首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Monoclonal antibodies catalyzing lysis of 4-nitrophenyl esters have been created using a phosphonate as hapten in the immunization. Among 960 hybridomas screened, 3 were found to produce antibodies catalyzing hydrolysis of 4-nitrophenyl butanoate (1). Two of the antibodies accelerate the reaction by factors of 1.3 × 104 and 1.1 × 104, respectively, while the third antibody is significantly less effective. The two catalytically most effective antibodies also catalyze perhydrolysis of 1, i.e., lysis with hydrogen peroxide, to generate peroxybutanoic acid. Perhydrolysis was found to be the predominant reaction even in dilute solutions of hydrogen peroxide. Both antibodies also catalyze hydrolysis of both 4-nitrophenyl hexanoate and decanoate, but do not catalyze hydrolysis of 4-nitrophenyl acetate. The antibodies are more selective with respect to the aromatic part of the substrate as they do not catalyze hydrolysis of 2-nitrophenyl butanoate or 4-sulfophenyl nonanoate. Furthermore, neither of the antibodies catalyze hydrolysis of pre-formed peroxybutanoic acid.  相似文献   

2.
A new approach for the elicitation of metal-dependent catalytic antibodies for ester hydrolysis is described. A coordinatively unsaturated mercury complex 1-(Hg), has been utilized as a hapten to elicit antibodies that incorporate mercury(II) as a Lewis acid cofactor. From a panel of monoclonal antibodies generated to 1-(Hg), antibody 38G2 was found to hydrolyze the ester 3 in the presence of HgCl(2) [K(m)app(3)=345 microM; K(m)app(Hg(2+))=87 microM; k(cat)app/k(uncat)=3 x 10(2)]. This is the first example of a biocatalyst that enlists mercuric ion as a cofactor and it is anticipated that this approach will open new avenues for exploitation of metals thought previously beyond the scope of protein catalysts.  相似文献   

3.
A kinetically homogeneous anti-phosphate catalytic antibody preparation was shown to catalyse the hydrolysis of a series of O-aryl N-methyl carbamates containing various substituents in the 4-position of the O-phenyl group. The specific nature of the antibody catalysis was demonstrated by the adherence of these reactions to the Michaelis-Menten equation, the complete inhibition by a hapten analogue, and the failure of the antibody to catalyse the hydrolysis of the 2-nitrophenyl analogue of the 4-nitrophenylcarbamate substrate. Hammett sigma-rho analysis suggests that both the non-catalysed and antibody-catalysed reactions proceed by mechanisms in which development of the aryloxyanion of the leaving group is well advanced in the transition state of the rate-determining step. This is probably the ElcB (elimination-addition) mechanism for the non-catalysed reaction, but for the antibody-catalysed reaction might be either ElcB or B(Ac)2 (addition-elimination), in which the elimination of the aryloxy group from the tetrahedral intermediate has become rate-determining. This result provides evidence of the dominance of recognition of phenolate ion character in the phosphate hapten in the elicitation process, and is discussed in connection with data from the literature that suggest a B(Ac)2 mechanism, with rate-determining formation of the tetrahedral intermediate for the hydrolysis of carbamate substrates catalysed by an antibody elicited by a phosphonamidate hapten in which phenolate anion character is minimized. The present paper contributes to the growing awareness that small differences in the structure of haptens can produce large differences in catalytic characteristics.  相似文献   

4.
The hydrolysis of 4-nitrophenyl acetate catalysed by cytoplasmic aldehyde dehydrogenase (EC 1.2.1.3) from sheep liver was studied by steady-state and transient kinetic techniques. NAD+ and NADH stimulated the steady-state rate of ester hydrolysis at concentrations expected on the basis of their Michaelis constants from the dehydrogenase reaction. At higher concentrations of the coenzymes, both NAD+ and NADH inhibited the reaction competitively with respect to 4-nitrophenyl acetate, with inhibition constants of 104 and 197 micron respectively. Propionaldehyde and chloral hydrate are competitive inhibitors of the esterase reaction. A burst in the production of 4-nitrophenoxide ion was observed, with a rate constant of 12 +/- 2s-1 and a burst amplitude that was 30% of that expected on the basis of the known NADH-binding site concentration. The rate-limiting step for the esterase reaction occurs after the formation of 4-nitrophenoxide ion. Arguments are presented for the existence of distinct ester- and aldehyde-binding sites.  相似文献   

5.
Androgen hydroxylation catalysed by Chinese hamster fibroblast SD1 cells, which stably express cytochrome P-450 form PB-4, the rat P450IIB1 gene product, was assessed and compared to that catalysed by purified cytochrome P-450 PB-4 isolated from rat liver. SD1 cell homogenates catalysed the NADPH-dependent hydroxylation of androstenedione and testosterone with a regioselectivity very similar to that purified by P-450 PB-4 (16 beta-hydroxylation/16 alpha-hydroxylation = 6.0-6.8 for androstenedione; 16 beta/16 alpha = 0.9 for testosterone). Homogenates prepared from the parental cell line V79, which does not express detectable levels of P-450 PB-4 or any other cytochrome P-450, exhibited no androgen 16 beta- or 16 alpha-hydroxylase activity. The hydroxylase activities catalysed by the SD1 cell homogenate were selectively and quantitatively inhibited (greater than 90%) by a monoclonal antibody to P-450 PB-4 at a level of antibody (40 pmol of antibody binding sites/mg of SD1 homogenate) that closely corresponds to the P-450 PB-4 content of the cells (48 pmol of PB-4/mg of SD1 homogenate). Fractionation of cell homogenates into cytosol and microsomes revealed that the P-450 PB-4-mediated activities are associated with the membrane fraction. Although the P-450 PB-4-specific content of the SD1 microsomes was 15% of that present in phenobarbital-induced rat liver microsomes, the P-450 PB-4-dependent androstenedione 16 beta-hydroxylase activity of the SD1 membrane fraction was only 2-3% of that present in the liver microsomes. This activity could be stimulated several-fold, however, by supplementation of SD1 microsomes with purified rat NADPH P-450 reductase. These studies establish that a single P-450 gene product (IIB1) can account for the hydroxylation of androgen substrates at multiple sites, and suggest that SD1 cells can be used to assess the catalytic specificity of P-450 PB-4 with other substrates as well.  相似文献   

6.
A polyvalent, lytic phage display system (T7Select415-1b) displaying a random peptide library has been investigated for its ability to discover novel mimotopes reactive with the therapeutic monoclonal antibody C595. Sequence analysis of enriched phage lead to the identification of a predominant sequence RNREAPRGKICS, and two other consensus sequences RXXP and RXP. The novel synthetic peptide RNREAPRGKICS was linked to beaded agarose and the performance as a mimotope affinity chromatography matrix evaluated. Antibody purified using the novel matrix was found to be of higher specific reactivity than antibody purified using the conventional epitope matrix (peptide APDTRPAPG). The RNREAPRGKICS peptide binding to C595 demonstrated a higher equilibrium association constant (K(A)=0.75 x 10(6)) than the epitope peptide (K(A)=0.16 x 10(6)). Circular dichroism showed that the novel peptide had a more highly ordered structure at 4 degrees C and room temperature, than the epitope peptide.  相似文献   

7.
This study is the first report on the effectiveness and specificity of glucopyranosylidene-spiro-thiohydantoin (G-TH) inhibitor on the 2-chloro-4-nitrophenyl-4-O-beta-D-galactopyranosyl-maltoside (GalG(2)CNP) hydrolysis catalysed by human salivary alpha-amylase (HSA). The inhibition of hydrolysis is a mixed-noncompetitive type. In any case, only one molecule of inhibitor binds to HSA. Since our substrate and inhibitor are small molecules the long enough active site facilitates accommodating both of them simultaneously. However, the product formation can be excluded from enzyme-substrate-inhibitor complex (ESI) since Dixon plots are linear. Kinetic constants calculated from secondary plots and nonlinear regression are almost entirely equal, confirming the fidelity of the suggested model. Kinetic constants (K(1i)=7.3mM, L(1i)=2.84 mM) show that G-TH is not such a potent inhibitor of HSA as acarbose and indicate higher stability for ESI than for enzyme-inhibitor complex.  相似文献   

8.
O-linked sugar chains with xylose as a reducing end linked to human urinary soluble thrombomodulin were studied. Sugar chains were liberated by hydrazinolysis followed by N-acetylation and tagged with 2-aminopyridine. Two fractions containing pyridylaminated Xyl as a reducing end were collected. Their structures were determined by partial acid hydrolysis, two-dimensional sugar mapping combined with exoglycosidase digestions, methylation analysis, mass spectrometry, and NMR as SO4-3GlcAbeta1-3Galbeta1-3(+/-Siaalpha2-6)Galbeta1+ ++-4Xyl. These sugar chains could bind to an HNK-1 monoclonal antibody. This is believed to be the first example of a proteoglycan linkage tetrasaccharide with glucuronic acid 3-sulfate and sialic acid.  相似文献   

9.
A steroid-sensitive aldehyde dehydrogenase (EC 1.2.1.3) was purified from rabbit liver and is homogeneous by the criterion of electrophoresis in polyacrylamide gels with or without sodium dodecyl sulphate. The enzyme is tetrameric, of subunit mo.wt. 48 300, and contains no tightly bound zinc. The fluorescence of the protein is decreased in the presence of progesterone, which is inhibitory to the reactions catalysed by the enzyme. When NADH is bound to the enzyme, the fluorescence of the coenzyme is augmented to an extent independent of the presence of steroids or acetaldehyde. The purified enzyme catalyses the oxidation of acetaldehyde and glucuronolactone, and the hydrolysis of 4-nitrophenyl acetate. Each of these reactions is inhibited by progesterone in such a manner as to suggest the formation of a catalytically active enzyme-hormone complex. Diethylstilboestrol inhibits the hydrolysis of esters by this enzyme, but stimulates the oxidation of aldehydes, except at low aldehyde concentrations; the ligand is then inhibitory. NADH inhibits the hydrolysis of 4-nitrophenyl acetate by the enzyme in a partially competitive fashion.  相似文献   

10.
The mouse hybridoma line B1-8.delta 1 secretes a monoclonal IgD, lambda 1 anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibody with defined idiotypic determinants. Two spontaneous V-region variants (B1-8.V1/V2) with altered idiotope pattern were selected and the structural variation was located to the variable region of the heavy chain. The amino acid sequences of the B1-8. delta 1 and variant heavy chain V regions were determined. The variant VH regions are identical. Wild-type and variant VH regions differ in 10 positions. Single amino acid exchanges are found in the first and second framework at positions 20 and 43. The majority of replacements (eight substitutions) is clustered in the second complementary-determining region (CDR 2). There are no differences in CDR 1 and CRD 3 and the JH region. The variant, which at first glance appears to have undergone a series of point mutations, arose by recombination, possibly gene conversion, between the rearranged VDJ gene of the wild-type (B1-8.delta 1) and a neighbouring germ line VH gene encoding all of the substitutions.  相似文献   

11.
We report three experiments which show that the hydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine skeletal muscle occurs at a site on the enzyme different than the active site for CO2 hydration. This is in contrast with isozymes I and II of carbonic anhydrase for which the sites of 4-nitrophenyl acetate hydrolysis and CO2 hydration are the same. The pH profile of kcat/Km for hydrolysis of 4-nitrophenyl acetate was roughly described by the ionization of a group with pKa 6.5, whereas kcat/Km for CO2 hydration catalyzed by isozyme III was independent of pH in the range of pH 6.0-8.5. The apoenzyme of carbonic anhydrase III, which is inactive in the catalytic hydration of CO2, was found to be as active in the hydrolysis of 4-nitrophenyl acetate as native isozyme III. Concentrations of N-3 and OCN- and the sulfonamides methazolamide and chlorzolamide which inhibited CO2 hydration did not affect catalytic hydrolysis of 4-nitrophenyl acetate by carbonic anhydrase III.  相似文献   

12.
Hybridoma cell lines secreting antibodies for vitamin D3 metabolites have been generated by fusing splenocytes from BALB/c mice immunized with 3 beta-glutaryl-25-hydroxyvitamin D3 conjugated to bovine serum albumin (3 beta-glu-25-OH-D3-BSA) and Sp2/O-Ag14 myeloma cells. Purification of monoclonal antibodies from culture media or ascites fluids was accomplished by procedures including affinity chromatography on Protein A-Sepharose 4B. Each monoclonal antibody was analyzed as to its affinity and specificity by equilibrium dialysis and an enzyme immunoassay (EIA) based on a double antibody system. It was demonstrated that clone 1C2-60 produced an antibody highly specific to 1 alpha,25-dihydroxyvitamin D3 (calcitriol), and the clone 2B3-66 antibody was reactive to 25-hydroxyvitamin D3 and similar structural compounds. These two monoclonal antibodies produced by 1C2-60 and 2B3-66 were determined to belong to the IgG2a class, and their affinity constants (Ka) with 3 beta-glu-25-OH-D3 were demonstrated to be 3.6 X 10(9) M-1 and 2.9 X 10(9) M-1, respectively, at 4 degrees C. The characteristics of these monoclonal antibodies were compared with those of conventional antibodies raised in mice and rabbits. Finally, by using monoclonal antibody 1C2-60, a sensitive EIA has been developed that can detect 10 pg of calcitriol.  相似文献   

13.
1. N-Benzoyl-l-serine methyl ester was synthesized and evaluated as a substrate for bromelain (EC 3.4.22.4) and for papain (EC 3.4.22.2). 2. For the bromelain-catalysed hydrolysis at pH7.0, plots of [S(0)]/v(i) (initial substrate concn./initial velocity) versus [S(0)] are markedly curved, concave downwards. 3. Analysis by lattice nomography of a modifier kinetic mechanism in which the modifier is substrate reveals that concave-down [S(0)]/v(i) versus [S(0)] plots can arise when the ratio of the rate constants that characterize the breakdown of the binary (ES) and ternary (SES) complexes is either less than or greater than 1. In the latter case, there are severe restrictions on the values that may be taken by the ratio of the dissociation constants of the productive and non-productive binary complexes. 4. Concave-down [S(0)]/v(i) versus [S(0)] plots cannot arise from compulsory substrate activation. 5. Computational methods, based on function minimization, for determination of the apparent parameters that characterize a non-compulsory substrate-activated catalysis are described. 6. In an attempt to interpret the catalysis by bromelain of the hydrolysis of N-benzoyl-l-serine methyl ester in terms of substrate activation, the general substrate-activation model was simplified to one in which only one binary ES complex (that which gives rise directly to products) can form. 7. In terms of this model, the bromelain-catalysed hydrolysis of N-benzoyl-l-serine methyl ester at pH7.0, I=0.1 and 25 degrees C is characterized by K(m) (1) (the dissociation constant of ES)=1.22+/-0.73mm, k (the rate constant for the breakdown of ES to E+products, P)=1.57x10(-2)+/-0.32x10(-2)s(-1), K(a) (2) (the dissociation constant that characterizes the breakdown of SES to ES and S)=0.38+/-0.06m, and k' (the rate constant for the breakdown of SES to E+P+S)=0.45+/-0.04s(-1). 8. These parameters are compared with those in the literature that characterize the bromelain-catalysed hydrolysis of alpha-N-benzoyl-l-arginine ethyl ester and of alpha-N-benzoyl-l-arginine amide; K(m) (1) and k for the serine ester hydrolysis are somewhat similar to K(m) and k(cat.) for the arginine amide hydrolysis and K(as) and k' for the serine ester hydrolysis are somewhat similar to K(m) and k(cat.) for the arginine ester hydrolysis. 9. A previous interpretation of the inter-relationships of the values of k(cat.) and K(m) for the bromelain-catalysed hydrolysis of the arginine ester and amide substrates is discussed critically and an alternative interpretation involving substantial non-productive binding of the arginine amide substrate to bromelain is suggested. 10. The parameters for the bromelain-catalysed hydrolysis of the serine ester substrate are tentatively interpreted in terms of non-productive binding in the binary complex and a decrease of this type of binding by ternary complex-formation. 11. The Michaelis parameters for the papain-catalysed hydrolysis of the serine ester substrate (K(m)=52+/-4mm, k(cat.)=2.80+/-0.1s(-1) at pH7.0, I=0.1, 25.0 degrees C) are similar to those for the papain-catalysed hydrolysis of methyl hippurate. 12. Urea and guanidine hydrochloride at concentrations of 1m have only small effects on the kinetic parameters for the hydrolysis of the serine ester substrate catalysed by bromelain and by papain.  相似文献   

14.
This report described that a hapten of racemic phosphonate 3 designed as the mimic of the transition state of hydrolysis of naproxen ethyl ester was successfully synthesized from easily available 2-acetyl-6-methoxy-naphthalene 5. Then BALB/C mice were immunized and one of the monoclonal catalytic antibodies, N116-27, which enantioselectively accelerated the hydrolysis of the R-(-)-naproxen ethyl ester was given. The Michaelis-Menton parameter for the catalyzed reaction was K(M)=6.67 mM and k(cat)/k(uncat)=5.8 x 10(4). This enantioselective result was explained by the fact that the R-isomer of rac-hapten was more immunogenic than the S-isomer.  相似文献   

15.
Aggrecanase activities of ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteinases were measured with a recombinant aggrecan fragment and two monoclonal antibodies. Recombinant human aggrecan interglobular domain was first incubated in the presence of ADAMTS enzymes. The aggrecan peptide with the N-terminal sequence ARGSVIL released upon hydrolysis was then quantified in an enzyme-linked immunosorbent assay (ELISA) with an anti-neoepitope antibody specific for the N-terminal ARGSVIL sequence and a second anti-aggrecan peptide antibody. For higher sensitivity of the assay, P1-P5 residues of the aggrecanase site within the aggrecan substrate were changed by in vitro mutagenesis. Specific activities of recombinant truncated ADAMTS1 and ADAMTS4 estimated with authentic aggrecan interglobular domain amounted to 2.4 +/- 0.4 and 21.7 +/- 9.5 nmoles hydrolyzed substrate/min.mg, respectively. The values were 10.3 +/- 5.1 and 151.5 +/- 93.5 nmoles/min.mg for hydrolysis of the modified substrate. The aggrecanase activity assay can be used for (1) kinetic characterization of aggrecanase activities of human and animal ADAMTS, (2) screening of inhibitors for aggrecan hydrolyzing ADAMTS, and (3) estimation of aggrecanase activities in biological samples.  相似文献   

16.
Monoclonal antibodies against alpha toxin of Clostridium perfringens   总被引:9,自引:0,他引:9  
Ten distinct monoclonal antibodies (MAbs) against alpha toxin of Clostridium perfringens were produced by the fusion of SP2/O with spleen cells of mice immunized with alpha toxoid, and alpha toxin mixed with or without ethylenediamine-tetraacetate (EDTA). The antibody activity was evaluated by antigen-binding activity in an enzyme linked immunosorbent assay (ELISA), by phospholipase C (PLC)-neutralizing activity using both egg yolk lecithin and p-nitrophenylphosphoryl-choline (PNPPC) hydrolysis reactions and by anti-lethal activity in mice. Since the toxin-neutralizing activities of each MAb were not parallel, it has been suggested that the three biological activities may not be located in the same site in the toxin molecule. This report also describes the development of a simple purification of the toxin by affinity chromatography and a sensitive immunoassay for quantitation of the toxin using the monoclonal antibody.  相似文献   

17.
Acylation of the aldehyde dehydrogenase.NADH complex by acetic anhydride leads to the production of acetaldehyde and NAD+. By monitoring changes in nucleotide fluorescence, the rate constant for acylation of the active site of the *enzyme.NADH complex was found to be 11 +/- 3 s-1. The rate of acylation by acetic anhydride at the group that binds aldehydes on the oxidative pathway is clearly rapid enough to maintain significant steady-state concentrations of the required active-site-acylated *enzyme.NADH intermediate despite the rapid hydrolysis of this *enzyme.acyl.NADH intermediate (5-10 s-1) [Blackwell, Motion, MacGibbon, Hardman & Buckley (1987) Biochem. J. 242, 803-808]. Hence reversal of the normal oxidative pathway can occur. However, although acylation of the aldehyde dehydrogenase.NADH complex by 4-nitrophenyl acetate also occurs rapidly with a rate constant of 10.9 +/- 0.6 s-1, even under the most extreme trapping conditions only very small amounts of acetaldehyde are detected [Loomes & Kitson (1986) Biochem. J. 235, 617-619]. Furthermore enzyme-catalysed hydrolysis of 4-nitrophenyl acetate is limited by the rate of deacylation of a group on the enzyme (0.4 s-1), which is an order of magnitude less than deacylation of the group at the active site (5-10 s-1). It is concluded that the enzyme-catalysed 4-nitrophenyl ester hydrolysis involves a group on the enzyme that is different from the active-site group that binds aldehydes on the normal oxidative pathway.  相似文献   

18.
Endo-β-1,4-xylanase I previously purified from Thermoascus aurantiacus solid state culture was further characterized. The enzyme had a molecular weight of 33 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and 31 kDa by gel filtration. Thin layer chromatography (TLC) analysis showed that endoxylanase liberates aldotetrauronic acid MeGlcA-1,2-Xylβ-1,4-Xylβ-1,4-Xyl as the shortest acidic fragment from glucuronoxylan and an isomeric xylotriose (Xyl3) of the structure Xylβ1-3Xylβ1-4Xyl from rhodymenan. The enzyme performed ideally on O-acetyl-4-O-methylglucuronoxylan, liberating large amounts of short acetylated and non-acetylated fragments. Also, the enzyme was capable to hydrolyse arabinoxylan to arabinose (Arab), xylose (Xyl) and xylobiose (Xyl2). The enzyme degraded pNPX (4-nitrophenyl β- -xylopyranoside) by a complex reaction pathway that involved both hydrolysis and glycosyl transfer reactions. The enzyme tolerates the replacement of β-xylopyranosyl units in several artificial substrates by β-glucopyranosyl, - -arabinopyranosyl and - -arabinofuranosyl units and was active on pNPC (4-nitrophenyl β- -cellobioside), pNP-Arap (4-nitrophenyl - -arabinopyranoside) and pNPAraf (4-nitrophenyl - -arabinofuranoside). The enzyme also hydrolysed the 4-methylumbelliferyl glycosides of β- -xylobiose and β- -xylotriose at the agluconic linkage. The results suggested that the xylanase I from T. aurantiacus has catalytic properties similar to those belonging to family 10.  相似文献   

19.
Mice were immunized with a neoglycoprotein consisting of a chemically modified carbohydrate moiety (reductively aminated 3-sialyllactose) linked to human serum albumin. By this procedure an antibody response to the normally non-immunogenic carbohydrate structure was obtained. Hybridomas were established, and monoclonal antibodies were selected in ELISA based on their binding to the saccharide hapten, or to a lactosylceramide-mimicking neoglycolipid, lactose-bis-sulfone. One of the selected antibodies, 2H4, was of particular interest, since it also bound to glycolipids present on melanoma cells. FACS analysis of a panel of 14 melanoma cell lines showed that the 2H4 antibody bound to the majority of these. In frozen, non-fixed sections or paraffin sections of biopsies the monoclonal antibody 2H4 stained melanoma cells, but not tumour infiltrating lymphocytes or normal skin. Detailed immunochemical analysis of 2H4, using thin layer chromatography revealed that it recognized an internal lactose epitope in several glycosphingolipids.Abbreviations BSA bovine serum albumin - FACS fluorescence activated cell sorter - ELISA enzyme-linked immunosorbent assay - HSA human serum albumin - LacCer lactosylceramide - MAb monoclonal antibody - PBS phosphate buffered saline  相似文献   

20.
Rates of hydrolysis of 4-, 3-, and 2-nitrophenyl acetate and 4-nitrophenyl propionate catalyzed by wild-type and mutant forms of human carbonic anhydrase II have been measured. The results show that the mutations Tyr7-->Phe and Ala65-->Leu lead to activity enhancements with all the investigated substrates, but there is no significant effect on the specificity. In contrast, some mutations at sequence position 200 have large effects on specificity. For example, while the mutation Thr200-->Gly results in a threefold increase of the rate of hydrolysis of 4-nitrophenyl acetate, the activity is enhanced 10 times with the meta-substituted substrate and 380 times with the ortho-substituted substrate. These results are interpreted in terms of the removal in the mutant of a steric interference between the 2-NO2 group, in particular, and the side chain of Thr200. Mutants involving residues lining a hydrophobic pocket near the catalytically essential zinc ion have also been investigated. The most pronounced effect on specificity was found for the Val143-->Gly mutant. This mutation leads to a sixfold decrease of the rate of hydrolysis of 4-nitrophenyl acetate but a 20-fold increase of the activity with the propionyl ester as substrate. These results suggest that the side chain of Val143 interferes sterically with the acyl moiety of 4-nitrophenyl propionate. Based on these results, we have constructed a hypothetical model of the location of these ester substrates in the enzymic active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号