首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The uptake and release of [3H]noradrenaline and [3H]-5-hydroxytryptamine (5-HT) were studied in cerebral cortex slices from rats 30 min and 24 h after a single electroconvulsive shock (ECS) and 24 h after a series of five shocks given over 10 days. Both the K m and V max for 5-HT uptake were lower than controls 24 h after a single ECS, whereas after 5 ECS spread over 10 days both parameters remained depressed, though only the fall in Vmax was significant. Noradrenaline uptake was not altered after a single ECS, but the Vmax and K m were elevated following chronic ECS treatment. Neither ECS treatment schedule had any effect on the potassium-stimulated release of either transmitter. It is possible that the changes in monoamine uptake seen following ECS are an adaptive response to alterations in the synaptic cleft concentration of these transmitters.  相似文献   

2.
Acute seizures and other stimuli that increase neuronal activity cause a rapid induction of the immediate-early genes c-fos and c-jun, also referred to as nuclear proto-oncogenes, in the nervous system. In the present study, rats were administered one or more electroconvulsive seizures (ECS) and the responsiveness of c-fos and c-jun to an acute, "test" seizure was examined. Four hours after a single ECS, the induction of c-fos mRNA by a test seizure was blocked, in agreement with earlier findings, but by 18 h the levels of c-fos mRNA could be reinduced by the test seizure, suggesting that 1 day is sufficient to "reset" the responsiveness of this system. However, it was found that chronic, daily ECS treatments resulted in a time-dependent decrease in the expression of c-fos mRNA in response to a test seizure administered 18 h after the last daily ECS; this effect was maximal after 8-10 days of treatment, at which time the induction of c-fos mRNA by the test seizure was blocked dramatically. Chronic ECS also blocked the induction of c-jun in response to an acute, test seizure. The effect of chronic ECS on levels of Fos protein was also investigated. It was found that basal levels of Fos protein were reduced after chronic (10 days) ECS and were not induced by a test seizure. Because levels of Fos protein remain elevated 4 h after a single seizure this finding suggests that the mechanisms by which acute (4 h) and chronic (8-10 days) ECS block the induction of c-fos may differ.  相似文献   

3.
G protein-coupled receptor (GPCR) signaling cascades may be key substrates for the antidepressant effects of chronic electroconvulsive seizures (ECS). To better understand changes in these signaling pathways, alterations in levels of mRNA's encoding regulators of G protein signaling (RGS) protein subtypes-2, -4, -7, -8 and -10 were evaluated in rat brain using northern blotting and in situ hybridization. In prefrontal cortex, RGS2 mRNA levels were increased several-fold 2 h following an acute ECS. Increases in RGS8 mRNA were of lesser magnitude (30%), and no changes were evident for the other RGS subtypes. At 24 h following a chronic ECS regimen, RGS4, -7, and -10 mRNA levels were reduced by 20-30%; only RGS10 was significantly reduced 24 h after acute ECS. Levels of RGS2 mRNA were unchanged 24 h following either acute or chronic ECS. In hippocampus, RGS2 mRNA levels were markedly increased 2 h following acute ECS. More modest increases were seen for RGS4 mRNA expression, whereas levels of the other RGS subtypes were unaltered. At 24 h following chronic ECS, RGS7, -8 and -10 mRNA levels were decreased in the granule cell layer, and RGS7 and -8 mRNA levels were decreased in the pyramidal cell layers. Only RGS8 and -10 mRNA levels were significantly reduced in hippocampus 24 h following an acute ECS. Paralleling neocortex, RGS2 mRNA content was unchanged in hippocampus 24 h following either acute or chronic ECS. In ventromedial hypothalamus, RGS4 mRNA content was increased 24 h following chronic ECS, whereas RGS7 mRNA levels were only increased 24 h following an acute ECS. The increased RGS4 mRNA levels in hypothalamus were significant by 2 h following an acute ECS. These studies demonstrate subtype-, time-, and region-specific regulation of RGS proteins by ECS, adaptations that may contribute to the antidepressant effects of this treatment.  相似文献   

4.
The activities of catechol-O-methyl transferase (COMT), monoamine oxidase (MAO), and a methanol forming enzyme were studied in whole brain homogenates and in livers obtained from DBA/2J, C57B1/6J, and F1 hybrid mice. DBA/2J mice are extremely susceptible to audiogenic seizures, whereas C57B1/6J mice are resistant to sound-induced convulsions. C57B1/6J mice were found to have significantly higher brain levels of COMT, while MAO activities were not different in animals of these genotypes. No methanol forming activity was detected in animals of either strain. No differences were found in hepatic activities of either COMT or MAO. Pyrogallol was shown to protect DBA/2J animals against audiogenic seizures.  相似文献   

5.
Sodium/potassium-activated adenosine triphosphatase (Na+/K+-ATPase) activity in the kidney and brain is high, and is regulated by catecholamines. Na+/K+-ATPase activity is also high in the basolateral infoldings of the strial marginal cells, where it aids in maintaining the characteristic electrolyte composition of the endolymph. To clarify the involvement of humoral control in strial function, particularly the role of catecholamines, the K+-dependent p-nitrophenylphosphatase (K+-NPPase) activity of strial marginal cells was investigated in guinea pigs using a cerium-based cytochemical method. The effects of reserpine, serotonin (5-HT), norepinephrine (NE), epinephrine (EP), both alone and in combination, were studied. High doses of reserpine cause depletion of sympathetic substances. Strial K+-NPPase activity was decreased after reserpine or dopamine treatment, and was increased after 5-HT, NE, and EP treatment. After reserpinization, repeated treatment with 5-HT, NE, or EP led to detectable strial enzyme activity. Thus, exogenous 5-HT, NE, and EP were able to restore strial K+-NPPase activity in the reserpine-treated animals. These results suggested that biogenic amines regulate strial K+-NPPase activity. Thus, the function of the stria vascularis may be regulated by the opposing actions of these catecholamines, and 5-HT.  相似文献   

6.
The activities of catechol-O-methyl transferase (COMT), monoamine oxidase (MAO), and a methanol forming enzyme were studied in whole brain homogenates and in livers obtained from DBA/2J, C57B1/6J, and F1 hybrid mice. DBA/2J mice are extremely susceptible to audiogenic seizures, where as C57B1/6J mice are resistant to sound-induced convulsions. C57B1/6J mice were found to have significantly higher brain levels of COMT, while MAO activities were not different in animals of these genotypes. No methanol forming activity was detected in animals of either strain. No differences were found in hepatic activities of either COMT or MAO. Pyrogallol was shown to protect DBA/2J animals against audiogenic seizures.  相似文献   

7.
The content of serotonin (5-HT), its metabolite 5-hydroxyindoleacetic acid (5-HIAA), monoamine oxidase (MAO) activity and kinetic parameters (K(m) and Vmax) for the reaction of 5-HT deamination, were examined in various regions of the rat brain after repeated presentation of a contextual stimulus. Habituation to the stimulus was accompanied by an increase of 5-HT metabolism and active transport of 5-HIAA in the amygdala, striatum and midbrain, while these changes were not found in the prefrontal cortex and hippocampus. Kinetic studies have revealed that the enhancement of 5-HT deamination by MAO in the brain structures was mediated by different catalytic mechanisms. A significant decrease in K(m) value for 5-HT deamination in the amygdala indicated an increase in the affinity of enzyme towards 5-HT. In the striatum the enhanced MAO activity was provided by increasing maximal rate of 5-HT deamination. It is concluded that an activation of presynaptic mechanisms of the serotonergic transmission in the amygdala and striatum is involved in the inhibition of biological significance and attention to repeated presentation of stimulus.  相似文献   

8.
Abstract: The kinetic constants were determined for dopamine (DA) and norepinephrine (NE) metabolism by phenolsulfotransferase (PST), type A and B monoamine oxidase (MAO), and membrane-bound and soluble catechol- O - methyltransferase (COMT) in frontal lobe preparations of human brain. PST and membrane-bound COMT were found to have the lowest K m, values for both catecholamines. By means of the appropriate rate equations and the calculated kinetic constants for each enzyme, the activity of each enzymatic pathway was determined at varying concentrations of DA and NE. Results indicate that deamination by MAO is the principal pathway for the enzymatic inactivation of DA whereas NE is largely metabolized by MAO type A and membrane-bound COMT under the in vitro assay conditions used. At concentrations less than 100 μ M , soluble COMT'contributes less than 5% to the total catabolism of either catecholamine. PST can contribute up to 15% of the total DA metabolism and 7% of NE metabolism.  相似文献   

9.
I n R ecent years biogenic amines have been implicated in the control mechanism for induction and maintenance of sleep processes (J ouvet , 1969). Investigators have looked for changes in the rate of synthesis of cerebral norepinephrine from [3H]tyrosine after REM sleep deprivation and reported increased rates of synthesis during REM sleep deprivation (M ark , H einer , M andel and G odin , 1969) and REM sleep rebound following 91 h of deprivation (P ujol , M ouret and G lowinski , 1968). Because tyrosine is thought to be the rate-limiting enzyme (U denfriend , 1966) in the synthetic pathways for norepinephrine and since the above-mentioned studies are suggestive of changes in the activity of the enzyme, we decided to measure tyrosine hydroxylase activity following REM sleep deprivation.  相似文献   

10.
In the studied a series novel of lazabemide derivatives were designed, synthesized and evaluated as inhibitors of monoamine oxidase (MAO-A or MAO-B). These compounds used lazabemide as the lead compound, and the chemistry structures were modified by used the bioisostere and modification of compound with alkyl principle. The two types of inhibitors (inhibition of MAO-A and inhibition of MAO-B) were screened by inhibition activity of MAO. In vitro experiments showed that compounds 3a, 3d and 3f had intensity inhibition the biological activity of MAO-A, while compounds 3i and 3m had intensity inhibition the biological activity of MAO-B. It could be seen from the data of inhibition activity experiments in vitro, that the compound 3d was IC50?=?3.12?±?0.05?μmol/mL of MAO-A and compound 3m was IC50?=?5.04?±?0.06?μmol/mL. In vivo inhibition activity experiments were conducted to evaluate the inhibitory activity of compounds 3a, 3d, 3f, 3i and 3m by detecting the contents of 5-HT, NE, DA and activity of MAO-A and MAO-B in plasma and brain tissue. In vivo inhibition activity evaluation results showed that the compounds 3a, 3d, 3f, 3i and 3m had increased the contents of 5-HT, NE and DA in plasma and brain tissues. Meanwhile, the determination results activity of MAO in plasma and brain tissue showed that the compounds 3a, 3d, and 3f had a significant inhibitory effect on the activity of MAO-A, while the compounds 3i and 3m showed inhibitory effect on the activity of MAO-B. This study provided a new inhibitors for inhibiting of MAO activity.  相似文献   

11.
Effects of angiotensin II (AII) on norepinephrine (NE) catabolism in hypothalamus and medulla oblongata of male rats were studied. 3H-NE uptake, 3H-NE/3H-NE metabolites ratio (NE/MET) and monoamineoxidase (MAO) activity were measured in vitro in both organs. Lack of circulating AII was elicited by means of 48 h bilateral nephrectomy. Pargyline and bilateral nephrectomy increased NE uptake and NE/MET ratio, while in nephrectomized plus pargyline treated groups and additive effect on these results was observed in both organs. All decreased the NE/MET ratio. Pargyline reversed the latter effects of AII. The peptide increased MAO activity in both organs, while bilateral nephrectomy decreased the activity of the enzyme. The results showed that AII modulates NE catabolism by means of MAO activity, eventually at the presynaptic noradrenergic ending sites in the central nervous system.  相似文献   

12.
The effect of medroxyprogesterone acetate (MPA) on brain monoamine levels and monoamine oxidase (MAO) activity was studied in adult, healthy, non-pregnant female rats. MpA was injected in a single dose of 100 mg/kg i.m. Dopamine (DA), noradrenaline (NA), 5-hydroxytryptamine (5-HT) levels and MAO activity were estimated fluorometrically in rat brian. No change in DA, NA, 5-HT or MAO activity was observed after 7 days of MPA treatment while a significant decrease in DA levels along with a significant increase in MAO activity was observed after 21 days of MPA treatment. However, there was no change in NA and 5-HT levels after 21 days of MPA administration. The selective reduction of DA by MPA could be due to an increase in MAO-B activity. MPA does not appear to increase MAO-A activity because neither of the specific substrates (NA and 5-HT) of MAO-A was found to be decreased inspite of the increase in MAO activity as estimated by the kynuramine method. These findings suggest the importance of MAO-B also in DA metabolism in rat brain.  相似文献   

13.
This study investigated: (a) the effects of acute 17alpha-methyltestosterone (MT) or 17beta-estradiol (E(2)) administration on norepinephrine (NE), dopamine (DA), serotonin (5-HT), 3,4, dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) contents in the hypothalamus, telencephalon and pituitary of previtellogenic female rainbow trout Oncorhynchus mykiss, and (b) the effects of chronic MT administration on the levels of these neurotransmitters in these brain regions in immature male rainbow trout. The acute administration of MT induced a significant decrease in pituitary levels of DOPAC as well as in the DOPAC/DA ratio. On the other hand, the acute administration of E(2) induced an increase in pituitary 5-HT levels as well as a decrease in the 5-HIAA/5-HT ratio. In a second experiment, 20 mg MT per kilogram body weight was implanted for 10, 20 or 40 days into sexually immature male rainbow trout. Implanted rainbow trout showed increased testosterone and decreased E(2) levels. In the pituitary, MT induced long-term decreases in NE, DA, DOPAC and 5-HT levels, as well as in the DOPAC/DA ratio. Hypothalamic and telencephalic DA, NE and 5-HT levels were not affected by MT implantation. However, 5-HIAA levels and the 5-HIAA/5-HT ratio were reduced by MT implantation in both brain regions. These results show that chronic treatment with MT exerts both long-term and region-specific effects on NE, DA, and 5-HT contents and metabolism, and thus that this androgen could inhibit pituitary catecholamine and 5-HT synthesis. A possible role for testosterone in the control of pituitary dopaminergic activity and gonadotropin II release is also discussed.  相似文献   

14.
Palmitoylation is a reversible post-translational modification used by cells to regulate protein activity. The regulator of G-protein signaling (RGS) proteins RGS4 and RGS16 share conserved cysteine (Cys) residues that undergo palmitoylation. In the accompanying article (Hiol, A., Davey, P. C., Osterhout, J. L., Waheed, A. A., Fischer, E. R., Chen, C. K., Milligan, G., Druey, K. M., and Jones, T. L. Z. (2003) J. Biol. Chem. 278, 19301-19308), we determined that mutation of NH2-terminal cysteine residues in RGS16 (Cys-2 and Cys-12) reduced GTPase accelerating (GAP) activity toward a 5-hydroxytryptamine (5-HT1A)/G alpha o1 receptor fusion protein in cell membranes. NH2-terminal acylation also permitted palmitoylation of a cysteine residue in the RGS box of RGS16 (Cys-98). Here we investigated the role of internal palmitoylation in RGS16 localization and GAP activity. Mutation of RGS16 Cys-98 or RGS4 Cys-95 to alanine reduced GAP activity on the 5-HT1A/G alpha o1 fusion protein and regulation of adenylyl cyclase inhibition. The C98A mutation had no effect on RGS16 localization or GAP activity toward purified G-protein alpha subunits. Enzymatic palmitoylation of RGS16 resulted in internal palmitoylation on residue Cys-98. Palmitoylated RGS16 or RGS4 WT but not C98A or C95A preincubated with membranes expressing 5-HT1a/G alpha o1 displayed increased GAP activity over time. These results suggest that palmitoylation of a Cys residue in the RGS box is critical for RGS16 and RGS4 GAP activity and their ability to regulate Gi-coupled signaling in mammalian cells.  相似文献   

15.
Electroconvulsive shock (ECS) therapy is considered to be an effective treatment for depression, but its mechanism of action is still unknown. We investigated the effect of chronic ECS in rats treated for 14 days with dexamethasone (Dex), a glucocorticoid receptor agonist. Chronic injection of sesame oil decreased body weight change and increased serotonin (5-HT)-2A receptor number and DOI (5-HT-2A, 2C receptor agonist)-induced wet-dog shake (WDS) behaviors. Dex treatment for 14 days decreased body weight of rats, but repeated ECS did not reverse this decrease. Dex also abolished plasma corticosterone levels, and ECS failed to restore these levels. These results indicate that chronic ECS does not antagonize the effect of Dex. The treatment with Dex increased 5-HT-2A receptor binding density of rat frontal cortex and the number of DOI-induced WDS behaviors. Chronic ECS reduced the enhanced WDS behaviors by Dex but had little effect on receptor density. These results suggest that chronic ECS might suppress 5-HT-2A receptor function at the postreceptor signaling level rather than at the receptor itself, without changing HPA axis function in Dex-treated rats.  相似文献   

16.
The incorporation of [3H]arachidonic acid ([3H]AA) into phospholipids (PL) of rat brain, was studied in cerebral cortex slices in the presence and absence of norepinephrine (NE), serotonin (5-HT) and carbamylcholine (CCH). Both NE and 5-HT produced a concentration-dependent effect of stimulating [3H]AA incorporation into phosphatidylinositol (PI) while attenuating incorporation into other PL. Addition of CCH had no apparent effect. The β-adrenergic agonist, isoproterenol, had an effect similar to that seen with equimolar concentrations of NE, whereas the α1 agonist, phenylephrine, or the α2 agonist, clonidine, did not produce significant changes. However, application of the NE-receptor blockers, propranolol or prazosin, in the presence of NE, did not modify the NE-induced effects. Similarly, the 5-HT-receptor blockers, methysergide or ketanserine, failed to modify the 5-HT-induced effects, indicating that the neurotransmitter-produced changes may not be receptor mediated. Manipulations of the NE or 5-HT reuptake systems by imipramine (IMI) or desipramine (DMI) had a small additive effect on the neurotransmitter-produced changes in [3H]AA incorporation, suggesting that a functional presynaptic reuptake system is not required for the NE or 5-HT-produced effects. The possibility that the NE or 5-HT effects involve the oxidative metabolism of the monoamines by MAO was also investigated. The MAO inhibitors tranylcypromine and pargyline had no appreciable effect on the neurotransmitter-induced changes in [3H]AA incorporation whereas clorgyline clearly reduced the increase in [3H]AA incorporation into PI seen in the presence of NE or 5-HT, but this clorgyline effect may not be related to its activity as MAO inhibitor. The phospholipase A2 inhibitor mepacrine had no significant effect on the NE-produced increase in [3H]AA incorporation into PI, but it antagonized the NE-produced decrease in [3H]AA incorporation into PC. Delta-9-Tetrahydrocannabinol, which acts as acyltransferase inhibitor, antagonized the NE-produced increase in [3H]AA incorporation into PI without appreciably influencing the NE-produced decrease in [3H]AA incorporation into PC. These findings suggest that the neurotransmitter-produced increase in [3H]AA incorporation into PI is mediated by stimulation of a specific lyso-PI arachidonyl transferase. The neurotransmitter effects on arachidonate incorporation may have physiological significance in view of the importance of processes of deacylation and reacylation of membrane PL in regulating the function of neuronal membranes.  相似文献   

17.
Monoamines are able to increase the thyroid iodine organification in vitro. A predominance of the A form of monoamine oxidase (MAO) has been previously demonstrated to exist in bovine thyroid tissue. In the present study we have investigated the form of MAO that could be involved in the iodotyrosine formation induced by tyramine, 5-hydroxytryptamine (5-HT) and beta-phenylethylamine (PEA) in a bovine thyroid subcellular fraction. The relative capacity of these monoamines to generate H2O2 and to incorporate iodine into tyrosine has also been studied. The MAO A inhibitor clorgyline (10(-9) M) produced a strong inhibition on the iodotyrosine formation induced by tyramine, 5-HT and PEA. In contrast, only a slight reduction was observed with deprenyl as MAO B inhibitor. Among the three monoamines, tyramine produced the highest H2O2 generation and iodotyrosine formation. The lowest Km value obtained was for 5-HT and the highest for PEA. Regarding the Vmax, the lowest value was for 5-HT and the highest for tyramine. The amount of iodine incorporated to tyrosine was not equivalent to the H2O2 generated by the monoamines nor to that exogenously added. Our results indicate that in bovine thyroid tissue mainly the A form of MAO is involved in the monoamine metabolism.  相似文献   

18.
Inbred E1 mice are highly susceptible to convulsive seizures upon “throwing” stimulation. The strain is known to have an abnormal 5-hydroxytryptamine (5-HT) metabolism. In the study here 5-HT level, [14C]5-hydroxytryptophan (5-HTP) metabolism, MAO activity and [3H]5-HT receptor binding were examined in the cortex, brainstem and cerebellum. In the interictal period cortical and brainstem 5-HT level and [3H]5-HT receptor binding were significantly lower. In the same period cortical biosynthesized [14C]5-HT from [14C]5-HTP taken up was higher, and MAO activity was not changed.L-DOPA with MK486 induced a low threshold of seizures and decreased cortical 5-HT level. Abnormally functioning 5-HT neurones may exist in the E1 mouse cortex.  相似文献   

19.
High-level expression of human liver monoamine oxidase B in Pichia pastoris   总被引:1,自引:0,他引:1  
The high-level heterologous expression, purification, and characterization of the mitochondrial outer membrane enzyme human liver monoamine oxidase B (MAO B) using the methylotrophic yeast Pichia pastoris expression system are described. A 2-L culture of P. pastoris expresses approximately 1700 U of MAO B activity, with the recombinant enzyme associated tightly with the membrane fraction of the cell lysate. By a modification of the published procedure for purification of bovine liver MAO B [Salach, J. I. (1979) Arch. Biochem. Biophys. 192, 128-137], recombinant human liver MAO B is purified in a 34% yield ( approximately 200 mg from 2 L of cell culture). The isolated enzyme exhibits an M(r) of approximately 60, 000 on SDS-PAGE and 59,474 from electrospray mass spectrometry measurements, which is in good agreement with the mass predicted from the gene sequence and inclusion of the covalent FAD. One mole of covalent FAD per mole of MAO B is present in the purified enzyme and is bound by an 8alpha-S-cysteinyl(397) linkage, as identified by electrospray mass spectrometry of the isolated tryptic/chymotryptic flavin peptide. Recombinant human liver MAO B and bovine liver MAO B are shown to be acetylated at the seryl residues at their respective amino termini. The benzylamine oxidase activity of recombinant MAO B ranges from 3.0 to 3.4 U/mg and steady-state kinetic parameters for this enzyme preparation compare well with those published for the bovine liver enzyme: k(cat) = 600 min(-1), K(m)(benzylamine) = 0.50 mM, and K(m)(O(2)) = 0.33 mM. Kinetic isotope effect parameters using [alpha,alpha-(2)H(2)]benzylamine are also similar to those found for the bovine enzyme. Recombinant MAO B exhibits a (D)k(cat) = 4.7, a (D)[k(cat)/K(m)(benzylamine)] = 4.5, and a (D)[k(cat)/K(m)(O(2))] = 1.0. In contrast to bovine liver MAO B, no evidence was found for the presence of any anionic flavin radical either by UV-vis or by EPR spectroscopy in the resting form of the enzyme. These data demonstrate the successful heterologous expression of a functional, membrane-bound MAO B, which will permit a number of mutagenesis studies as structural and mechanistic probes not previously possible.  相似文献   

20.
The dopamine (DA), serotonin (5-HT), and norepinephrine (NE) transporter releasing activity and serotonin-2A (5-HT2A) receptor agonist activity of a series of substituted tryptamines are reported. Three compounds, 7b, (+)-7d and 7f, were found to be potent dual DA/5-HT releasers and were >10-fold less potent as NE releasers. Additionally, these compounds had different activity profiles at the 5-HT2A receptor. The unique combination of dual DA/5-HT releasing activity and 5-HT2A receptor activity suggests that these compounds could represent a new class of neurotransmitter releasers with therapeutic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号