首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the major pathological hallmarks of transmissible spongiform encephalopathies (TSEs) is the accumulation of a pathogenic (scrapie) isoform (PrP(Sc)) of the cellular prion protein (PrP(C)) primarily in the central nervous system. The synthetic prion peptide PrP106-126 shares many characteristics with PrP(Sc) in that it shows PrP(C)-dependent neurotoxicity both in vivo and in vitro. Moreover, PrP106-126 in vitro neurotoxicity has been closely associated with the ability to form fibrils. Here, we studied the in vivo neurotoxicity of molecular variants of PrP106-126 toward retinal neurons using electroretinographic recordings in mice after intraocular injections of the peptides. We found that amidation and structure relaxation of PrP106-126 significantly reduced the neurotoxicity in vivo. This was also found in vitro in primary neuronal cultures from mouse and rat brain. Thioflavin T binding studies showed that amidation and structure relaxation significantly reduced the ability of PrP106-126 to attain fibrillar structures in physiological salt solutions. This study hence supports the assumption that the neurotoxic potential of PrP106-126 is closely related to its ability to attain secondary structure.  相似文献   

2.
Kouadir M  Yang L  Tan R  Shi F  Lu Y  Zhang S  Yin X  Zhou X  Zhao D 《PloS one》2012,7(1):e30756
Microglial activation is a characteristic feature of the pathogenesis of prion diseases. The molecular mechanisms that underlie prion-induced microglial activation are not very well understood. In the present study, we investigated the role of the class B scavenger receptor CD36 in microglial activation induced by neurotoxic prion protein (PrP) fragment 106-126 (PrP(106-126)). We first examined the time course of CD36 mRNA expression upon exposure to PrP(106-126) in BV2 microglia. We then analyzed different parameters of microglial activation in PrP(106-126)-treated cells in the presence or not of anti-CD36 monoclonal antibody (mAb). The cells were first incubated for 1 h with CD36 monoclonal antibody to block the CD36 receptor, and were then treated with neurotoxic prion peptides PrP(106-126). The results showed that PrP(106-126) treatment led to a rapid yet transitory increase in the mRNA expression of CD36, upregulated mRNA and protein levels of proinflammatory cytokines (IL-1β, IL-6 and TNF-α), increased iNOS expression and nitric oxide (NO) production, stimulated the activation of NF-κB and caspase-1, and elevated Fyn activity. The blockade of CD36 had no effect on PrP(106-126)-stimulated NF-κB activation and TNF-α protein release, abrogated the PrP(106-126)-induced iNOS stimulation, downregulated IL-1β and IL-6 expression at both mRNA and protein levels as well as TNF-α mRNA expression, decreased NO production and Fyn phosphorylation, reduced caspase-1 cleavage induced by moderate PrP(106-126)-treatment, but had no effect on caspase-1 activation after treatment with a high concentration of PrP(106-126). Together, these results suggest that CD36 is involved in PrP(106-126)-induced microglial activation and that the participation of CD36 in the interaction between PrP(106-126) and microglia may be mediated by Src tyrosine kinases. Our findings provide new insights into the mechanisms underlying the activation of microglia by neurotoxic prion peptides and open perspectives for new therapeutic strategies for prion diseases by modulation of CD36 signaling.  相似文献   

3.
Prion diseases are neurodegenerative disorders characterized by the accumulation of a disease-associated prion protein and apoptotic neuronal death. Previous studies indicated that the ubiquitous expression of c-Abl tyrosine kinase transduces a variety of extrinsic and intrinsic cellular signals. In this study, we demonstrated that a synthetic neurotoxic prion fragment (PrP106-126) activated c-Abl tyrosine kinase, which in turn triggered the upregulation of MST1 and BIM, suggesting the activation of the c-Abl-BIM signaling pathway. The peptide fragment was found to result in cell death via mitochondrial dysfunction in neuron cultures. Knockdown of c-Abl using small interfering RNA protected neuronal cells from PrP106-126-induced mitochondrial dysfunction, production of reactive oxygen species, and apoptotic events inducing translocation of Bax to the mitochondria, cytochrome c release into the cytosol, and activation of caspase-9 and caspase-3. Blocking the c-Abl tyrosine kinase also prevented neuronal cells from PrP106-126-induced apoptotic morphological changes. This is the first study reporting that c-Abl tyrosine kinase as a novel upstream activator of MST1 and BIM plays an important role in prion-induced neuron apoptosis via mitochondrial dysfunction. Our findings suggest that c-Abl tyrosine kinase is a potential therapeutic target for prion disease.  相似文献   

4.
The prion diseases are neurodegenerative disorders characterized by the conversion of the PrPc (normal cellular prion) to the PrPsc (misfolded isoform). The accumulation of PrPsc within the central nervous system (CNS) leads to neurocytotoxicity by increasing oxidative stress. In addition, many neurodegenerative disorders including prion, Parkinson’s and Alzheimer’s diseases may be regulated by cholesterol homeostasis. The effects of cholesterol balance on prion protein-mediated neurotoxicity and ROS (reactive oxygen species) generation were the focus of this study. Cholesterol treatment inhibited PrP (106-126)-induced neuronal cell death and ROS generation in SH-SY5Y neuroblastoma cells. In addition, the PrP (106-126)-mediated increase of p53, p-p38, p-ERK and the decrease of Bcl-2 were blocked by cholesterol treatment. These results indicated that cellular cholesterol enrichment is a key regulator of PrP-106-126-mediated oxidative stress and neurotoxicity. Taken together, the results of this study suggest that modulation of cellular cholesterol appears to prevent the neuronal cell death caused by prion peptides.  相似文献   

5.
6.
Gouffi K  Santini CL  Wu LF 《FEBS letters》2002,522(1-3):65-70
Misfolding of the prion protein yields amyloidogenic isoforms, and it shows exacerbating neuronal damage in neurodegenerative disorders including prion diseases. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) potently stimulate neuritogenesis and survival of neuronal cells in the central nervous system. Here, we tested these neuropeptides on neurotoxicity in PC12 cells induced by the prion protein fragment 106-126 [PrP (106-126)]. Concomitant application of neuropeptide with PrP(106-126) (5x10(-5) M) inhibited the delayed death of neuron-like PC12 cells. In particular, PACAP27 inhibited the neurotoxicity of PrP(106-126) at low concentrations (>10(-15) M), characterized by the deactivation of PrP(106-126)-stimulated caspase-3. The neuroprotective effect of PACAP27 was antagonized by the selective PKA inhibitor, H89, or the MAP kinase inhibitor, U0126. These results suggest that PACAP27 attenuates PrP(106-126)-induced delayed neurotoxicity in PC12 cells by activating both PKA and MAP kinases mediated by PAC1 receptor.  相似文献   

7.
The neurodegeneration seen in spongiform encephalopathies is believed to be mediated by protease-resistant forms of the prion protein (PrP). A peptide encompassing residues 106-126 of human PrP has been shown to be neurotoxic in vitro. The neurotoxicity of PrP106-126 appears to be dependent upon its adoption of an aggregated fibril structure. To examine the role of the hydrophobic core, AGAAAAGA, on PrP106-126 toxicity, we performed structure-activity analyses by substituting two or more hydrophobic residues for the hydrophilic serine residue to decrease its hydrophobicity. A peptide with a deleted alanine was also synthesized. We found all the peptides except the deletion mutant were no longer toxic on mouse cerebellar neuronal cultures. Circular dichroism analysis showed that the nontoxic PrP peptides had a marked decrease in beta-sheet structure. In addition, the mutants had alterations in aggregability as measured by turbidity, Congo red binding, and fibril staining using electron microscopy. These data show that the hydrophobic core sequence is important for PrP106-126 toxicity probably by influencing its assembly into a neurotoxic structure. The hydrophobic sequence may similarly affect aggregation and toxicity observed in prion diseases.  相似文献   

8.
The fibrillogenic peptide corresponding to the residues 106-126 of the prion protein sequence (PrP 106-126) is largely used to explore the neurotoxic mechanisms underlying the prion disease. However, whether the neuronal toxicity of PrP 106-126 is caused by a soluble or fibrillar form of this peptide is still unknown. The aim of this study was to correlate the structural state of this peptide with its neurotoxicity. Here we show that the two conserved Gly114 and Gly119 residues, in force of their intrinsic flexibility, prevent the peptide assuming a structured conformation, favouring its aggregation in amyloid fibrils. The substitution of both Gly114 and Gly119 with alanine residues (PrP 106-126 AA mutated peptide) reduces the flexibility of this prion fragment and results in a soluble, beta-structured peptide. Moreover, PrP 106-126 AA fragment was highly toxic when incubated with neuroblastoma cells, likely behaving as a neurotoxic protofibrillar intermediate of the wild-type PrP 106-126. These data further confirm that the fibrillar aggregation is not necessary for the induction of the toxic effects of PrP 106-126.  相似文献   

9.
Direct interaction between endogenous cellular prion protein (PrP(C)) and misfolded, disease-associated (PrP(Sc)) conformers is a key event in prion propagation, which precedes templated conversion of PrP(C) into nascent PrP(Sc) and prion infectivity. Although almost none of the molecular details of this pivotal process are understood, the persistence of individual prion strains suggests that assembly of the prion replicative complex is mechanistically precise. To systematically map defined regions of PrP(C) sequence that bind tightly to PrP(Sc), we have generated a comprehensive panel of over 45 motif-grafted antibodies containing overlapping peptide grafts collectively spanning PrP residues 19-231. Grafted antibody binding experiments, performed under stringent conditions, clearly identified only three distinct and independent high affinity PrP(Sc) recognition motifs. The first of these binding motifs lies at the very N-terminal region of the mature PrP molecule within PrP-(23-33); the second motif lies within PrP-(98-110); and the third is contained within PrP-(136-158). Mutational analyses of these PrP(Sc)-binding regions revealed that reactivity of the 23-33 and 98-110 segments are largely dependent upon the presence of multiple positively charged amino acid residues. These studies yield new insight into critical peptidic components composing one side of the prion replicative interface.  相似文献   

10.
Dendritic cells (DC) of the CD11c(+) myeloid phenotype have been implicated in the spread of scrapie in the host. Previously, we have shown that CD11c(+) DC can cause a rapid degradation of proteinase K-resistant prion proteins (PrP(Sc)) in vitro, indicating a possible role of these cells in the clearance of PrP(Sc). To determine the mechanisms of PrP(Sc) degradation, CD11c(+) DC that had been exposed to PrP(Sc) derived from a neuronal cell line (GT1-1) infected with scrapie (ScGT1-1) were treated with a battery of protease inhibitors. Following treatment with the cysteine protease inhibitors (2S,3S)-trans-epoxysuccinyl-L-leucylamido-3-methylbutane (E-64c), its ethyl ester (E-64d), and leupeptin, the degradation of PrP(Sc) was inhibited, while inhibitors of serine and aspartic and metalloproteases (aprotinin, pepstatin, and phosphoramidon) had no effect. An endogenous degradation of PrP(Sc) in ScGT1-1 cells was revealed by inhibiting the expression of cellular PrP (PrP(C)) by RNA interference, and this degradation could also be inhibited by the cysteine protease inhibitors. Our data show that PrP(Sc) is proteolytically cleaved preferentially by cysteine proteases in both CD11c(+) DC and ScGT1-1 cells and that the degradation of PrP(Sc) by proteases is different from that of PrP(C). Interference by protease inhibitors with DC-induced processing of PrP(Sc) has the potential to modify prion spread, clearance, and immunization in a host.  相似文献   

11.
Currently, no treatment can prevent the cognitive and motor decline associated with widespread neurodegeneration in prion disease. However, we previously showed that targeting endogenous neuronal prion protein (PrP(C)) (the precursor of its disease-associated isoform, PrP(Sc)) in mice with early prion infection reversed spongiform change and prevented clinical symptoms and neuronal loss. We now show that cognitive and behavioral deficits and impaired neurophysiological function accompany early hippocampal spongiform pathology. Remarkably, these behavioral and synaptic impairments recover when neuronal PrP(C) is depleted, in parallel with reversal of spongiosis. Thus, early functional impairments precede neuronal loss in prion disease and can be rescued. Further, they occur before extensive PrP(Sc) deposits accumulate and recover rapidly after PrP(C) depletion, supporting the concept that they are caused by a transient neurotoxic species, distinct from aggregated PrP(Sc). These data suggest that early intervention in human prion disease may lead to recovery of cognitive and behavioral symptoms.  相似文献   

12.
The prion protein (PrP) is a Cu2+-binding cell-surface glycoprotein. Using various PrP fragments and spectroscopic techniques, we show that two Cu2+ ions bind to a region between residues 90 and 126. This region incorporates the neurotoxic portion of PrP, vital for prion propagation in transmissible spongiform encephalopathies. Pentapeptides PrP-(92-96) and PrP-(107-111) represent the minimum motif for Cu2+ binding to the PrP-(90-126) fragment. Consequently, we were surprised that the appearance of the visible CD spectra for two fragments of PrP, residues 90-126 and 91-115, are very different. We have shown that these differences do not arise from a change in the co-ordination geometry within the two fragments; rather, there is a change in the relative preference for the two binding sites centred at His111 and His96. These preferences are metal-, pH- and chain-length dependent. CD indicates that Cu2+ initially fills the site at His111 within the PrP-(90-126) fragment. The pH-dependence of the Cu2+ co-ordination is studied using EPR, visible CD and absorption spectroscopy. We present evidence that, at low pH (5.5) and sub-stoichiometric amounts of Cu2+, a multiple histidine complex forms, but, at neutral pH, Cu2+ binds to individual histidine residues. We have shown that changes in pH and levels of extracellular Cu2+ will affect the co-ordination mode, which has implications for the affinity, folding and redox properties of Cu-PrP.  相似文献   

13.
The cytotoxicity of aged PrP(106-126) was examined using an immortalized prion protein (PrP) gene-deficient neuronal cell line. The N-terminal half of the hydrophobic region (HR) but not the octapeptide repeat (OR) of PrP was required for aged PrP(106-126) neurotoxicity, suggesting that neurotoxic signals of aged PrP(106-126) are mediated by this region.  相似文献   

14.
Prion Protein Peptide Neurotoxicity Can Be Mediated by Astrocytes   总被引:1,自引:0,他引:1  
A peptide based on amino acids 106-126 of the sequence of human prion protein (PrP106-126) is neurotoxic in culture. A role for astrocytes mediating PrP106-126 toxicity was investigated. The toxicity of PrP106-126 to cerebellar cell cultures was reduced by aminoadipate, a gliotoxin. Normally, PrP106-126 is not toxic to cultures containing neurones deficient in the cellular isoform of prion protein (PrPc). However, PrP106-126 was toxic to cerebellar cells derived from Prnp(0/0) mice (deficient in PrPc expression) when those cerebellar cells were cocultured with astrocytes. This toxicity was found to occur only in the presence of PrPc-positive astrocytes and to be mediated by glutamate. Furthermore, PrPc-positive astrocytes were shown to protect Prnp(0/0) cerebellar cells from glutamate toxicity. This effect could be inhibited by PrP106-126. PrP106-126 did not enhance the toxicity of glutamate to neurones directly. When cerebellar cells were cocultured with astrocytes, the neurones became dependent on astrocytes for protection from glutamate toxicity and expressed an increased sensitivity to glutamate. In such a system, the protective effects of astrocytes against glutamate toxicity to neurones were inhibited by PrP106-126, resulting in a greater reduction in neuronal survival than would have been caused by PrP106-126 when astrocytes were not present. This new model provides a possible mechanism by which the gliosis in prion disease may accelerate the neurodegeneration seen in the later stages of the disease.  相似文献   

15.
16.
Site-directed monoclonal antibodies (mAbs) may interact with their antigens, leading to stabilization, refolding, and suppression of aggregation. In the following study, we show that mAbs raised against the peptide 106-126 of human prion protein (PrP 106-126) modulate the conformational changes occurring in the peptide exposed to aggregation conditions. MAbs 3-11 and 2-40 prevent PrP 106-126's fibrillar aggregation, disaggregates already formed aggregates, and inhibits the peptide's neurotoxic effect on the PC12 cells system, while mAb 3F4 has no protective effect. We suggest that there are key positions within the PrP 106-126 molecule where unfolding is initiated and their locking with specific antibodies may maintain the prion peptide native structure, reverse the aggregated peptide conformation, and lead to rearrangements involved in the essential feature of prion diseases.  相似文献   

17.
Elucidation of structure and biological properties of the prion protein scrapie (PrP(Sc)) is fundamental to an understanding of the mechanism of conformational transition of cellular (PrP(C)) into disease-specific isoforms and the pathogenesis of prion diseases. Unfortunately, the insolubility and heterogeneity of PrP(Sc) have limited these studies. The observation that a construct of 106 amino acids (termed PrP106 or miniprion), derived from mouse PrP and containing two deletions (Delta 23-88, Delta 141-176), becomes protease-resistant when expressed in scrapie-infected neuroblastoma cells and sustains prion replication when expressed in PrP(0/0) mice prompted us to generate a corresponding synthetic peptide (sPrP106) to be used for biochemical and cell culture studies. sPrP106 was obtained successfully with a straightforward procedure, which combines classical stepwise solid phase synthesis with a purification strategy based on transient labeling with a lipophilic chromatographic probe. sPrP106 readily adopted a beta-sheet structure, aggregated into branched filamentous structures without ultrastructural and tinctorial properties of amyloid, exhibited a proteinase K-resistant domain spanning residues 134-217, was highly toxic to primary neuronal cultures, and induced a remarkable increase in membrane microviscosity. These features are central properties of PrP(Sc) and make sPrP106 an excellent tool for investigating the molecular basis of the conformational conversion of PrP(C) into PrP(Sc) and prion disease pathogenesis.  相似文献   

18.
19.
The molecular basis for neuronal death in prion disease is not established, but putative pathogenic roles for both disease-related prion protein (PrP(Sc)) and accumulated cytosolic PrP(C) have been proposed. Here we report that only prion-infected neuronal cells become apoptotic after mild inhibition of the proteasome, and this is strictly dependent upon sustained propagation of PrP(Sc). Whereas cells overexpressing PrP(C) developed cytosolic PrP(C) aggregates, this did not cause cell death. In contrast, only in prion-infected cells, mild proteasome impairment resulted in the formation of large cytosolic perinuclear aggresomes that contained PrP(Sc), heat shock chaperone 70, ubiquitin, proteasome subunits, and vimentin. Similar structures were found in the brains of prion-infected mice. PrP(Sc) aggresome formation was directly associated with activation of caspase 3 and 8, resulting in apoptosis. These data suggest that neuronal propagation of prions invokes a neurotoxic mechanism involving intracellular formation of PrP(Sc) aggresomes. This, in turn, triggers caspase-dependent apoptosis and further implicates proteasome dysfunction in the pathogenesis of prion diseases.  相似文献   

20.
The immune system plays an important role in facilitating the spread of prion infections from the periphery to the central nervous system. CD11c(+) myeloid dendritic cells (DC) could, due to their subepithelial location and their migratory capacity, be early targets for prion infection and contribute to the spread of infection. In order to analyze mechanisms by which these cells may affect prion propagation, we studied in vitro the effect of exposing such DC to scrapie-infected GT1-1 cells, which produce the scrapie prion protein PrP(Sc). In this system, the DC efficiently engulfed the infected GT1-1 cells. Unexpectedly, PrP(Sc), which is generally resistant to protease digestion, was processed and rapidly degraded. Based on this observation we speculate that CD11c(+) DC may play a dual role in prion infections: on one hand they may facilitate neuroinvasion by transfer of the infectious agent as suggested from in vivo studies, but on the other hand they may protect against the infection by causing an efficient degradation of PrP(Sc). Thus, the migrating and highly proteolytic CD11c(+) myeloid DC may affect the balance between propagation and clearance of PrP(Sc) in the organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号