首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photochemistry of d(T-A) in aqueous solution and in ice.   总被引:8,自引:6,他引:2       下载免费PDF全文
When d(T-A) is irradiated at 254 nm in aqueous solution an internal photoadduct is formed between its constituent adenine and thymine bases. The resultant photoproduct, designated TA*, arises from a singlet excited state precursor; a similar photoreaction is not observed with d(C-A) or d(T-G). In contradistinction, irradiation of d(T-A) in frozen aqueous solution yields a dimeric photoproduct in which two d(T-A) molecules are coupled together by a (6-4) photoadduct linkage between their respective thymine bases. Both photoproducts have been extensively characterised by a combination of electron impact and fast atom bombardment mass spectrometry, UV, CD, 1H NMR and fluorescence spectroscopy. Acid treatment of TA* gives 6-methylimidazo[4,5-b]pyridin-5-one whose identity was established by an independent chemical synthesis involving photorearrangement of 6-methyl-imidazo[4,5-b]pyridine N(4)-oxide. A tentative mechanism is presented to account for the acid degradation of TA*. The structure of the dimeric ice photoproduct follows from its cleavage, by snake venom phosphodiesterase, to 5'-dAMP and the (6-4) bimolecular photoadduct of thymidine; on acid hydrolysis it gives adenine and 6-(5'-methyl-2'-oxopyrimidin-4'-yl) thymine.  相似文献   

2.
A high-resolution crystal structure is reported for d(TpA)*, the intramolecular thymine–adenine photoadduct that is produced by direct ultraviolet excitation of the dinucleoside monophosphate d(TpA). It confirms the presence of a central 1,3-diazacyclooctatriene ring linking the remnants of the T and A bases, as previously deduced from heteronuclear NMR measurements by Zhao et al. (The structure of d(TpA)*, the major photoproduct of thymidylyl-(3′-5′)-deoxyadenosine. Nucleic Acids Res., 1996, 24, 1554–1560). Within the crystal, the d(TpA)* molecules exist as zwitterions with a protonated amidine fragment of the eight-membered ring neutralizing the charge of the internucleotide phosphate monoanion. The absolute configuration at the original thymine C5 and C6 atoms is determined as 5S,6R. This is consistent with d(TpA)* arising by valence isomerization of a precursor cyclobutane photoproduct with cis–syn stereochemistry that is generated by [2 + 2] photoaddition of the thymine 5,6-double bond across the C6 and C5 positions of adenine. This mode of photoaddition should be favoured by the stacked conformation of adjacent T and A bases in B-form DNA. It is probable that the primary photoreaction is mechanistically analogous to pyrimidine dimerization despite having a much lower quantum yield.  相似文献   

3.
Ultraviolet irradiation of DNA results in various pyrimidine modifications. We have demonstrated formation of both cis-thymine hydrate and trans-thymine hydrate (6-hydroxy-5,6-dihydrothymine) in UV-irradiated poly(dA-dT):poly(dA-dT). Both are released from DNA as free bases by bacterial and human glycosylases. Thymine hydrates are stable in DNA and can be detected in control, unirradiated substrates. We examined the effects of thymine hydrates in UV-irradiated substrate poly(dA-dT):poly(dA-dT) on E. coli DNA polymerase I activity. Enzymic incorporation of labeled thymidine-5'-monophosphate significantly decreased with increasing UV dose. Reversal of DNA thymine hydrates to thymines by mild heating of the substrate prior to enzymic reaction resulted in partial recovery of nucleotide incorporation. Cyclobutane thymine dimers are formed between non-adjacent thymines in UV-irradiated poly(dA-dT):poly(dA-dT). These are responsible for the incomplete recovery of DNA polymerase activity following heating due to their heat stability. Analyses of the irradiated and hydrolyzed substrate also demonstrated formation of minor yields of photoproducts formed by covalent linkage of adjacent thymines and adenines by UV-irradiation. Therefore, the thymine hydrates formed in UV-irradiated DNA partially inhibit polymerase activity during DNA synthesis and thus could be potentially lethal if unrepaired.  相似文献   

4.
Pyrimidine hydrates are products of ultraviolet irradiation of DNA. We have already demonstrated the formation of both cis-thymine hydrate and trans-thymine hydrate (6-hydroxy-5,6-dihydrothymine) in irradiated poly(dA-dT):poly(dA-dT). These are released from DNA as free bases by bacterial or human glycosylases. Thymine hydrate stabilities were studied in irradiated DNA substrates using purified E. coli endonuclease III as a reagent for their removal. After irradiation, substrate poly(dA-dT):poly(dA-dT), radiolabeled in thymine, was incubated at 50, 60, 70 or 80 degrees C, cooled, and then reacted with the enzyme under standard conditions. Thymine hydrates were assayed by enzymic release of labeled material into the ethanol-soluble fraction. Their identities were confirmed by high performance liquid chromatography. The decay of thymine hydrates in heated DNA followed first-order kinetics with a k = 2.8 x 10(-5)/sec at 80 degrees C. These hydrates were also detected in lesser quantities in the unirradiated, control substrate. Extrapolation from an Arrhenius plot yields an estimated half-life of 33.3 hours at 37 degrees C for DNA thymine hydrates. Such stability, together with their formation in unirradiated DNA, suggest thymine hydrates to be formed under physiological conditions and to be sufficiently stable in DNA to be potentially genotoxic. This necessitates their constant removal from DNA by the excision-repair system.  相似文献   

5.
B Hartmann  M Leng  J Ramstein 《Biochemistry》1986,25(11):3073-3077
The deuteration rates of the poly(dA-dT).poly(dA-dT) amino and imino protons have been measured with stopped-flow spectrophotometry as a function of general and specific base catalyst concentration. Two proton exchange classes are found with time constants differing by a factor of 10 (4 and 0.4 s-1). The slower class represents the exchange of the adenine amino protons whereas the proton of the faster class has been assigned to the thymine imino proton. The exchange rates of these two classes of protons are independent of general and specific base catalyst concentration. This very characteristic behavior demonstrates that in our experimental conditions the exchange rates of the imino and amino protons in poly(dA-dT).poly(dA-dT) are limited by two different conformational fluctuations. We present a three-state exchange mechanism accounting for our experimental results.  相似文献   

6.
Ten DNA fragments containing self-complementary alternating sequences of adenine and thymine differing in length and the starting nucleotide were studied by c.d. spectroscopy. It was found that d(TATATATA) but not d(ATATATAT), d(TATATA), d(CTATATAG) or (dT-dA)20 isomerized into the unusual X-DNA double helix at molar concentrations of CsF in solution. But in contrast to poly(dA-dT), the octamer (dT-dA)4, isomerized very slowly, at relatively low CsF concentrations and the isomerization was strongly dependent on the octamer concentration. A model is proposed to account for the observed properties of the B-to-X isomerization on the oligomer level.  相似文献   

7.
A system has been developed to study the effects of base sequence (neighboring bases) upon the alkylation of guanine (G) and adenine (A) bases in DNA. The study was performed on the synthetic polydeoxyribonucleotides, poly(dG).poly(dC), poly(dG-dC).poly(dG-dC), poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), poly(dA-dC).poly(dG-dT), poly(dA-dG).poly(dC-dT), as well as calf thymus DNA. Each polynucleotide was treated with N-[3H]methyl-N-nitrosourea (MNU), depurinated, and the freed alkylpurines separated by HPLC and quantitated by liquid scintillation counting. The amounts of 3-methylguanine (3-MG), 7-MG, and O6-MG relative to guanine, and 3-methyladenine (3-MA) and 1-MA plus 7-MA relative to adenine, and also the O6-MG/7-MG ratios were highly reproducible for a given polynucleotide. Significant differences were found in the amounts of each of the methylpurines formed when compared among the six synthetic polynucleotides and DNA. This evidence is interpreted as an effect upon alkylation which is ultimately dependent upon the base sequence. These findings may have significance in defining the specificity of chemical carcinogens in terms of the susceptability to modification of nucleotide sequences such as those found in certain oncogenes.  相似文献   

8.
The study by resonance Raman spectroscopy with a 257 nm excitation wave-length of adenine in two single-stranded polynucleotides, poly rA and poly dA, and in three double-stranded polynucleotides, poly dA.poly dT, poly(dA-dT).poly(dA-dT) and poly rA.poly rU, allows one to characterize the A-genus conformation of polynucleotides containing adenine and thymine bases. The characteristic spectrum of the A-form of the adenine strand is observed, except small differences, for poly rA, poly rA.poly rU and poly dA.poly dT. Our results prove that it is the adenine strand which adopts the A-family conformation in poly dA.poly dT.  相似文献   

9.
The conformational changes of poly(dA-dT) from random coil to ordered structure with stacked bases produce important changes in the Raman line intensities (hypochromism) when the polymer is excited under the preresonance Raman conditions (λ excitation = 300 nm). Poly(dA-dT)–RNase and poly(dA-dT)–histone H1 interactions have been studied as models of mechanisms of destabilization and stabilization by proteins of the DNA secondary structure, respectively, following this intense preresonance Raman hypochromism. In addition, the specific variation of the intensity of the 1582-cm?1 line of adenine is interpreted in terms of the interaction of the amino group with the RNase (thus involving the large groove). In the poly(dA-dT)–H1 complex, the intensity of the 1665-cm?1 line of thymine increases. This increase appears to involve the C2?O group of thymine, located in the narrow groove.  相似文献   

10.
The temperature dependence of the Raman spectrum of poly(dA).poly(dT) (dA: deoxyadenosine; dT: thymidine), a model for DNA containing consecutive adenine.thymine (A.T) pairs, has been analyzed using a spectrometer of high spectral precision and sensitivity. Three temperature intervals are distinguished: (a) premelting (10 < t < 70 degrees C), in which the native double helix is structurally altered but not dissociated into single strands; (b) melting (70 < t < 80 degrees C), in which the duplex is dissociated into single strands; and (c) postmelting (80 < t degrees C), in which no significant structural change can be detected. The distinctive Raman difference signatures observed between 10 and 70 degrees C and between 70 and 80 degrees C are interpreted in terms of the structural changes specific to premelting and melting transitions, respectively. Premelting alters the low-temperature conformation of the deoxyribose-phosphate backbone and eliminates base hydrogen bonding that is distinct from canonical Watson-Crick hydrogen bonding; these premelting perturbations occur without disruption of base stacking. Conversely, melting eliminates canonical Watson-Crick pairing and base stacking. The results are compared with those reported previously on poly(dA-dT).poly(dA-dT), the DNA structure consisting of alternating A.T and T.A pairs (L. Movileanu, J. M. Benevides, and G. J. Thomas, Jr. Journal of Raman Spectroscopy, 1999, Vol. 30, pp. 637-649). Poly(dA).poly(dT) and poly(dA-dT).poly(dA-dT) exhibit strikingly dissimilar temperature-dependent Raman profiles prior to the onset of melting. However, the two duplexes exhibit very similar melting transitions, including the same Raman indicators of ruptured Watson-Crick pairing, base unstacking and collapse of backbone order. A detailed analysis of the data provides a comprehensive Raman assignment scheme for adenosine and thymidine residues of B-DNA, delineates Raman markers diagnostic of consecutive A.T and alternating A.T/T.A tracts of DNA, and identifies the distinct Raman difference signatures for premelting and melting transitions in the two types of sequences.  相似文献   

11.
The structures of poly(dA-dT), poly(dA-dBr5U) and of poly(dA).poly(dT) have been investigated in solution and in fibers, by Raman spectroscopy. Both the alternating poly(dA-dT), poly(dA-dBr5U) and non-alternating poly(dA).poly(dT) exhibit, in the region of sugar phosphate backbone vibrations, two bands of almost equal intensity at about 841 cm-1 and 817 cm-1. The analysis of the characteristic bands of thymine residues that are sensitive to sugar puckers gives indication of a significant displacement from the C(2')-endo conformer suggesting the adoption of alternative conformers such as O(4')-endo. In contrast, the diagnostic Raman bands for the sugar pucker of adenine residues suggest, instead, predominant adoption of C(2')-endo conformations. These Raman results are compatible with rapid dynamic changes of sugar puckers between C(2')-endo and O(4')-endo for the thymidine (and uridine) residues, whereas in adenine residues the sugar puckers fluctuate around the C(2')-endo pucker in all synthetic DNA molecules studied. Molecular dynamics simulations, performed on six different starting models using two distance-dependent dielectric functions epsilon(r) = 4 r and a sigmoidal dependence), all gave similar dynamic behavior in agreement with these Raman data and their interpretation. The mean calculated pseudorotation phases of the adenine residues are systematically higher (around C(2')-endo) than those of the thymine residues (close to O(4')-endo-C(1')-exo). Besides, the mean lifetimes of the thymine residues are 1.5 to 2.0-fold higher in the O(4')-endo than in the C(2')-endo domain, while those of the adenine residues are two to threefold higher in the C(2')-endo than in the O(4')-endo domain. In the Raman spectra of the alternating poly(dA-dBr5U), the splitting of a band into two components arising from the two contributions of ApBr5U and Br5UpA provides strong evidence for a repeating dinucleotide structure in solution. The calculated twist values averaged over the simulation runs are also systematically higher in the 5'T-A3' step (39 degrees) than in the 5'A-T3' step (33 degrees). Simultaneously, the calculated roll values are positive in the 5'T-A3' step (6 degrees) and negative in the 5'A-T3' step (-9 degrees), while the propeller twist values are about the same (-11 degrees to -16 degrees). On the other hand, in the homopolymer, the average twist value is close to 36 degrees with the roll angle close to 0 degrees and large propeller twist values (-20 degrees).  相似文献   

12.
N-Acetoxy-2-acetylaminofluorene (AcO-AAF) reacts with the alternating DNA-like polynucleotides poly(dC-dG) and poly(dA-dT) in vitro to give adducts of the guanine and adenine bases similar to those reported to be formed in DNA. A previously unobserved guanine adduct was detected in the poly(dC-dG). Using a double-labelled [U-14C-dG, 8-3H-G]-poly(dC-dG) we show that this adduct does not involve the 7- or 8-positions of the guanine. Similarly a thymine adduct of unknown structure was observed in poly(dA-dT). Modification of the polymers with AcO-AAF inhibits their capacity to act as templates for Escherichia coli DNA polymerase I and mammalian DNA polymerase alpha although the binding of the polymerases to the polynucleotides is unaffected. Such modification also leads to an increase in the levels of non-complementary nucleotides incorporated into newly synthesised DNA.  相似文献   

13.
O P Lamba  R Becka  G J Thomas 《Biopolymers》1990,29(10-11):1465-1477
Deuterium exchange of 8C protons of adenine and guanine in nucleic acids is conveniently monitored by laser Raman spectrophotometry, and the average exchange rate so determined [kA + kG] can be exploited as a dynamic probe of the secondary structure of DNA or RNA [J. M. Benevides and G. J. Thomas, Jr. (1985) Biopolymers 24, 667-682]. The present work describes a rapid Raman procedure, based upon optical multichannel analysis, which permits discrimination of the different 8CH exchange rates, kA of adenine and kG of guanine, in a single experimental protocol. For this procedure, simultaneous measurements are made of the intensity decay or frequency shift in separately resolved Raman bands of adenine and guanine, each of which is sensitive only to 8C deuteration of its respective purine. Resolution of the rates kA and kG is demonstrated for the mononucleotide mixtures, 5'-rAMP + 5'-rGMP and 5'-dAMP + 5'-dGMP, for the polynucleotides poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC), for calf thymus DNA, and for the 17 base-pair operator OR3. We show that the different exchange rates of adenine and guanine, in nucleotide mixtures and in DNA, may also be calculated independently from intensity decay of the composite 1481-cm-1 band, comprising overlapped adenine and guanine components, over a time domain that encompasses two distinct regimes: (1) a relatively more rapid exchange of guanine, and (2) a concurrent slower exchange of adenine. Both methods developed here yield consistent results. We find, first, that exchange of guanine is approximately twofold more rapid than that of adenine when both purines are present in the same structure and solvent environment, presumably a consequence of the greater basicity of the 7N site of guanine. Second, we find that adenine suffers greater retardation of exchange than guanine when both purines are incorporated into a "classical" B-DNA secondary structure, such as that of calf thymus DNA. This finding suggests different microenvironments at the 7N-8C loci of adenine and guanine in aqueous B-DNA. We also confirm that adenine residues of B-form poly(dA-dT).poly(dA-dT) exchange much more slowly than those of other B-DNA sequences, implying a secondary structure for the alternating-AT sequence with unusual stereochemistry in the major groove. The greater resistance of adenine than guanine to 8CH exchange in the B-DNA secondary structure is more evident in high molecular weight calf thymus DNA and in the alternating AT and GC copolymer duplexes than in the smaller 17 base-pair operator OR3.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
A comparative study on the intercalating binding of sanguinarine, chelerythrine, and nitidine with CT DNA, poly(dG-dC).poly(dG-dC), poly(dA-dT).poly(dA-dT), and seven sequence-designed double-stranded oligodeoxynucleotides has been performed using fluorometric and spectrophotometric techniques, aiming at providing insights into their sequence selectivity for DNA-binding. The results show that both sanguinarine and nitidine bind preferentially to DNA containing alternating GC base pairs [d(TGCGCA)(2)], while chelerythrine exhibits quite distinct sequence selectivity from sanguinarine, which shows a high specificity for DNA containing contiguous GC base pairs [5'-TGGGGA-3'/3'-ACCCCT-5'].  相似文献   

15.
Summary In photoreaction with the pyrimidine bases (thymine, cytosine, uracil) as well as with nucleic acids (DNA, RNA) a C4-cycloaddition of furocoumarins to the 5.6-double bond of pyrimidine bases takes place. The simple photoadduct furocoumarin-pyrimidine base can be split by reirradiation at wavelengths shorter than 334 nm. Reactivation of bacterial cells photodamaged by psoralen (365 nm) was tried experimentally. However, reirradiation at shorter wavelengths and with visible light of the psoralen-inactivated bacterial cells was without any effect. The inability of the shorter wavelengths to repair this photodamage was probably due to a filter effect of DNA for such wavelengths, as shown by experiments on a DNA-psoralen combination. On the other hand the observed ability of psoralen to form inter-strand cross-linkages in the photoreaction with DNA may be significant for explaining the absence of photoreactivation when the inactivated bacterial cells are irradiated with visible light.  相似文献   

16.
Using CD measurements the complex formation of Netropsin (Nt) with poly(dA-dC).poly(dT-dG) and its stability against high salt concentrations is compared with that of poly(dA).poly(dT) and poly(dA-dT).POLY(DT-dA). It is experimentally shown that the insertion of a dG.dC pair in dA.dT sequences strongly reduces the specific interaction of Nt with DNA duplexes. The specificity of the interaction is strongly increased by two or more consecutive thymine residues as present in thymine isostichs of double stranded DNA's.  相似文献   

17.
P A Mirau  D R Kearns 《Biopolymers》1985,24(4):711-724
1H-nmr relaxation has been used to study the effect of sequence and conformation on imino proton exchange in adenine–thymine (A · T) and adenine–uracil (A · U) containing DNA and RNA duplexes. At low temperature, relaxation is caused by dipolar interactions between the imino and the adenine amino and AH2 protons, and at higher temperature, by exchange with the solvent protons. Although room temperature exchange rates vary between 3 and 12s?1, the exchange activation energies (Eα) are insensitive to changes in the duplex sequence (alternating vs homopolymer duplexes), the conformation (B-form DNA vs A-form RNA), and the identity of the pyrimidine base (thymine vs uracil). The average value of the activation energy for the five duplexes studied, poly[d(A-T)], poly[d(A) · d(T)], poly[d(A-U)], Poly[d(A) · d(U)], and poly[r(A) · r(U)], was 16.8 ± 1.3 kcal/mol. In addition, we find that the average Eα for the A.T base pairs in a 43-base-pair restriction fragment is 16.4 ± 1.0 kcal/mol. This result is to be contrasted with the observation that the Eα of cytosine-containing duplexes depends on the sequence, conformation, and substituent groups on the purine and pyrimidine bases. Taken together, the data indicate that there is a common low-energy pathway for the escape of the thymine (uracil) imino protons from the double helix. The absolute values of the exchange rates in the simple sequence polymers are typically 3–10 times faster than in DNAs containing both A · T and G · C base pairs.  相似文献   

18.
The physical and biochemical properties of two pairs of synthetic DNA template-primers were investigated. The copolymer poly(dA-dU) . poly(dA-dU) and the homopolymer duplex poly(dA). poly(dU) were characterized by a lower Tm and by a higher buoyant density value than the respective thymine polynucleotides poly(dA-dT) . poly(dA-dT) and poly(dA) . poly(dT). The polymerizing and the primer terminus adding reactions of a homogenous E. coli DNA polymerase I preparation, as measured by incorporation of [3H]dAMP into the acid-insoluble fraction, were significantly poorer with uracil-containing template-primers than with thymine templates. Moreover, the uracil-containing polynucleotides inhibited the polymerizing activity of DNA polymerase I to a greater extent than the thymine polynucleotides, when the enzymatic activity was investigated with a dATP/dTTP/dUTP-free incorporation system making use of poly(dI-dC) . poly(dI-dC) as the template-primer.  相似文献   

19.
The study of pre-translational effects (ionization, tautomerization) and post-translational effects (methylation) of adenine and thymine has only recently been the focus of some studies. These effects can potentially help regulate gene expression as well as potentially disrupt normal gene function. Because of this wide array of roles, greater insight into these effects in deoxyribonucleic acids (DNA) are paramount. There has been considerable research of each phenomenon (tautomerization, methylation and ionization) individually. In this work, we attempt to shed light upon the pre-translational effects and post translational effects of adenine and thymine by investigating the electron affinities (EAs) and ionization potentials (IPs) of the major and minor tautomers and their methyl derivatives. We performed all calculations using the density functional theory (DFT) B3LYP functional accompanied with 6-311G(d,p), 6-311+G(d,p) and 6-311++G(df,pd) basis sets. Our results reveal that the thymine tautomer has a higher EA and IP than the adenine tautomers. The higher EA suggests that an electron that attaches to the AT base pair would predominately attach to the thymine instead of adenine. The higher IP would suggest that an electron that is removed from the AT base pair would be predominately removed from the adenine within the base pair. Understanding how tautomerization, ionization and methylation differences change effects, discourages, or promotes one another is lacking. In this work, we begin the steps of integrating these effects with one another, to gain a greater understanding of molecular changes in DNA bases.  相似文献   

20.
Differences in the circular dichroism of poly(dA-dT).poly(dA-dT) and poly(dA-dU).poly(dA-dU) and in its temperature induced changes are reported. A comparison to the data obtained with DNA and RNA indicates that an absence of thymine methyl groups in the polynucleotide results in promoting its RNA-like conformational properties. However, poly(dA-dU).poly(dA-dU) is not an A-DNA type of double helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号