首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Acute hydrazine exposure elevated rat liver triacylglycerol content and produced a rapid rise in triacylglycerol production from sn-[1,3-14C]glycerol 3-phosphate by liver homogenate and microsomal fractions. Hydrazine treatment also increased the incorporation of [1,3-14C]glycerol into hepatic triacylglycerol by the intact animal. Homogenates of hepatocyte monolayers exposed to hydrazine in vitro also exhibited an increased capacity to form triacylglycerol from sn-[1,3-14C]glycerol 3-phosphate. Hydrazine-dependent increases in hepatic triacylglycerol production measured in vitro correlated well with an increase in microsomal phosphatidate phosphohydrolase (EC 3.1.3.4) activity. Therefore, the fatty liver associated with hydrazine exposure may be explained in part by a rise in the enzymatic capacity of hepatic triacylglycerol biosynthesis.  相似文献   

2.
1. Nuclei were prepared from rat hepatocytes. A biochemical analysis of marker enzymes showed that the nuclei are not contaminated by other subcellular fractions, especially endoplasmic reticulum. 2. The transfer of [14C]N-acetylglucosamine to endogenous acceptors were studied comparatively in the nuclei and in the other subcellular fractions of rat hepatocytes. 3. In this report we describe the presence of the transfer of N-acetylglucosamine within the nucleus of rat hepatocytes. We found 21% of this transfer in the nucleus fraction with an enrichment of 26 in comparison to homogenate.  相似文献   

3.
Plasmalogens (1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine) are major phospholipids in many tissues and cells, particularly of neural origin. Using cultured C6 glioma cells and subcellular fractions isolated on Percoll gradients we investigated selectivity for esterification of several polyunsaturated fatty acids (PUFA) in the sn-2 position of plasmalogens compared to [1-14C]hexadecanol, representative of de novo synthesis of the ether-linked sn-1 position. In whole cells at a final concentration of 105 microM PUFA, 2-4 nmol plasmalogen/mg protein was labeled in 4 h and 10-14 nmol in 24 h, representing 8-15% and 35-50%, respectively, of initial plasmalogen mass. Incorporation of label from hexadecanol was lower than PUFA incorporation (20:5(n-3) greater than 20:4(n-6) greater than 18:3(n-3) much greater than 18:2(n-6)) suggesting deacylation-reacylation at the sn-2 position. Plasmalogens accounted for 50% of total cell ethanolamine phospholipids and 75% in plasma membrane. Using a novel, improved method for extraction of subcellular fractions containing Percoll, plasma membrane also was enriched in plasmalogen relative to microsomes (107.4 +/- 5.2 vs. 40.0 +/- 2.9 nmol/mg protein). Selectivity for esterification at the sn-2 position of plasmalogens with respect to chain length and unsaturation of the fatty acyl chain was similar in both subcellular fractions and reflected that of whole cells. Labeling of plasma membrane with PUFA and fatty alcohol lagged behind that of microsomes. Chase experiments in cells prelabeled with [1-14C]18:3(n-3) for 2 h showed no significant reduction of label in plasmalogen of any subcellular fraction although accumulation of label in the microsomal fraction was slowed initially. Reduction of plasmalogen label (40-50%) did occur in microsomes and plasma membrane when cells prelabeled for 24 h were switched to chase medium with or without chase fatty acid. Our data suggest that esterification of PUFA to plasmalogen may occur at the endoplasmic reticulum with subsequent translocation to plasma membrane resulting in accumulation of relatively stable pools of plasmalogen that are not readily accessible for deacylation-reacylation exchange with newly appearing PUFA. Alternatively, deacylation-reacylation may occur in a more stable phospholipid pool within the plasma membrane but would involve a slower process than at the endoplasmic reticulum.  相似文献   

4.
Pea cotyledons were injected with d-[(14)C]mannose or d-[(14)C]-glucosamine and incubated for 1 to 1.5 hours. Cotyledons were homogenized and subcellular fractions were isolated by differential centrifugation followed by linear sucrose density gradient centrifugation.Radioactivity that was precipitated by trichloroacetic acid was associated most extensively with rough endoplasmic reticulum, Golgi membranes, a membrane with a density of 1.14 grams per cubic centimeter (possibly plasma membrane) and an unidentified subcellular component with a density of 1.22 grams per cubic centimeter. Lower levels of incorporation were observed in protein bodies and mitochondria.Isolated membrane fractions were lipid-extracted to determine which components of the membrane contained the label. Rough endoplasmic reticulum contained the most extensively labeled lipids which had similar properties to the lipid intermediates thought to be involved in glycoprotein assembly. The lipid free residues of the various membrane fractions contained radioactivity that was released by protease treatment. Acid hydrolysis of the residues indicated that most of the radioactivity was associated with mannose or glucosamine. It appears that various subcellular components of the pea cotyledon possess glycoproteins that contain mannose and glucosamine.  相似文献   

5.
1. Rat liver slices were employed to study the relative rates of incorporation of a mixture of [2-(3)H]- or [1,3-(3)H]-glycerol and [1-(14)C]glycerol into lipids. 2. With 0.1mm-glycerol approx. 82% of the newly synthesized lipid, calculated from (14)C incorporation, was present as neutral lipid, 13% as phosphatidylcholine and 5% as phosphatidylethanolamine. Increasing the glycerol concentration to 40mm caused a decrease in the percentage of neutral lipid to 59% and a corresponding increase in the percentage of phosphatidylcholine to 36% of the newly synthesized lipid. 3. The (d.p.m. of 2-(3)H)/(d.p.m. of 1-(14)C) ratio in glycerolipid was considerably higher than that in precursor glycerol throughout the range of experimental conditions. In contrast the incorporation of a mixture of [1,3-(3)H]glycerol and [1-(14)C]glycerol into lipid occurred with little or no change in the (3)H/(14)C ratio. 4. Respiring rat liver mitochondria were found to oxidize a mixture of sn-[2-(3)H]- and sn-[1-(14)C]-glycerol 3-phosphate with a resultant increase in the (3)H/(14)C ratio of the remaining sn-glycerol 3-phosphate. This increase is due to a (3)H isotope effect of the mitochondrial sn-glycerol 3-phosphate dehydrogenase (EC 1.1.99.5), which discriminates against sn-[2-(3)H]glycerol 3-phosphate during oxidation. 5. A method is described for the simultaneous determination of the relative contributions of the glycerol phosphate and dihydroxyacetone phosphate pathways of glycerolipid biosynthesis in rat liver slices. The method involves measurement of the (d.p.m. of 2-(3)H)/(d.p.m. of 1-(14)C) ratio in both sn-glycerol 3-phosphate and glycerolipid after incubation of rat liver slices with a mixture of [2-(3)H]glycerol and [1-(14)C]glycerol for various times. 6. By using this method it was shown that 40-50% of the glycerol incorporated into lipid by rat liver slices proceeded via the sn-glycerol 3-phosphate pathway and 50-60% was incorporated via dihydroxyacetone phosphate.  相似文献   

6.
The present study was designed to test the hypothesis that a pneumotoxin, 3-methylindole, alters the basic metabolic pathways involved in phospholipid and neutral lipid synthesis in cultured fibroblasts. Rat skin fibroblasts were obtained from day-old pups. Confluent monolayers were preincubated for up to 24 h with a range of concentrations (0-0.76 mM) of 3-methylindole. Following these treatments, the cell lipids were labelled by incubation for 6 h with [14C]glycerol. The lipids were extracted, separated by thin layer chromatography, and the radioactivity in each fraction was determined. 3-Methylindole had no effect on the total incorporation of [14C]glycerol into lipids, but significantly altered the distribution among lipid fractions. Incubation with 3-methylindole caused a decrease in the incorporation of [14C]glycerol into phosphatidylcholine, while radioactivity accumulated in the neutral lipid fraction. The other lipid fractions responded variably. Similarily, Flow 2000 human diploid lung fibroblasts were incubated for 24 h with 3-methylindole followed by treatment with [14C]glycerol, resulting in a 74% decrease in the incorporation of [14C]glycerol into phosphatidylcholine and a 50% increase in its accumulation in neutral lipid. The results indicate that 3-methylindole inhibits the synthesis of phosphatidylcholine from diacylglycerol precursors on the endoplasmic reticulum in cultured fibroblasts. This is an important observation as it shows that 3-methylindole affects the synthesis of phospholipids required for membrane turnover in cells that are not specialized for the production of phospholipids for surfactant.  相似文献   

7.
1. The rate of synthesis of membrane phospholipid was studied in rat liver and seminal vesicles by following the incorporation of [(32)P]orthophosphate, [(14)C]choline and [(14)C]glycerol. Particular emphasis was laid on the endoplasmic reticulum, which was fractionated into smooth microsomal membranes, heavy rough membranes, light rough membranes and free polyribosomes. 2. Phospholipid labelling patterns suggested a heterogeneity in the synthesis and turnover of the different lipid moieties of smooth and rough endoplasmic membranes. The major phospholipids, phosphatidylcholine and phosphatidylethanolamine, were labelled relatively rapidly with (32)P over a short period of time whereas incorporation of radioisotope into the minor phospholipids, sphingomyelin, lysolecithin and phosphatidylinositol proceeded slowly but over a longer period of time. 3. The incorporation of orotic acid into RNA and labelled amino acids into protein of the four submicrosomal fractions was also studied. 4. Rapid growth of the liver was induced by the administration of growth hormone and tri-iodothyronine to hypophysectomized and thyroidectomized rats and by partial hepatectomy. Growth of seminal vesicles of castrated rats was stimulated with testosterone propionate. 5. The rate of labelling of membrane phospholipids was enhanced in all major subcellular particulate fractions (nuclear, mitochondrial and microsomal) during induced growth. However, it was in the rough endoplasmic reticulum that the accumulation of phospholipids, RNA and protein was most marked. The effect of hormone administration was also to accelerate preferentially the labelling with (32)P of sphingomyelin relative to that of phosphatidylcholine or phosphatidylethanolamine. 6. Time-course analyses showed that, in all four growth systems studied, the enhancement of the rate of membrane phospholipid synthesis coincided with the rather abrupt increase in the synthesis of RNA and protein of the rough endoplasmic reticulum. Growth hormone and tri-iodothyronine administered to hypophysectomized rats had additive effects in all the biosynthetic processes. The latent period of action of each hormone was maintained so that two waves of proliferation of endoplasmic reticulum occurred if the hormones were administered simultaneously. 7. It is concluded that there is some mechanism in the cell that tightly co-ordinates the formation of membranes, especially those of the endoplasmic reticulum, when an increased demand is made for protein synthesis.  相似文献   

8.
1. The glycosylation of hydroxylysine during the biosynthesis of procollagen by embryonic chick tendon and cartilage cells was examined. When free and membrane-bound ribosomes isolated from cells labelled for 4min with [(14)C]lysine were assayed for hydroxy[(14)C]lysine and hydroxy[(14)C]lysine glycosides, it was found that hydroxylation took place only on membrane-bound ribosomes and that some synthesis of galactosylhydroxy[(14)C]lysine and glucosylgalactosylhydroxy[(14)C]lysine had occurred on the nascent peptides. 2. Assays of subcellular fractions isolated from tendon and cartilage cells labelled for 2h with [(14)C]lysine demonstrated that the glycosylation of procollagen polypeptides began in the rough endoplasmic reticulum. (14)C-labelled polypeptides present in the smooth endoplasmic reticulum and Golgi fractions were glycosylated to extents almost identical with the respective secreted procollagens. 3. Assays specific for collagen galactosyltransferase and collagen glucosyltransferase are described, using as substrate chemically treated bovine anterior-lens-capsule collagen. 4. When homogenates were assayed for the collagen glycosyltransferase activities, addition of Triton X-100 (0.01%, w/v) was found to stimulate enzyme activities by up to 45%, suggesting that the enzymes were probably membrane-bound. 5. Assays of subcellular fractions obtained by differential centrifugation for collagen galactosyltransferase activity indicated the specific activity to be highest in the microsomal fractions. Similar results were obtained for collagen glucosyltransferase activity. 6. When submicrosomal fractions obtained by discontinuous-sucrose-density-gradient-centrifugation procedures were assayed for these enzymic activities, the collagen galactosyltransferase was found to be distributed in the approximate ratio 7:3 between rough and smooth endoplasmic reticulum of both cell types. Similar determinations of collagen glucosyltransferase indicated a distribution in the approximate ratio 3:2 between rough and smooth microsomal fractions. 7. Assays of subcellular fractions for the plasma-membrane marker 5'-nucleotidase revealed a distribution markedly different from the distributions obtained for the collagen glycosyltransferase. 8. The studies described here demonstrate that glycosylation occurs early in the intracellular processing of procollagen polypeptides rather than at the plasma membrane, as was previously suggested.  相似文献   

9.
Cell cultures allow rapid kinetic labeling experiments that can provide information on precursor-product relationships and intermediate pools. T-87 suspension cells are increasingly used in Arabidopsis (Arabidopsis thaliana) research, but there are no reports describing their lipid composition or biosynthesis. To facilitate application of T-87 cells for analysis of glycerolipid metabolism, including tests of gene functions, we determined composition and accumulation of lipids of light- and dark-grown cultures. Fatty acid synthesis in T-87 cells was 7- to 8-fold higher than in leaves. Similar to other plant tissues, phosphatidylcholine (PC) and phosphatidylethanolamine were major phospholipids, but galactolipid levels were 3- to 4-fold lower than Arabidopsis leaves. Triacylglycerol represented 10% of total acyl chains, a greater percentage than in most nonseed tissues. The initial steps in T-87 cell lipid assembly were evaluated by pulse labeling cultures with [(14)C]acetate and [(14)C]glycerol. [(14)C]acetate was very rapidly incorporated into PC, preferentially at sn-2 and without an apparent precursor-product relationship to diacylglycerol (DAG). By contrast, [(14)C]glycerol most rapidly labeled DAG. These results indicate that acyl editing of PC is the major pathway for initial incorporation of fatty acids into glycerolipids of cells derived from a 16:3 plant. A very short lag time (5.4 s) for [(14)C]acetate labeling of PC implied channeled incorporation of acyl chains without mixing with the bulk acyl-CoA pool. Subcellular fractionation of pea (Pisum sativum) leaf protoplasts indicated that 30% of lysophosphatidylcholine acyltransferase activity colocalized with chloroplasts. Together, these data support a model in which PC participates in trafficking of newly synthesized acyl chains from plastids to the endoplasmic reticulum.  相似文献   

10.
Embryos of Cuphea lanceolata have more than 80 mol% of decanoic acid ('capric acid') in their triacylglycerols, while this fatty acid is virtually absent in phosphatidylcholine (PtdCho). Seed development was complete 25-27 days after pollination, with rapid triacylglycerol deposition occurring between 9 and 24 days. PtdCho amounts increased until day 15 after pollination. Analysis of embryo lipids showed that the diacylglycerol (DAG) pool consisted of mainly long-chain molecular species, with a very small amount of mixed medium-chain/long-chain glycerols. Almost 100% of the fatty acid at position sn-2 in triacylglycerols (TAG) was decanoic acid. When equimolar mixtures of [14C]decanoic and [14C]oleic acid were fed to whole detached embryos, over half of the radioactivity in the DAG resided in [14C]oleate, whereas [14C]decanoic acid accounted for 93% of the label in the TAG. Microsomal preparations from developing embryos at the mid-stage of TAG accumulation catalysed the acylation of [14C]glycerol 3-phosphate with either decanoyl-CoA or oleoyl-CoA, resulting in the formation of phosphatidic acid (PtdOH), DAG and TAG. Very little [14C]glycerol entered PtdCho. In combined incubations, with an equimolar supply of [14C]oleoyl-CoA and [14C]decanoyl-CoA in the presence of glycerol 3-phosphate, the synthesized PtdCho species consisted to 95% of didecanoic and dioleic species. The didecanoyl-glycerols were very selectively utilized over the dioleoylglycerols in the production of TAG. Substantial amounts of [14C]oleate, but not [14C]decanoate, entered PtdCho. The microsomal preparations of developing embryos were used to assess the acyl specificities of the acyl-CoA:sn-glycerol-3-phosphate acyltransferase (GPAT, EC 2.3.1.15) and the acyl-CoA:sn-1-acyl-glycerol-3-phosphate acyltransferase (LPAAT, EC 2.3.1.51) in Cuphea lanceolata embryos. The efficiency of acyl-CoA utilization by the GPAT was in the order decanoyl = dodecanoyl greater than linoleoyl greater than myristoyl = oleoyl greater than palmitoyl. Decanoyl-CoA was the only acyl donor to be utilized to any extent by the LPAAT when sn-decanoylglycerol 3-phosphate was the acyl acceptor. sn-1-Acylglycerol 3-phosphates with acyl groups shorter than 16 carbon atoms did not serve as acyl acceptors for long-chain (greater than or equal to 16 carbon atoms) acyl-CoA species. On the basis of the results obtained, we propose a schematic model for triacylglycerol assembly and PtdCho synthesis in a tissue specialized in the synthesis of high amounts of medium-chain fatty acids.  相似文献   

11.
The formation of phosphatidic acid from sn-glycerol 3-phosphate was studied in neuronal nuclear fraction N1 and a microsomal fraction P3, isolated from cerebral cortices of 15-day-old rabbits. Two assays were used, employing dithiothreitol, MgCl2, NaF and (A) sn-glycerol 3-phosphate, [14C]oleate, ATP and CoA or (B) sn-[3H]glycerol 3-phosphate and oleoyl-CoA. In both assays fraction N1 had specific rates of phosphatidic acid labelling (expressed per mumol phospholipid in the fraction) which were 5- to 6-times the corresponding values for P3. In contrast to N1, the formation of phosphatidic acid by fraction P3 was more sensitive to inhibition at high concentrations of oleoyl-CoA and was greatly dependent upon the presence of NaF. In the absence of this salt, P3 showed decreased phosphatidate formation and increased levels of radioactive monoacylglycerols. Using cerebral cortex, rough (R) and smooth (S) microsomal fractions were prepared, as was a microsomal fraction P from isolated nerve cell bodies. P had specific rates of phosphatidic acid labelling which were 2-3 times the values for P3, but were about 50% of the N1 values. This indicates a concentration of phosphatidate synthesis in the nucleus within the nerve cell. Specific rates for fraction R were higher and were similar to those of N1. In S, P3 and R the specific rates of phosphatidic acid synthesis paralleled specific RNA contents and indicated a location for phosphatidic acid synthesis within the rough endoplasmic reticulum.  相似文献   

12.
The subcellular site of phosphatidylglycerol (PG) formation for lung surfactant has not been convincingly clarified. To approach this problem we analysed the acyl species pattern of lung PG in mitochondria, microsomes and surfactant by h.p.l.c. separation of its 1,2-diacyl-3-naphthylurethane derivatives. Both mitochondrial and microsomal PG proved identical with surfactant PG, containing the major species 1-palmitoyl-2-oleoyl-PG and 1,2-dipalmitoyl-PG. The fatty acid composition of mitochondrial PG differs markedly from that of diphosphatidylglycerol. This may be taken as an indication that mitochondrial PG is synthesized on purpose to form surfactant, rather than being only the precursor of diphosphatidylglycerol. In vitro, sn-[U-14C]glycerol 3-phosphate incorporation into PG of mitochondria or microsomes occurs in the presence of CTP, ATP and CoA but independently of the supply of exogenous lipoidic precursors. Although the rate in vitro of autonomous PG synthesis, and the endogenous PG content, are higher in mitochondria than in microsomes, it is assumed that both subcellular fractions are involved in PG formation for surfactant.  相似文献   

13.
The ability in vitro of yeast mitochondrial and microsomal fractions to synthesize lipid de novo was measured. The major phospholipids synthesized from sn-[2-(3)H]glycerol 3-phosphate by the two microsomal fractions were phosphatidylserine, phosphatidylinositol and phosphatidic acid. The mitochondrial fraction, which had a higher specific activity for total glycerolipid synthesis, synthesized phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine and phosphatidic acid, together with smaller amounts of neutral lipids and diphosphatidylglycerol. Phosphatidylcholine synthesis from both S-adenosyl[Me-(14)C]methionine and CDP-[Me-(14)C]choline appeared to be localized in the microsomal fraction.  相似文献   

14.
The subcellular distribution of the enzyme catalysing the conversion of retinyl phosphate and GDP-[14C]mannose into [14C]mannosyl retinyl phosphate was determined by using subcellular fractions of rat liver. Purity of fractions, as determined by marker enzymes, was 80% or better. The amount of mannosyl retinyl phosphate formed (pmol/min per mg of protein) for each fraction was: rough endoplasmic reticulum 0.48 +/- 0.09 (mean +/- S.D.); smooth membranes (consisting of 60% smooth endoplasmic reticulum and 40% Golgi apparatus), 0.18 +/- 0.03; Golgi apparatus, 0.13 +/- 0.03; and plasma membrane 0.02.  相似文献   

15.
sn-Glycerol 3-phosphorothioate, a bacteriocidal analog of sn-glycerol 3-phosphate in strains of Escherichia coli with a functioning glycerol phosphate transport system, was investigated for its ability to be incorporated into phospholipid under in vitro and in vivo conditions. A cell-free particulate fraction from E. coli strain 8 catalyzes the transfer of sn-[3H]glycerol 3-phosphoro[35S]thioate to chloroform-soluble material in the presence of either CDP-diglyceride or palmitoyl coenzyme A. With CDP-diglyceride as the co-substrate, the product of the reaction was tentatively identified as phosphatidylglycerol phosphorothioate. No formation of phosphatidylglycerol was observed, suggesting that the specific phosphatase required for the synthesis of phosphatidylglycerol does not catalyze, or else at a greatly reduced rate, the hydrolysis of the phosphorothioate monoester linkage. The kinetics of incorporation of sn-[3H]glycerol 3-phosphate and phosphorothioate into chloroform-soluble material in the presence of CDP-diglyceride are almost identical. In the presence of palmitoyl coenzyme A, sn-[3H]glycerol 3-phosphoro[35S]thioate was converted to the phosphorothioate analog of phosphatidic acid. Kinetic analysis showed that the apparent Km values for the incorporation of the phosphate and the phosphorothioate derivatives into phospholipid were 0.4 and 0.8 mM, respectively. The Vmax for the phosphorothioate analog was approximately half that for the phosphate derivative. Chemically synthesized thiophosphatidic acid was not a substrate for CTP:phosphatidic acid cytidylyltransferase. sn-[3H]Glycerol 3-phosphoro[35S]thioate was incorporated into phospholipid by cultures of E. coli strain 8. The major phosphorothioate-containing phospholipid synthesized in vivo was identified as 1,2-diacyl-sn-[3H]glycerol 3-phosphoro[35S]thioate. The phosphorothioate analog of phosphatidylglycerol phosphate was not observed despite our observations that this analog can be synthesized in vitro. Our results indicate that the phosphorothioate analog is an effective sn-glycerol 3-phosphate surrogate and suggest that a major reason for its toxicity toward E. coli strain 8 may be due to a total blockade of endogenous phospholipid biosynthesis.  相似文献   

16.
The requirements for microsomal triglyceride transfer protein (MTP) during the turnover and transfer of glycerolipids from intracellular compartments into secretory very low-density lipoprotein (VLDL) were studied by pre-labelling lipids with [(3)H]glycerol and [(14)C]oleate in primary cultures of rat hepatocytes. The intracellular redistribution of pre-labelled glycerolipids was then compared at the end of subsequent chase periods during which the MTP inhibitor BMS-200150 was either present or absent in the medium. Inhibition of MTP resulted in a decreased output of VLDL triacylglycerol (TAG) and a delayed removal of labelled TAG from the cytosol and from the membranes of the smooth endoplasmic reticulum (SER), the cis- and the trans-Golgi. Inactivation of MTP did not decrease the bulk lipolytic turnover of cellular TAG as reflected by changes in its [(3)H]glycerol:[(14)C]oleate ratios. However, a larger proportion of the resultant TAG fatty acids was re-esterified and remained with the membranes of the various subcellular fractions rather than emerging as VLDL. The effects of BMS-200150 on the pattern of phospholipid (PL) mechanism and redistribution suggested that inhibition of MTP prevented the normal lipolytic transfer of PL-derived fatty acids out of the SER, cis- and trans-Golgi membrane pools. Finally, changes in the (14)C specific radioactivities of the cytosolic and membrane pools of TAG suggested that inhibition of MTP prevented a normal influx of relatively unlabelled fatty acids into these pools during the chase period.  相似文献   

17.
1. Chopped tissue from guinea-pig cerebral cortex carried out an energy-dependent incorporation of [(14)C]valine into protein. 2. At all times studied the nuclear fraction of the homogenized tissue accounted for about 25% of the total labelled protein. 3. Electrical stimulation at first increased, but subsequently decreased, the rate of incorporation of [(14)C]valine into protein of the chopped tissue. 4. The initial increase in the incorporation of [(14)C]valine into protein occurred in the nuclear fraction. At later times electrical stimulation decreased the incorporation into all the subcellular fractions, but the relative contribution of the nuclear fraction to the total labelled protein increased. 5. These changes are discussed in relation to the changes in the rates of respiration, glycolysis, high-energy phosphate content and intracellular Na(+) and K(+) concentrations, which were measured under the same experimental conditions as those used to study protein synthesis.  相似文献   

18.
Comparative studies on fucoprotein metabolism of chicken liver and hepatoma Mc-29 have been carried out and the following parameters were determined: the incorporation rate of [14C]fucose into hepatoma and liver total tissue homogenate, acid-soluble and acid-insoluble fractions, acid-soluble nucleotide fraction and into plasma-membrane acid-precipitable fraction; the activity of microsomal and plasma-membrane fucosyltransferase; the electrophoretic pattern of hepatoma and liver plasma-membrane proteins and the incorporation of [14C]fucose into the glycoprotein fractions in both plasma-membrane preparations. It was found that the labelling of hepatoma tissue homogenate and plasma membranes was higher than that of the same liver preparations 3 hr after the [14C]fucose injection. This finding was supported by a considerably elevated hepatoma fucosyltransferase activity. The labelling rate of numerous fucoproteins from hepatoma plasma membranes was greatly increased and some of the individual glycoprotein bands were labelled to a higher extent compared with liver. The data presented show specific alterations of fucose and fucoprotein metabolism which could be considered as a characteristic feature of chicken viral-induced hepatoma Mc-29.  相似文献   

19.
Of the subcellular fractions of rat liver the endoplasmic reticulum was the most active in GDP-mannose: retinyl phosphate mannosyl-transfer activity. The synthesis of retinyl phosphate mannose reached a maximum at 20-30 min of incubation and declined at later times. Retinyl phosphate mannose and dolichyl phosphate mannose from endogenous retinyl phosphate and dolichyl phosphate could also be assayed in the endoplasmic reticulum. About 1.8 ng (5 pmol) of endogenous retinyl phosphate was mannosylated per mg of endoplasmic reticulum protein (15 min at 37 degrees C, in the presence of 5 mM-MnCl2), and about 0.15 ng (0.41 pmol) of endogenous retinyl phosphate was mannosylated with Golgi-apparatus membranes. About 20 ng (13.4 pmol) of endogenous dolichyl phosphate was mannosylated in endoplasmic reticulum and 4.5 ng (3 pmol) in Golgi apparatus under these conditions. Endoplasmic reticulum, but not Golgi-apparatus membranes, catalysed significant transfer of [14C]mannose to endogenous acceptor proteins in the presence of exogenous retinyl phosphate. Mannosylation of endogenous acceptors in the presence of exogenous dolichyl phosphate required the presence of Triton X-100 and could not be detected when dolichyl phosphate was solubilized in liposomes. Dolichyl phosphate mainly stimulated the incorporation of mannose into the lipid-oligosaccharide-containing fraction, whereas retinyl phosphate transferred mannose directly to protein.  相似文献   

20.
《The Journal of cell biology》1984,99(6):1917-1926
To study the assembly of newly synthesized lipids with apoprotein A1, we administered [2-3H]glycerol to young chickens and determined the hepatic intracellular sites of lipid synthesis and association of nascent lipids with apoprotein A1. [2-3H]glycerol was rapidly incorporated into hepatic lipids, reaching maximal levels at 5 min, and this preceded the appearance of lipid radioactivity in the plasma. The liver was fractionated into rough and smooth endoplasmic reticulum and Golgi cell fractions. The isolated cell fractions were further subfractionated into membrane and soluble (content) fractions by treatment with 0.1 M Na2CO3, pH 11.3. At various times, the lipid radioactivity was measured in each of the intracellular organelles, in immunoprecipitable apoprotein A1, and in materials that floated at buoyant densities similar to those of plasma lipoproteins. Maximal incorporation occurred at 1 min in the rough endoplasmic reticulum, at 3-5 min in the smooth endoplasmic reticulum, and at 5 min in the Golgi cell fractions. The majority (66-93%) of radioactive glycerol was incorporated into triglycerides with smaller (4-27%) amounts into phospholipids. About 80% of the lipid radioactivity in the endoplasmic reticulum and 70% of that in the Golgi cell fractions was in the membranes. The radioactive lipids in the content subfraction were distributed in various density classes with most nascent lipids floating at a density less than or equal to 1.063 g/ml. Apoprotein A1 from the Golgi apparatus, obtained by immunoprecipitation, contained sixfold more nascent lipids than did that from the endoplasmic reticulum. These data indicate that [2-3H]glycerol is quickly incorporated into lipids of the endoplasmic reticulum and the Golgi cell fractions, that most of the nascent lipids are conjugated with apoproteins A1 in the Golgi apparatus, and that very little association of nascent lipid to apoprotein A1 occurs in the endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号