首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heat-stable antigen (HSA) is a costimulatory molecule for T-cell activation. Its expression is strictly regulated during lymphocyte development and differentiation. Recent studies using HSA-transgenic mice have demonstrated that this regulated expression is critical for normal development of T and B lymphocytes. However, the mechanisms that control the expression of HSA are largely unknown. HSA mRNA is comprised of a 0.23-kb open reading frame and a 1.5-kb 3′ untranslated region (3′UTR). The function of the long 3′UTR has not been addressed. Here we investigate the role of the 3′UTR of HSA mRNA. We show that a 160-bp element, located in the region of nucleotides 1465 to 1625 in the 3′UTR of HSA mRNA, promotes RNA degradation and that this effect is neutralized by a 43-bp fragment approximately 1 kb upstream of the negative cis element. Both positive and negative cis elements in the HSA mRNA are distinct from other sequences that are known to modulate mRNA stability. These results provide direct evidence that the interplay between two novel cis elements in the 3′UTR of HSA mRNA determines cell surface HSA expression by modulating its RNA stability.  相似文献   

2.
Misalignment of repeated sequences during DNA replication can lead to deletions or duplications in genomic DNA. In Escherichia coli, such genetic rearrangements can occur at high frequencies, independent of the RecA-homologous recombination protein, and are sometimes associated with sister chromosome exchange (SCE). Two mechanisms for RecA-independent genetic rearrangements have been proposed: simple replication misalignment of the nascent strand and its template and SCE-associated misalignment involving both nascent strands. We examined the influence of the 3′ exonuclease of DNA polymerase III and exonuclease I on deletion via these mechanisms in vivo. Because mutations in these exonucleases stimulate tandem repeat deletion, we conclude that displaced 3′ ends are a common intermediate in both mechanisms of slipped misalignments. Our results also confirm the notion that two distinct mechanisms contribute to slipped misalignments: simple replication misalignment events are sensitive to DNA polymerase III exonuclease, whereas SCE-associated events are sensitive to exonuclease I. If heterologies are present between repeated sequences, the mismatch repair system dependent on MutS and MutH aborts potential deletion events via both mechanisms. Our results suggest that simple slipped misalignment and SCE-associated misalignment intermediates are similarly susceptible to destruction by the mismatch repair system.  相似文献   

3.
Polymerase chain reaction (PCR) amplification of multiple templates using common primers is used in a wide variety of molecular biological techniques. However, abundant templates sometimes obscure the amplification of minor species containing the same primer sequences. To overcome this challenge, we used oligoribonucleotides (ORNs) to inhibit amplification of undesired template sequences without affecting amplification of control sequences lacking complementarity to the ORNs. ORNs were effective at very low concentrations, with IC50 values for ORN-mediated suppression on the order of 10 nM. DNA polymerases that retain 3′–5′ exonuclease activity, such as KOD and Pfu polymerases, but not those that retain 5′–3′ exonuclease activity, such as Taq polymerase, could be used for ORN-mediated suppression. ORN interference-PCR (ORNi-PCR) technology should be a useful tool for both molecular biology research and clinical diagnosis.  相似文献   

4.

Background

The swordfish (Xiphias gladius) is a cosmopolitan large pelagic fish inhabiting tempered and tropical waters and it is a target species for fisheries all around the world. The present study investigated the ability of COI barcoding to reliably identify swordfish and particularly specific stocks of this commercially important species.

Methodology

We applied the classical DNA barcoding technology, upon a 682 bp segment of COI, and compared swordfish sequences from different geographical sources (Atlantic, Indian Oceans and Mediterranean Sea). The sequences of the 5′ hyper-variable fragment of the control region (5′dloop), were also used to validate the efficacy of COI as a stock-specific marker.

Case Report

This information was successfully applied to the discrimination of unknown samples from the market, detecting in some cases mislabeled seafood products.

Conclusions

The NJ distance-based phenogram (K2P model) obtained with COI sequences allowed us to correlate the swordfish haplotypes to the different geographical stocks. Similar results were obtained with 5′dloop. Our preliminary data in swordfish Xiphias gladius confirm that Cytochrome Oxidase I can be proposed as an efficient species-specific marker that has also the potential to assign geographical provenance. This information might speed the samples analysis in commercial application of barcoding.  相似文献   

5.
NotI linking clones contain sequences flanking NotI recognition sites and were previously shown to be tightly associated with CpG islands and genes. To directly assess the value of NotI clones in genome research, high density grids with 50 000 NotI linking clones originating from six representative NotI linking libraries were constructed. Altogether, these libraries contained nearly 100 times the total number of NotI sites in the human genome. A total of 3437 sequences flanking NotI sites were generated. Analysis of 3265 unique sequences demonstrated that 51% of the clones displayed significant protein similarity to SWISSPROT and TREMBL database proteins based on MSPcrunch filtering with stringent parameters. Of the 3265 sequences, 1868 (57.2%) were new sequences, not present in the EMBL and EST databases (similarity  90%). Among these new sequences, 795 (24.3%) showed similarity to known proteins and 712 (21.8%) displayed an identity of >75% at the nucleotide level to sequences from EMBL or EST databases. The remaining 361 (11.1%) sequences were completely new, i.e. <75% identical. The work also showed tight, specific association of NotI sites with the first exon and suggest that the so-called 3′ ESTs can actually be generated from 5′-ends of genes that contain NotI sites in their first exon.  相似文献   

6.
Thrombin-inhibiting DNA aptamers have already been obtained through the systematic evolution of ligands by exponential enrichment (SELEX). However, SELEX is a method that screens DNA aptamers that bind to their target molecules, and it sometimes fails to screen good inhibitors. Therefore, it is necessary to develop a method of screening DNA aptamers based on their inhibitory effects on the target molecules. We developed a novel method of detecting aptamers using an evolution-mimicking algorithm, and we applied it to the search of new aptamers which inhibit thrombin. First, we randomly designed and synthesized ten 15mer oligonucleotides presumed to form G-quartet structures, and then measured their thrombin-inhibiting activities. The aptamers showing high inhibitory activity were selected, and we shuffled and mutated those sequences in silico to generate 10 new sequences of next-generation aptamers. After repeating the cycle five times, we successfully obtained the same aptamers reported previously, and they showed high inhibitory activity. In addition, we added 8mer oligonucleotides to both the 5′ and the 3′ end of the selected 15mer aptamers, and then repeated the evolution in silico. After two cycles, we were able to obtain aptamers with higher inhibitory activity than that of the 15mer aptamers.  相似文献   

7.
We have developed a method that allows quantitative amplification of single-stranded DNA (QAOS) in a sample that is primarily double-stranded DNA (dsDNA). Single-stranded DNA (ssDNA) is first captured by annealing a tagging primer at low temperature. Primer extension follows to create a novel, ssDNA-dependent, tagged molecule that can be detected by PCR. Using QAOS levels of between 0.2 and 100% ssDNA can be accurately quantified. We have used QAOS to characterise ssDNA levels at three loci near the right telomere of chromosome V in budding yeast cdc13-1 mutants. Our results confirm and extend previous studies which demonstrate that when Cdc13p, a telomere-binding protein, is disabled, loci close to the telomere become single stranded whereas centromere proximal sequences do not. In contrast to an earlier model, our new results are consistent with a model in which a RAD24-dependent, 5′ to 3′ exonuclease moves from the telomere toward the centromere in cdc13-1 mutants. QAOS has been adapted, using degenerate tagging primers, to preferentially amplify all ssDNA sequences within samples that are primarily dsDNA. This approach may be useful for identifying ssDNA sequences associated with physiological or pathological states in other organisms.  相似文献   

8.
In vitro compartmentalisation (IVC), a technique for selecting genes encoding enzymes based on compartmentalising gene translation and enzymatic reactions in emulsions, was used to investigate the interaction of the DNA cytosine-5 methyltransferase M.HhaI with its target DNA (5′-GCGC-3′). Crystallog raphy shows that the active site loop from the large domain of M.HhaI interacts with a flipped-out cytosine (the target for methylation) and two target recognition loops (loops I and II) from the small domain make almost all the other base-specific interactions. A library of M.HhaI genes was created by randomising all the loop II residues thought to make base-specific interactions and directly determine target specificity. The library was selected for 5′-GCGC-3′ methylation. Interestingly, in 11 selected active clones, 10 different sequences were found and none were wild-type. At two of the positions mutated (Ser252 and Tyr254) a number of different amino acids could be tolerated. At the third position, however, all active mutants had a glycine, as in wild-type M.HhaI, suggesting that Gly257 is crucial for DNA recognition and enzyme activity. Our results suggest that recognition of base pairs 3 and 4 of the target site either relies entirely on main chain interactions or that different residues from those identified in the crystal structure contribute to DNA recognition.  相似文献   

9.
CRISPR-Cas immune systems function to defend prokaryotes against potentially harmful mobile genetic elements including viruses and plasmids. The multiple CRISPR-Cas systems (Types I, II, and III) each target destruction of foreign nucleic acids via structurally and functionally diverse effector complexes (crRNPs). CRISPR-Cas effector complexes are comprised of CRISPR RNAs (crRNAs) that contain sequences homologous to the invading nucleic acids and Cas proteins specific to each immune system type. We have previously characterized a crRNP in Pyrococcus furiosus (Pfu) that contains Cmr (Type III-B) Cas proteins associated with one of two size classes of crRNAs and cleaves complementary target RNAs. Here, we have isolated and characterized two additional native Pfu crRNPs containing either Csa (Type I-A) or Cst (Type I-G) Cas proteins and distinct profiles of associated crRNAs. For each complex, the Cas proteins were identified by mass spectrometry and immunoblotting and the crRNAs by RNA sequencing and Northern blot analysis. The crRNAs associated with both the Csa and Cst complexes originate from all seven Pfu CRISPR loci and contain identical 5′ ends (8-nt repeat-derived 5′ tag sequences) but heterogeneous 3′ ends (containing variable amounts of downstream repeat sequences). These crRNA forms are distinct from Cmr-associated crRNAs, indicating different 3′ end processing pathways following primary cleavage of common pre-crRNAs. Like other previously characterized Type I CRISPR-Cas effector complexes, we predict that the newly identified Pfu Csa and Cst crRNPs each function to target invading DNA, adding an additional layer of protection beyond that afforded by the previously characterized RNA targeting Cmr complex.  相似文献   

10.
Telomeres are DNA repeated sequences that associate with shelterin proteins and protect the ends of eukaryotic chromosomes. Human telomeres are composed of 5′TTAGGG repeats and ends with a 3′ single-stranded tail, called G-overhang, that can be specifically bound by the shelterin protein hPOT1 (human Protection of Telomeres 1). In vitro studies have shown that the telomeric G-strand can fold into stable contiguous G-quadruplexes (G4). In the present study we investigated how hPOT1, in complex with its shelterin partner TPP1, binds to telomeric sequences structured into contiguous G4 in potassium solutions. We observed that binding of multiple hPOT1–TPP1 preferentially proceeds from 3′ toward 5′. We explain this directionality in terms of two factors: (i) the preference of hPOT1–TPP1 for the binding site situated at the 3′ end of a telomeric sequence and (ii) the cooperative binding displayed by hPOT1–TPP1 in potassium. By comparing binding in K+ and in Li+, we demonstrate that this cooperative behaviour does not stem from protein-protein interactions, but from structuring of the telomeric DNA substrate into contiguous G4 in potassium. Our study suggests that POT1-TPP1, in physiological conditions, might preferentially cover the telomeric G-overhang starting from the 3′-end and proceeding toward 5′.  相似文献   

11.
Most epigenetic studies assess methylation of 5′-CpG-3′ sites but recent evidence indicates that non-CpG cytosine methylation occurs at high levels in humans and other species. This is most prevalent at 5′-CHG-3′, where H = A, C or T, and it preferentially occurs at 5′-CpA-3′ and 5′-CpT-3′ sites. With the goal of facilitating the detection of non-CpG methylation, the restriction endonucleases ApeKI, BbvI, EcoP15I, Fnu4HI, MwoI and TseI were assessed for their sensitivity to 5-methylcytosine at GpCpA, GpCpT, GpCpC or GpCpG sites, where methylation is catalyzed by the DNA 5-cytosine 5′-GpC-3′ methyltransferase M.CviPI. We tested a variety of sequences including various plasmid-based sites, a cloned disease-associated (CAG)83•(CTG)83 repeat and in vitro synthesized tracts of only (CAG)500•(CTG)500 or (CAG)800•(CTG)800. The repeat tracts are enriched for the preferred CpA and CpT motifs. We found that none of the tested enzymes can cleave their recognition sequences when they are 5′-GpC-3′ methylated. A genomic site known to convert its non-CpG methylation levels upon C2C12 differentiation was confirmed through the use of these enzymes. These enzymes can be useful in rapidly and easily determining the most common non-CpG methylation status in various sequence contexts, as well as at expansions of (CAG)n•(CTG)n repeat tracts associated with diseases like myotonic dystrophy and Huntington disease.Key words: non-CpG methylation, CpG methylation, 5-methylcytosine, trinucleotide repeats, ApeKI, BbvI, EcoP151, Fnu4HI, MwoI and TseI  相似文献   

12.
Recombinant plasmids containing highly repetitive Physarum DNA segments were identified by colony hybridisation using a radioactively-labelled total Physarum DNA probe. A large number of these clones also hybridised to a foldback DNA probe purified from Physarum nuclear DNA. The foldback DNA probe was characterised by reassociation kinetic analysis. About one-half of this component was shown to consist of highly repeated sequences with a kinetic complexity of 1100 bp and an average repetition frequency of 5200. Direct screening of 67 recombinant plasmids for foldback sequences using the electron microscope revealed that about one-half were located in segments of DNA containing highly repetitive sequences; the remainder were present in clones containing low-copy number repeated elements. Analysis of two DNA clones showed that they contained repetitive elements located in over half of all DNA segments containing highly repetitive DNA and that the foci containing these highly repetitive sequences had different sequence arrangements. The results are consistent with the hypothesis that the most highly repeated DNA sequence families in the Physarum genome are few in number and are clustered together in different arrangements in about one-sixth of the genome. Over one-half of the foldback DNA complement in the Physarum genome is derived from these segments of DNA.  相似文献   

13.
Transformation-associated recombination (TAR) is a cloning technique that allows specific chromosomal regions or genes to be isolated directly from genomic DNA without prior construction of a genomic library. This technique involves homologous recombination during spheroplast transformation between genomic DNA and a TAR vector that has 5′ and 3′ gene targeting sequences (hooks). Typically, TAR cloning produces positive YAC recombinants at a frequency of ~0.5%; the positive clones are identified by PCR or colony hybridization. This paper describes a novel TAR cloning procedure that selects positive clones by positive and negative genetic selection. This system utilizes a TAR vector with two targeting hooks, HIS3 as a positive selectable marker, URA3 as a negative selectable marker and a gene-specific sequence called a loop sequence. The loop sequence lies distal to a targeting hook sequence in the chromosomal target, but proximal to the targeting hook and URA3 in the TAR vector. When this vector recombines with chromosomal DNA at the gene-specific targeting hook, the recombinant YAC product carries two copies of the loop sequence, therefore, the URA3 negative selectable marker becomes mitotically unstable and is lost at high frequency by direct repeat recombination involving the loop sequence. Positive clones are identified by selecting against URA3. This method produces positive YAC recombinants at a frequency of ~40%. This novel TAR cloning method provides a powerful tool for structural and functional analysis of complex genomes.  相似文献   

14.
Clustered regularly interspaced short palindromic repeats (CRISPR) in combination with associated sequences (cas) constitute the CRISPR-Cas immune system, which uptakes DNA from invasive genetic elements as novel “spacers” that provide a genetic record of immunization events. We investigated the potential of CRISPR-based genotyping of Lactobacillus buchneri, a species relevant for commercial silage, bioethanol, and vegetable fermentations. Upon investigating the occurrence and diversity of CRISPR-Cas systems in Lactobacillus buchneri genomes, we observed a ubiquitous occurrence of CRISPR arrays containing a 36-nucleotide (nt) type II-A CRISPR locus adjacent to four cas genes, including the universal cas1 and cas2 genes and the type II signature gene cas9. Comparative analysis of CRISPR spacer content in 26 L. buchneri pickle fermentation isolates associated with spoilage revealed 10 unique locus genotypes that contained between 9 and 29 variable spacers. We observed a set of conserved spacers at the ancestral end, reflecting a common origin, as well as leader-end polymorphisms, reflecting recent divergence. Some of these spacers showed perfect identity with phage sequences, and many spacers showed homology to Lactobacillus plasmid sequences. Following a comparative analysis of sequences immediately flanking protospacers that matched CRISPR spacers, we identified a novel putative protospacer-adjacent motif (PAM), 5′-AAAA-3′. Overall, these findings suggest that type II-A CRISPR-Cas systems are valuable for genotyping of L. buchneri.  相似文献   

15.
[13C6]salicylate, [U-13C]naphthalene, and [U-13C]phenanthrene were synthesized and separately added to slurry from a bench-scale, aerobic bioreactor used to treat soil contaminated with polycyclic aromatic hydrocarbons. Incubations were performed for either 2 days (salicylate, naphthalene) or 7 days (naphthalene, phenanthrene). Total DNA was extracted from the incubations, the “heavy” and “light” DNA were separated, and the bacterial populations associated with the heavy fractions were examined by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone libraries. Unlabeled DNA from Escherichia coli K-12 was added to each sample as an internal indicator of separation efficiency. While E. coli was not detected in most analyses of heavy DNA, a low number of E. coli sequences was recovered in the clone libraries associated with the heavy DNA fraction of [13C]phenanthrene incubations. The number of E. coli clones recovered proved useful in determining the relative amount of light DNA contamination of the heavy fraction in that sample. Salicylate- and naphthalene-degrading communities displayed similar DGGE profiles and their clone libraries were composed primarily of sequences belonging to the Pseudomonas and Ralstonia genera. In contrast, heavy DNA from the phenanthrene incubations displayed a markedly different DGGE profile and was composed primarily of sequences related to the Acidovorax genus. There was little difference in the DGGE profiles and types of sequences recovered from 2- and 7-day incubations with naphthalene, so secondary utilization of the 13C during the incubation did not appear to be an issue in this experiment.  相似文献   

16.
We have examined binding of the CREB B-ZIP protein domain to double-stranded DNA containing a consensus CRE sequence (5′-TGACGTCA-3′), the related PAR, C/EBP and AP-1 sequences and the unrelated SP1 sequence. DNA binding was assayed in the presence or absence of MgCl2 and/or KCl using two methods: circular dichroism (CD) spectroscopy and electrophoretic mobility shift assay (EMSA). The CD assay allows us to measure equilibrium binding in solution. Thermal denaturation in 150 mM KCl indicates that the CREB B-ZIP domain binds all the DNA sequences, with highest affinity for the CRE site, followed by the PAR (5′-TAACGTTA-3′), C/EBP (5′-TTGCGCAA-3′) and AP-1 (5′-TGAGTCA-3′) sites. The addition of 10 mM MgCl2 diminished DNA binding to the CRE and PAR DNA sequences and abolished binding to the C/EBP and AP-1 DNA sequences, resulting in more sequence-specific DNA binding. Using ‘standard’ EMSA conditions (0.25× TBE), CREB bound all the DNA sequences examined. The CREB–CRE complex had an apparent Kd of ~300 pM, PAR of ~1 nM, C/EBP and AP-1 of ~3 nM and SP1 of ~30 nM. The addition of 10 mM MgCl2 to the polyacrylamide gel dramatically altered sequence-specific DNA binding. CREB binding affinity for CRE DNA decreased 3-fold, but binding to the other DNA sequences decreased >1000-fold. In the EMSA, addition of 150 mM KCl to the gels had an effect similar to MgCl2. The magnesium concentration needed to prevent non-specific electrostatic interactions between CREB and DNA in solution is in the physiological range and thus changes in magnesium concentration may be a cellular signal that regulates gene expression.  相似文献   

17.
The formation of triplex DNA is a site-specific recognition method that directly targets duplex DNA. However, triplex DNA formation is generally formed for the GC and AT base pairs of duplex DNA, and there are no natural nucleotides that recognize the CG and TA base pairs, or even the 5-methyl-CG (5mCG) base pair. Moreover, duplex DNA, including 5mCG base pairs, epigenetically regulates gene expression in vivo, and thus targeting strategies are of biological importance. Therefore, the development of triplex-forming oligonucleotides (TFOs) with artificial nucleosides that selectively recognize these base pairs with high affinity is needed. We recently reported that 2′-deoxy-2-aminonebularine derivatives exhibited the ability to recognize 5mCG and CG base pairs in triplex formation; however, this ability was dependent on sequences. Therefore, we designed and synthesized new nucleoside derivatives based on the 2′-deoxy-nebularine (dN) skeleton to shorten the linker length connecting to the hydrogen-bonding unit in formation of the antiparallel motif triplex. We successfully demonstrated that TFOs with 2-guanidinoethyl-2′-deoxynebularine (guanidino-dN) recognized 5mCG and CG base pairs with very high affinity in all four DNA sequences with different adjacent nucleobases of guanidino-dN as well as in the promoter sequences of human genes containing 5mCG base pairs with a high DNA methylation frequency.  相似文献   

18.
Very-short-patch repair (Vsr) enzymes occur in a variety of bacteria, where they initiate nucleotide excision repair of G:T mismatches arising by deamination of 5-methyl-cytosines in specific regulatory sequences. We have now determined the structure of the archetypal dcm-Vsr endonuclease from Escherichia coli bound to the cleaved authentic hemi-deaminated/hemi-methylated dcm sequence 5′-C-OH-3′ 5′-p-T-p-A-p-G-p-G-3′/3′-G-p-G-p-T-pMe5C-p-C formed by self-assembly of a 12mer oligonucleotide into a continuous nicked DNA superhelix. The structure reveals the presence of a Hoogsteen base pair within the deaminated recognition sequence and the substantial distortions of the DNA that accompany Vsr binding to product sites.  相似文献   

19.
Biosynthesis reprograming is an important way to diversify chemical structures. The large repetitive DNA sequences existing in polyketide synthase genes make seamless DNA manipulation of the polyketide biosynthetic gene clusters extremely challenging. In this study, to replace the ethyl group attached to the C-21 of the macrolide insecticide spinosad with a butenyl group by refactoring the 79-kb gene cluster, we developed a RedEx method by combining Redαβ mediated linear-circular homologous recombination, ccdB counterselection and exonuclease mediated in vitro annealing to insert an exogenous extension module in the polyketide synthase gene without any extra sequence. RedEx was also applied for seamless deletion of the rhamnose 3′-O-methyltransferase gene in the spinosad gene cluster to produce rhamnosyl-3′-desmethyl derivatives. The advantages of RedEx in seamless mutagenesis will facilitate rational design of complex DNA sequences for diverse purposes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号