共查询到20条相似文献,搜索用时 0 毫秒
1.
Metabolism of the potent hepatocarcinogen N-nitrosodimethylamine (NDMA) was evaluated in reconstituted monooxygenase systems containing each of 11 purified rat hepatic cytochrome P-450 isozymes. The reaction has an absolute requirement for cytochrome P-450, NADPH-cytochrome P-450 reductase, and NADPH, as well as a partial dependence on dilauroylphosphatidylcholine. Of the cytochrome P-450 isozymes evaluated, only cytochrome P-450j, purified from livers of ethanol- or isoniazid-treated rats, had high catalytic activity for the N-demethylation of NDMA. At substrate concentrations of 0.5 and 5 mM, rates of NDMA metabolism to formaldehyde catalyzed by cytochrome P-450j were at least 15-fold greater than the rates obtained with any of the other purified isozymes. At the pH optimum (approximately 6.7) for the reaction, the Km,app and Vmax were 3.5 mM and 23.9 nmol/min/nmol cytochrome P-450j, respectively. With hepatic microsomes from ethanol-treated rats, which contain induced levels of cytochrome P-450j, the Km,app and Vmax were 0.35 mM and 3.9 nmol/min/nmol cytochrome P-450, respectively. Inclusion of purified cytochrome b5 in the reconstituted system containing cytochrome P-450j caused a six-fold decrease in Km,app (0.56 mM) of NDMA demethylation with little or no change in Vmax (29.9 nmol/min/nmol cytochrome P-450j). Trypsin-solubilized cytochrome b5, bovine serum albumin, or hemoglobin had no effect on the kinetic parameters of the reconstituted system, indicating a specific effect of intact cytochrome b5 on the Km,app of the reaction. These results demonstrate high isozyme specificity in the metabolism of NDMA to an ultimate carcinogen and further suggest an important role for cytochrome b5 in this biotransformation process. 相似文献
2.
K A Holm D R Koop M J Coon A D Theoharides D Kupfer 《Archives of biochemistry and biophysics》1985,243(1):135-143
Incubation of prostaglandin E1 (PGE1) with liver microsomes from control rabbits and from rabbits treated with ethanol or imidazole yielded 18-, 19-, and 20-hydroxy metabolites, representing hydroxylation at omega-2, omega-1, and omega carbons, respectively. The current investigation demonstrates that rabbit liver P-450 isozyme 6 effectively catalyzes the omega-1 and omega-2 hydroxylation of PGE1 and PGE2. Additionally, a small amount of product with chromatographic characteristics of the corresponding 20-hydroxy metabolite has been detected. The incorporation of cytochrome b5 into the reconstituted system did not enhance the rate of PGE1 hydroxylation and had no effect on the ratio of products formed. The Km value for the omega-1 and omega-2 hydroxylation of PGE1 with P-450 isozyme 6 from imidazole-treated rabbits was approximately 140 microM; the Vmax's (nmol product min-1 nmol P-450-1) were 2.1 and 1.1 for the omega-1 and omega-2 hydroxylations, respectively. These rates represent the highest activities by hepatic P-450 isozymes for hydroxylation of PGs, and suggest that isozyme 6 is responsible for the omega-2 hydroxylation of PGEs observed in rabbit liver microsomes. 相似文献
3.
Purification and characterization of hepatic microsomal prostaglandin omega-hydroxylase cytochrome P-450 from pregnant rabbits 总被引:1,自引:0,他引:1
Y Kikuta E Kusunose S Matsubara Y Funae S Imaoka I Kubota M Kusunose 《Journal of biochemistry》1989,106(3):468-473
Prostaglandin omega-hydroxylase, designated as cytochrome P-450 LPG omega (P-450 LPG omega), has been purified, to a specific content of 15 nmol of cytochrome P-450/mg of protein, from liver microsomes of pregnant rabbits. The purified P-450 LPG omega was found to be homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and to have an apparent molecular weight of 52,000. The enzyme showed a maximum at 450 nm in the carbon monoxide (CO)-difference spectrum for its reduced form. This cytochrome P-450 efficiently catalyzed the omega-hydroxylation of prostaglandin E1 (PGE1), prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), prostaglandin F2 alpha (PGF 2 alpha), prostaglandin A1 (PGA1), and prostaglandin A2 (PGA2), as well as the omega- and (omega-1)-hydroxylation of myristate and palmitate, in a reconstituted system containing cytochrome P-450, NADPH-cytochrome P-450 reductase, phospholipid, and cytochrome b5. Various monovalent and divalent cations further stimulated these reactions in the presence of cytochrome b5. In addition, the reactions were also markedly enhanced by various organic solvents, such as ethanol and acetone. This cytochrome P-450 showed no detectable activity toward several xenobiotics tested. P-450 LPG omega was very similar or identical to the pulmonary prostaglandin omega-hydroxylase (P-450p-2) (Yamamoto, S., Kusunose, E., Ogita, K., Kaku, M., Ichihara, K., & Kusunose, M. (1984) J. Biochem. 96, 593-603) in its molecular weight, absorption spectra, catalytic activity, peptide mapping pattern, and N-terminal amino acid sequence. However, P-450 LPG omega was more unstable than P-450p-2 on storage. In sharp contrast to P-450p-2, P-450 LPG omega was not induced by progesterone. 相似文献
4.
Eleanor Canova-Davis Lucy Waskell 《Biochemical and biophysical research communications》1982,108(3):1264-1270
We report the existence of a microsomal, heat-stable, trypsin-sensitive factor that stimulates the O-demethylation of methoxyflurane (CHCl2CF2OCH3) by partially purified preparations of rabbit hepatic cytochrome P-450. The factor is able to stimulate by five to twelve-fold the methoxyflurane metabolizing activity of cytochrome P-450. In contrast, the metabolism of benzphetamine is not affected by the presence of the factor. The factor is inactivated by extraction with methanol, chloroform, butanol and ethanol. It remains intact after treatment with 6M guanidine hydrochloride and is soluble in trifluoroethanol. Thus, the weight of evidence indicates that this factor is a rather hydrophobic protein. 相似文献
5.
H Sakai S S Park Y Kikkawa 《Biochemical and biophysical research communications》1992,187(3):1262-1269
Phenobarbital, 3-methylcholanthrene, acetone and pyrazole were used as inducers of cytochrome P450 and the NADPH-dependent oxidase activity (O-2 production) of pulmonary and hepatic microsomes was determined. Oxidase activity of microsomes from 3-methylcholanthrene-treated rats was significantly decreased as compared to that of controls when expressed on the basis of cytochrome P450 content (30% decrease for liver, 60% decrease for lung). The oxidase activity of liver microsomes from pyrazole-treated rats showed a significant increase, whereas phenobarbital treated microsomes had average superoxide-generating activity. The contribution of cytochromes CYP 1A, CYP 2B and CYP 2E1 to superoxide-generating activity was investigated using monoclonal antibodies. Monoclonal antibody 1-91-3 against CYP 2E1 inhibited superoxide generation by 58% in liver microsomes from pyrazole-treated rats. Monoclonal antibodies 1-7-1 and 2-66-3 against CYP 1A and CYP2B, respectively, had no effect on superoxide generation. These results indicate that different cytochrome P450 isoforms are mainly responsible for differential superoxide generating activities of microsomes and complement the reconstitution study of Morehouse and Aust. Furthermore, our study indicates that CYP 1A1, induced by 3-MC, demonstrates an unusually low oxidase activity. 相似文献
6.
Kathryn S. Prickett Thomas A. Baillie 《Biochemical and biophysical research communications》1984,122(3):1166-1173
Incubation of valproic acid with rat liver microsomes led to the formation of 3-, 4- and 5-hydroxy-valproic acid. The latter two metabolites, which have been characterized previously from in vivo studies, may be regarded as products of fatty acid ω-1 and ω hydroxylation, respectively. 3-Hydroxy-valproic acid, however, had been thought to derive from the β-oxidation pathway in mitochondria. Conversion of valproic acid to all three metabolites in microsomes required NADPH (NADH was less effective), utilized molecular oxygen, was suppressed by inhibitors of cytochrome P-450 and was stimulated (notably at C-3 and C-4) by phenobarbital pretreatment of the rats. It is concluded that rat liver microsomal cytochrome P-450 catalyzes ω-2 hydroxylation of valproic acid, a reaction not detected previously with fatty acids in mammalian systems, and that the product, 3-hydroxyvalproic acid, should not be used to assess in vivo metabolism of valproate via the β-oxidation pathway. 相似文献
7.
The content of cytochrome P-450, isozyme 6, in the rabbit pulmonary microsomal fraction was estimated by immunochemical methods to be 1 to 3% of the total cytochrome P-450. Following treatment of rabbits with 2,3,7,8-tetrachlorodibenzo-p-dioxin, the pulmonary microsomal concentration of isozyme 6 increased 16-fold. Isozyme 6 was also detected by immunochemical methods, but not by electrophoresis and staining for protein, in preparations of isozyme 5 isolated from the pulmonary microsomal fraction of untreated rabbits. The metabolism of benzo[a]pyrene in these preparations was found to be catalyzed by isozyme 6, not by isozyme 5 as previously concluded. Cytochrome P-450, isozyme 4, was not detected in the pulmonary microsomal fraction from untreated or 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated rabbits. Although benzo[a]pyrene and 7-ethoxyresorufin are both substrates for isozyme 6, the pulmonary microsomal metabolism of these compounds was not increased to the same extent by treatment of rabbits with 2,3,7,8-tetrachlorodibenzo-p-dioxin (about 13-fold for 7-ethoxyresorufin and less than 2-fold for BP). However, lack of agreement between increases in isozyme 6 content and activity, and between the relative increases of the activities with the two substrates, was overcome by the addition of purified NADPH-cytochrome P-450 reductase to the microsomal incubations. When alpha-naphthoflavone, at the minimum concentration required for greater than 90% inhibition of isozyme 6 catalysis, was present in the incubations, no increases in activity were obtained by the addition of purified reductase. The turnover numbers of isozyme 6 in microsomal preparations incubated with purified reductase were similar to those of the purified isozyme in a reconstituted monooxygenase system. The relevance of our results to determinations of the substrate specificities and the microsomal concentrations and activities of isozymes of cytochrome P-450 is discussed. In addition, these parameters are used to assess the extent to which the catalytic potential of isozyme 6 is expressed in the rabbit pulmonary microsomal fraction. 相似文献
8.
D R Dutton S K McMillen A J Sonderfan P E Thomas A Parkinson 《Archives of biochemistry and biophysics》1987,255(2):316-328
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone. 相似文献
9.
10.
D Kupfer 《Life sciences》1974,15(4):657-670
The spectral changes associated with the addition of prostaglandins (PGs) to hepatic microsomes from guinea pigs and rats were examined. PGA1, PGA2, PGE1, PGE2, PGF1α and PGF2α when added to guinea pig liver microsomes exhibited type I spectra. The binding affinities as determined from spectral dissociation constants (Ks) were highest with PGA1 and PGA2. With liver microsomes from control or 3-methyl-cholanthrene (MC)-treated rats, PGs did not yield type I spectra; however, in this case a spectrum, designated here as type “II” was at times observed, With microsomes from phenobarbital (Pb)-treated rats only PGA1 and PGA2 yielded type I spectra; again in absence of type I spectrum, a weak type “II” was occasionally observed. The addition of PGA1 and PGA2 to liver microsomes from Pb-treated rats inhibited the microcomal mediated hydroxylation of hexobarbital. The inhibition by PGA1 was competitive; the Ki = 8.2 × 10?4 M was found to be similar in magnitude to the Ks = 7.3 × 10?4 M of PGA1 observed with rat liver microsomes. These observations suggested that PGs particularly of the A series interact with the hepatic microsomal cytochrome P-450 monooxygenase system. 相似文献
11.
Addition of -nitroanisole to a reaction mixture containing phenobarbital-pretreated rabbit liver microsomes brings about an increase the reoxidation rate of NADH-reduced cytochrome b5. Addition of partially purified cytochrome b5 to a solution containing microsomes results in a marked increase in both NADH- and NADPH-dependent O-demethylation of -nitroanisole. -Nitroanisole also increases the rate of NADH mediated cytochrome P-450 reduction. From these and other results described in the Discussion section, we confirm that electrons required for NADH-dependent O-demethylation of -nitroanisole is transfered from NADH to cytochrome P-450 via cytochrome b5 and that cytochrome P-450 is the enzyme which catalyzes -nitroanisole O-demethylation. 相似文献
12.
Leukotriene B4 metabolism by hepatic cytochrome P-450 总被引:2,自引:0,他引:2
Bernhard Bösterling James R. Trudell 《Biochemical and biophysical research communications》1983,114(2):850-854
Leukotriene B4 (LTB) was found to be metabolized by suspensions of rat liver microsomes in the presence of NADPH and oxygen. The rate of LTB metabolism was also measured in reconstituted systems of both micelles and phospholipid vesicles containing cytochrome P-450-LM2, NADPH cytochrome P-450 reductase, and cytochrome b5. A 1 microM concentration of LTB was metabolized by rat hepatic microsomes at a rate of 4 pmol LTB/min/nmole P-450, and by vesicle and micelle reconstituted systems at 3 pmole/min/nmole P-450-LM2. At this rate a 10 g rat liver exposed to 1 microM LTB can metabolize 30 micrograms per hour. In that the leukotrienes are pharmacologically active at nanomolar concentrations, hepatic metabolism may be an important pathway of leukotriene inactivation. 相似文献
13.
The basis for our previous observations [Kaminsky, L.S., Guengerich, F.P., Dannan, G.A. & Aust, S.D. (1983) Arch. Biochem. Biophys. 225, 398-404] that rates of microsomal metabolism of warfarin were markedly less than the sum of rates of the reconstituted constituent isozymes of cytochrome P-450 has been investigated. Metabolism of warfarin to 4'-, 6-, 7-, 8-, and 10-hydroxywarfarin and dehydrowarfarin by highly purified rat liver cytochrome P-450 (P-450) isozymes reconstituted with NADPH-cytochrome P-450 reductase and by hepatic microsomes from variously pretreated rats was used to probe functional consequences of P-450 isozyme/isozyme interactions and of the effect of microsomal reductase concentrations. Binary mixtures of P-450 isozymes were reconstituted and the regioselectivity and stereoselectivity were used to probe metabolism by each individual isozyme. The isozymes specifically inhibited each other to variable extents and the order of inhibitory potency was: P-450UT-F greater than P-450PB-D greater than or equal to P-450UT-A greater than or equal to P-450BNF/ISF-G greater than P-450PB/PCN-E greater than P-450PB-B greater than or equal to P-450PB-C greater than or equal to P-450BNF-B. The inhibition, possibly a consequence of aggregation, explains the low rate of microsomal metabolism relative to the metabolic potential of the component P-450 isozymes. When purified reductase was added to microsomes it appeared to bind to microsomes at different sites from endogenous reductase and it enhanced warfarin hydroxylase activity only to a minor extent, thus possibly precluding low reductase concentrations from being a major factor in the relatively low rates of microsomal metabolism. Antibody to the reductase differentially inhibited microsomal metabolism of warfarin by the various P-450 isozymes. The results suggest that the reductase and P-450 isozymes may be located differently relative to one another in the various microsomal preparations. 相似文献
14.
P Hildebrandt H Garda A Stier G I Bachmanova I P Kanaeva A I Archakov 《European journal of biochemistry》1989,186(1-2):383-388
The effects of protein-protein interactions and substrate binding on the structure of the active site of rabbit liver microsomal cytochrome P-450 LM2 have been analyzed by resonance Raman spectroscopy of the monomeric and oligomeric protein in solution. Also H2O2-dependent catalytic activities of the two states have been compared. The two vinyl substituents of the heme exhibit different orientations, as indicated by the frequencies and intensities of their stretching vibrations. One group lies in the plane of the heme and remains unchanged in the two states of cytochrome P-450 LM2, the other is tilted out of the plane. The tilting angle in oligomers was smaller than in monomers. These vinyl stretching modes together with some porphyrin modes, were found to be sensitive indicators of the quaternary structure and of substrate binding. In both the oligomer and the monomer, substrate binding causes changes of the relative intensities of some porphyrin modes and the vinyl stretching vibrations which may reflect modifications of the electronic transitions due to hydrophobic interactions between the bound substrate and the heme. In contrast to the monomeric cytochrome P-450 LM2, benzphetamine binding to the oligomers of this isozyme additionally produces a shift of the spin-state equilibrium. This indicates that in the oligomer the substrate-binding pocket is converted by protein-protein interaction to a structure that forces substrates to interfere with the sixth ligands, inducing an increase of the five-coordinated high-spin configuration. In the monomer the substrate-binding pocket can accommodate benzphetamine without affecting the spin state. Binding of imidazole to the monomeric and oligomeric cytochrome P-450 LM2 produces essentially the same resonance Raman spectra. Apparently the replacement of the native sixth ligand by imidazole disturbs the structure of the active site in such a way that it becomes insensitive to protein-protein interactions. H2O2-dependent N-demethylation of benzphetamine and aniline p-hydroxylation by cytochrome P-450 LM2 did not depend on its state of aggregation. 相似文献
15.
I I Karuzina D E Mengazetdinov A B Kapitanov A A Zhukov L I Ivanova 《Biokhimii?a (Moscow, Russia)》1987,52(7):1090-1096
Hydroxylation of dimethylaniline in rabbit liver microsomes is accompanied by inactivation of cytochrome P-450 and the formation of products inhibiting the catalytic activity of non-inactivated cytochrome P-450. Other enzymes and electron carriers of microsomal membrane (cytochrome b5, NADH-ferricyanide reductase, NADPH-cytochrome c and NADPH-cytochrome P-450 reductases) as well as glucose-6-phosphatase were not inactivated in the course of the monooxygenase reactions. Phospholipids and microsomal membrane proteins were also unaffected thereby. Consequently, the changes in the microsomal membrane during cytochrome P-450 dependent monooxygenase system functioning are confined to the inactivation of cytochrome P-450. 相似文献
16.
The effects of unsaturated fatty acids on hepatic microsomal drug metabolism and cytochrome P-450 总被引:3,自引:2,他引:3
1. The effects of unsaturated fatty acids on drug-metabolizing enzymes in vitro were measured by using rat and rabbit hepatic 9000g supernatant fractions. 2. Unsaturated fatty acids inhibited the hepatic microsomal metabolism of ;type I' drugs with inhibition increasing with unsaturation: arachidonic acid>linolenic acid>linoleic acid>oleic acid. Inhibition was independent of lipid peroxidation. Linoleic acid competitively inhibited the microsomal O-demethylation of p-nitroanisole and the N-demethylation of (+)-benzphetamine. 3. The hepatic microsomal metabolism of ;type II' substrates, aniline and (-)-amphetamine, was not affected by unsaturated fatty acids. 4. The rate of reduction of p-nitrobenzoic acid and Neoprontosil was accelerated by unsaturated fatty acids. 5. Linoleic acid up to 3.5mm did not decelerate the generation of NADPH by rat liver soluble fraction, nor the activity of NADPH-cytochrome c reductase of rat liver microsomes. Hepatic microsomal NADPH oxidase activity was slightly enhanced by added linoleic acid. 6. No measurable disappearance of exogenously added linoleic acid occurred when this fatty acid was incubated with rat liver microsomes and an NADPH source. 7. The unsaturated fatty acids used in this study produced type I spectra when added to rat liver microsomes, and affected several microsomal enzyme activities in a manner characteristic of type I ligands. 相似文献
17.
Cytochrome P-450 isozyme 2 from rabbit liver microsomes fluoresces upon excitation at 295 nm due to the single tryptophyl residue (Trp121) in the protein. The fluorescence spectrum, which is not altered by the presence of phospholipid or substrates, has a maximum at 335 nm, which suggests that the environment of the residue is hydrophobic. The fluorescence intensity decreases linearly with increase of specific content of the cytochrome preparations, and the holoenzyme was estimated to exhibit, at most, 6% as much fluorescence as the apoenzyme. This indicates that the fluorescence of the tryptophan is quenched by energy transfer to the heme. The distance between the tryptophyl residue and the heme was estimated to be less than 40 A. From enhancement of the fluorescence by methanol and ethanol, 30 to 50% of the Trp residue was found to be accessible to these solvents. On the other hand, the accessibility to iodide and cesium ions, as estimated by quenching effects, is less than 14%. From such evidence, the tryptophyl residue is believed to be partly buried. Since Trp121 is conserved at or near the same position in all mammalian P-450's so far sequenced, the results obtained may be applicable to these related cytochromes as well. 相似文献
18.
Hermann H. Dieter Ursula Muller-Eberhard Eric F. Johnson 《Biochemical and biophysical research communications》1982,105(2):515-520
Six highly purified forms of rabbit microsomal cytochrome P-450, isolated from hepatic microsomes, exhibit differences in the regiospecific metabolism of progesterone. Only one of the isozymes studied, form 1, catalyzes the formation of deoxycorticosterone from progesterone at an appreciable rate. This cytochrome P-450 isozyme may participate in the conversion of progesterone to deoxycorticosterone during pregnancy. All six forms of cytochrome P-450 catalyze 6β- and 16α-hydroxylation at the two concentrations of progesterone tested. Form 3b exhibits a lower apparent Km for 6β-hydroxylation than the other five. 相似文献
19.
20.
Regioselective progesterone hydroxylation catalyzed by eleven rat hepatic cytochrome P-450 isozymes 总被引:1,自引:0,他引:1
Quantitative high-pressure liquid chromatographic assays were developed that separate progesterone and 17 authentic monohydroxylated derivatives. The assays were utilized to investigate the hydroxylation of progesterone by 11 purified rat hepatic cytochrome P-450 isozymes and 8 different rat hepatic microsomal preparations. In a reconstituted system, progesterone was most efficiently metabolized by cytochrome P-450h followed by P-450g and P-450b. Seven different monohydroxylated progesterone metabolites were identified. 16 alpha-Hydroxyprogesterone, formed by 8 of the 11 isozymes, was the only detectable metabolite formed by cytochromes P-450b and P-450e. 2 alpha-Hydroxyprogesterone was formed almost exclusively by cytochrome P-450h, and 6 alpha-hydroxyprogesterone and 7 alpha-hydroxyprogesterone were only formed by P-450a. 6 beta-hydroxylation of progesterone was catalyzed by four isozymes with cytochrome P-450g being the most efficient, and 15 alpha-hydroxyprogesterone was formed as a minor metabolite by cytochromes P-450g, P-450h, and P-450i. None of the isozymes catalyzed 17 alpha-hydroxylation of progesterone, and only cytochrome P-450k had detectable 21-hydroxylase activity. 16 alpha-Hydroxylation catalyzed by cytochrome P-450b was inhibited in the presence of dilauroylphosphatidylcholine (1.6-80 microM), while this phospholipid either stimulated (up to 3-fold) or had no effect on the metabolism of progesterone by the other purified isozymes. Results of microsomal metabolism in conjunction with antibody inhibition experiments indicated that cytochromes P-450a and P-450h were the sole 7 alpha- and 2 alpha-hydroxylases, respectively, and that P-450k or an immunochemically related isozyme contributed greater than 80% of the 21-hydroxylase activity observed in microsomes from phenobarbital-induced rats. 相似文献