NSP4 genes appeared to be of equine and bovine origin, respectively. Thus, strains SKT-281 and SKT-289 appeared to be reassortant strains as to DS-1-like G1P[8], animal-derived human, and/or animal rotaviruses. On the other hand, seven of the 11 genes of strain LS-04 (VP7, VP6, VP1, VP3, and NSP3-5) appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses, while three genes (VP4, VP2, and NSP1) were assumed to be derived from DS-1-like G1P[8] strains. Notably, the remaining NSP2 gene of strain LS-04 appeared to be of bovine origin. Thus, strain LS-04 was assumed to be a multiple reassortment strain as to DS-1-like G1P[8], locally circulating DS-1-like G2P[4], bovine-like human, and/or bovine rotaviruses. Overall, the great genomic diversity among the DS-1-like G1P[8] strains seemed to have been generated through reassortment involving human and animal strains. To our knowledge, this is the first report on whole genome-based characterization of DS-1-like intergenogroup reassortant strains having G3P[8] and G2P[8] genotypes that have emerged in Thailand. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G1P[8] strains and related reassortant ones.  相似文献   

8.
最近在亚洲首次发现并报道了感染人的G5型人A组轮状病毒LL36755株,为进一步探讨其进化来源,克隆了G5型人A组轮状病毒LL36755株的VP4、VP6、NSP4编码基因,并分析其基因序列的分子特征。结果发现卢龙株LL36755为罕见的G5P[6]型,其VP6的亚群为SGⅡ型,NSP4的基因型为B型。系统进化树分析表明,卢龙株LL36755的VP7、VP4编码基因与猪来源的毒株关系密切,而VP6、NSP4编码基因与人来源的毒株紧密相联系。可以推断新的人腹泻A组轮状病毒LL36755株是猪的VP7,VP4编码基因与人的VP6,NSP4编码基因的自然重组;而且该毒株不是G5的原型,很可能是人类轮状病毒与猪轮状病毒毒株的自然重组后逐步进化而来。  相似文献   

9.
A human rotavirus AU228 strain which resembled the AU-1 strain (O. Nakagomi, T. Nakagomi, Y. Hoshino, J. Flores, and A. Z. Kapikian, J. Clin. Microbiol. 25:1159-1164, 1987) in its novel characteristics (that it belonged to subgroup I yet possessed a long RNA pattern) was compared with various human and animal strains by RNA-RNA hybridization in solution. This strain showed a high degree of homology with the AU-1 strain but not with either the Wa (subgroup II, long pattern) or the KUN (subgroup I, short pattern) strain, indicating the presence of an additional group of human rotaviruses that do not belong to either of the two human rotavirus families previously identified by RNA-RNA hybridization. It is of particular interest that the AU228 strain showed an unexpectedly high degree of homology with a feline rotavirus isolated recently in Japan. These results indicate transmission of a feline rotavirus to humans and suggest a role of animal rotaviruses in the evolution of human rotaviruses.  相似文献   

10.
Gene 1 (which encodes the viral RNA-dependent RNA polymerase, VP1) of an atypical human reassortant rotavirus strain, E210 (serotype G2P1B), is unrelated to genes 1 of standard human rotaviruses. To ascertain the origin of this gene, we determined a partial sequence and found that it exhibited greatest identity to gene 1 of a Taiwanese isolate, TE83, which is representative of G2 strains that caused an epidemic of gastroenteritis in 1993. Limited sequence identity to genes 1 of standard human and animal viruses was observed. This was confirmed by phylogenetic analysis. However, hybridization analysis using an E210 gene 1-specific probe indicated that a related gene was found among other Australian G2 isolates and in a Japanese strain isolated in the 1970s.  相似文献   

11.
G12 rotaviruses were first detected in diarrheic children in the Philippines in 1987, but no further cases were reported until 1998. However, G12 rotaviruses have been detected all over the world in recent years. Here, we report the worldwide variations of G12 rotaviruses to investigate the evolutionary mechanisms by which they managed to spread globally in a short period of time. We sequenced the complete genomes (11 segments) of nine G12 rotaviruses isolated in Bangladesh, Belgium, Thailand, and the Philippines and compared them with the genomes of other rotavirus strains. Our genetic analyses revealed that after introduction of the VP7 gene of the rare G12 genotype into more common local strains through reassortment, a vast genetic diversity was generated and several new variants with distinct gene constellations emerged. These reassortment events most likely took place in Southeast Asian countries and spread to other parts of the world. The acquirement of gene segments from human-adapted rotaviruses might allow G12 to better propagate in humans and hence to develop into an important emerging human pathogen.  相似文献   

12.
The emergence and rapid spread of unusual DS-1-like G1P[8] rotaviruses in Japan have been recently reported. During rotavirus surveillance in Thailand, three DS-1-like G1P[8] strains (RVA/Human-wt/THA/PCB-180/2013/G1P[8], RVA/Human-wt/THA/SKT-109/2013/G1P[8], and RVA/Human-wt/THA/SSKT-41/2013/G1P[8]) were identified in stool specimens from hospitalized children with severe diarrhea. In this study, we sequenced and characterized the complete genomes of strains PCB-180, SKT-109, and SSKT-41. On whole genomic analysis, all three strains exhibited a unique genotype constellation including both genogroup 1 and 2 genes: G1-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. This novel genotype constellation is shared with Japanese DS-1-like G1P[8] strains. Phylogenetic analysis revealed that the G/P genes of strains PCB-180, SKT-109, and SSKT-41 appeared to have originated from human Wa-like G1P[8] strains. On the other hand, the non-G/P genes of the three strains were assumed to have originated from human DS-1-like strains. Thus, strains PCB-180, SKT-109, and SSKT-41 appeared to be derived through reassortment event(s) between Wa-like G1P[8] and DS-1-like human rotaviruses. Furthermore, strains PCB-180, SKT-109, and SSKT-41 were found to have the 11-segment genome almost indistinguishable from one another in their nucleotide sequences and phylogenetic lineages, indicating the derivation of the three strains from a common origin. Moreover, all the 11 genes of the three strains were closely related to those of Japanese DS-1-like G1P[8] strains. Therefore, DS-1-like G1P[8] strains that have emerged in Thailand and Japan were assumed to have originated from a recent common ancestor. To our knowledge, this is the first report on whole genome-based characterization of DS-1-like G1P[8] strains that have emerged in an area other than Japan. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G1P[8] rotaviruses.  相似文献   

13.
在我国腹泻患儿中发现G9型轮状病毒感染   总被引:11,自引:1,他引:10  
钱渊  关德华 《病毒学报》1994,10(3):263-267
  相似文献   

14.
Both the G (VP7) and P (VP4) serotypes of human rotaviruses collected over a 10-year period from Japanese children with diarrhea were determined by recently-developed polymerase chain reaction-based typing assays. The combination of G1 and P8 was found in 65.2% and the combination of G2 and P4 was found in 15.2%. For the rest of the specimens, only a few other combinations occurred and their relative frequencies were less than 10%. The viruses carrying P9 were always associated with G3 as is the prototype strain AU-1.  相似文献   

15.
16.
Isolation of human monoclonal antibodies that neutralize human rotavirus   总被引:8,自引:0,他引:8  
A human antibody library constructed by utilizing a phage display system was used for the isolation of human antibodies with neutralizing activity specific for human rotavirus. In the library, the Fab form of an antibody fused to truncated cp3 is expressed on the phage surface. Purified virions of strain KU (G1 serotype and P[8] genotype) were used as antigen. Twelve different clones were isolated. Based on their amino acid sequences, they were classified into three groups. Three representative clones-1-2H, 2-3E, and 2-11G-were characterized. Enzyme-linked immunosorbent assay with virus-like particles (VLP-VP2/6 and VLP-VP2/6/7) and recombinant VP4 protein produced from baculovirus recombinants indicated that 1-2H and 2-3E bind to VP4 and that 2-11G binds to VP7. The neutralization epitope recognized by each of the three human antibodies might be human specific, since all of the antigenic mutants resistant to mouse monoclonal neutralizing antibodies previously prepared were neutralized by the human antibodies obtained here. After conversion from the Fab form of an antibody into immunoglobulin G1, the neutralizing activities of these three clones toward various human rotavirus strains were examined. The 1-2H antibody exhibited neutralizing activity toward human rotaviruses with either the P[4] or P[8] genotype. Similarly, the 2-3E antibody showed cross-reactivity against HRVs with the P[6], as well as the P[8] genotype. In contrast, the 2-11G antibody neutralized only human rotaviruses with the G1 serotype. The concentration of antibodies required for 50% neutralization ranged from 0.8 to 20 micro g/ml.  相似文献   

17.
A rotavirus sample collection from 19 consecutive years was used to investigate the heterogeneity and the dynamics of evolution of G1 rotavirus strains in a geographically defined population. Phylogenetic analysis of the VP7 gene sequences of G1P[8] human rotavirus strains showed the circulation of a heterogeneous population comprising three lineages and seven sublineages. Increases in the circulation of G1 rotaviruses were apparently associated with the introduction of novel G1 strains that exhibited multiple amino acid changes in antigenic regions involved in rotavirus neutralization compared to the strains circulating in the previous years. The emergence and/or introduction of G1 antigenic variants might be responsible for the continuous circulation of G1 rotaviruses in the local population, with the various lineages and sublineages appearing, disappearing, or cocirculating in an alternate fashion under the influence of immune-pressure mechanisms. Sequence analysis of VP4-encoding genes of the G1 strains revealed that the older strains were associated with a unique VP4 lineage, while a novel VP4 lineage emerged after 1995. The introduction of human rotavirus vaccines might alter the forces and balances that drive rotavirus evolution and determine the spread of novel strains that are antigenically different from those included in the vaccine formulations. The continuous emergence of VP7-VP4 gene combinations in human rotavirus strains should be taken into consideration when devising vaccination strategies.  相似文献   

18.
In our previous study (K. Taniguchi, Y. Morita, T. Urasawa, and S. Urasawa, J. Virol. 62:2421-2426, 1987) in which the cross-reactive neutralization epitopes on VP4 of human rotaviruses were analyzed, one strain, K8, was found to bear unique VP4 neutralization epitopes. This strain, which belongs to subgroup II and serotype 1, was not neutralized by any of six anti-VP4 neutralizing monoclonal antibodies which reacted with human rotavirus strains of serotypes 1, 3, and 4 or serotypes 1 through 4. We determined the complete nucleotide sequence of the gene encoding VP4 of strain K8 by primer extension. The VP4 gene is 2,359 base pairs in length, with 5' and 3' noncoding regions of 9 and 25 nucleotides, respectively. The gene contains a long open reading frame of 2,325 bases capable of coding for a protein of 775 amino acids. When compared with those of other human rotaviruses, VP4 of strain K8 had an insertion of one amino acid after residue 135, as found in simian rotavirus strains, and in addition, it had a deletion of one amino acid (residue 575). The amino acid homology of VP4 of strain K8 and those of other virulent human rotaviruses was only 60 to 70%. This was unusual, since over 90% VP4 homology has been found among the other virulent human rotavirus strains. In contrast, the VP7 amino acid sequence of the K8 strain was quite similar (over 98% homology) to those of other serotype 1 human rotaviruses. Thus, the K8 strain appears to have a unique VP4 gene previously not described.  相似文献   

19.
A prospective study was performed to determine the molecular characteristics of rotaviruses circulating among children aged <5 years in Bhutan. Stool samples were collected from February 2010 through January 2011 from children who attended two tertiary care hospitals in the capital Thimphu and the eastern regional headquarters, Mongar. The samples positive for rotavirus was mainly comprised genotype G1, followed by G12 and G9. The VP7 and VP4 genes of all genotypes clustered mainly with those of neighboring countries, thereby indicating that they shared common ancestral strains. The VP7 gene of Bhutanese G1 strains belonged to lineage 1c, which differed from the lineages of vaccine strains. Mutations were also identified in the VP7 gene of G1 strains, which may be responsible for neutralization escape strains. Furthermore, we found that lineage 4 of P[8] genotype differed antigenically from the vaccine strains, and mutations were identified in Bhutanese strains of lineage 3. The distribution of rotavirus genotypes varies among years, therefore further research is required to determine the distribution of rotavirus strain genotypes in Bhutan.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号