首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adenylate cyclase present in membranes prepared from sea urchin eggs is sensitive to dopamine stimulation. The receptor sites coupled to sea urchin adenylate cyclase were characterized by means of specific agonists and antagonists. The D-1 dopamine agonist SKF-38393 was able to stimulate enzyme activity, while the two D-1 dopamine antagonists, SCH-23390 and SKF-83566, suppressed the stimulatory effect of dopamine. In addition, the D-2 dopamine agonists, PPHT and metergoline, brought about a dose-dependent inhibition of dopamine-stimulated adenylate cyclase activity. These data show that: (i) in sea urchin eggs adenylate cyclase is regulated by dopamine receptors; (ii) these receptors share characteristics with D-1 and D-2 dopamine receptors present in the mammalian brain.  相似文献   

2.
The response of adenylate cyclase to GTP and to dopamine (DA) was investigated in synaptic plasma membranes isolated from rat striatum injected with pertussis toxin, which inactivates the inhibitory guanine nucleotide-binding regulatory protein (Ni) of adenylate cyclase. Pertussis toxin treatment reverted the inhibitory effects on the enzyme activity elicited by micromolar concentrations of GTP and reduced by 50% the DA inhibition of cyclase activity via D2 receptors. The toxin treatment enhanced the net stimulation of enzyme activity by DA in the presence of micromolar concentrations of GTP. However, the stimulatory effect of the selective D1 receptor agonist SKF 38393 was not significantly affected. The data indicate that Ni mediates D2 inhibition of striatal adenylate cyclase and participates in the modulation of D1 stimulation of the enzyme activity by DA.  相似文献   

3.
Inhibition of basal adenylate cyclase by GTP or guanyl-5'-yl imidodiphosphate was abolished in membranes isolated from rat adipocytes previously incubated with pertussis toxin. Forskolin (0.1 microM) stimulated adenylate cyclase about 4-fold and inhibition of cyclase by GTP or guanyl-5'-yl imidodiphosphate was also abolished by pertussis toxin treatment of rat adipocytes. Forskolin (1 microM) increased adenylate cyclase activity at least ten-fold and the inhibitory effect of GppNHp was reduced but not abolished by pertussis toxin. In rabbit adipocytes, pertussis toxin reversed the inhibition of adenylate cyclase activity by GppNHp to the same extent as that by GTP in the presence of 1 microM forskolin. The present results indicate that pertussis toxin can reverse the inhibition of adipocyte adenylate cyclase by nonhydrolyzable GTP analogs as well as that by GTP.  相似文献   

4.
Influences of alpha 2-adrenoceptor stimulation on adenylate cyclase activity were investigated in cerebral cortical membranes of rats. Pretreatment of the membranes with islet-activating protein and NAD resulted in a significant increase in basal activity as well as in GTP- or forskolin/GTP-induced elevation of adenylate cyclase activity. Strong activation of adenylate cyclase was also caused in membranes pretreated with cholera toxin together with NAD in comparison to that in control membranes, suggesting that adenylate cyclase activity is perhaps regulated by stimulatory and inhibitory GTP binding regulatory protein existing in synaptic membranes. In addition, adrenaline (with propranolol) or clonidine significantly reduced adenylate cyclase activity stimulated by pretreatment with forskolin and GTP. The inhibitory effects of adrenaline were also observed in membranes pretreated with cholera toxin and NAD. Moreover, the inhibition by adrenaline or clonidine was completely abolished by treatment with (a) yohimbine or (b) islet-activating protein and NAD. It is suggested that alpha 2-receptor stimulation causes inhibitory influences on adenylate cyclase activity mediated by the inhibitory GTP binding regulatory protein in synaptic membranes of rat cerebral cortex.  相似文献   

5.
Guanine nucleotide regulation of membrane adenylate cyclase activity was uniquely modified after exposure of 3T3 mouse fibroblasts to low concentrations of islet-activating protein (IAP), pertussis toxin. The action of IAP, which occurred after a lag time, was durable and irreversible, and was associated with ADP-ribosylation of a membrane Mr = 41,000 protein. GTP, but not Gpp(NH)p, was more efficient and persistent in activating adenylate cyclase in membranes from IAP-treated cells than membranes from control cells. GTP and Gpp(NH)p caused marked inhibition of adenylate cyclase when the enzyme system was converted to its highly activated state by cholera toxin treatment or fluoride addition, presumably as a result of their interaction with the specific binding protein which is responsible for inhibition of adenylate cyclase. This inhibition was totally abolished by IAP treatment of cells, making it very likely that IAP preferentially modulates GTP inhibitory responses, thereby increasing GTP-dependent activation and negating GTP-mediated inhibition of adenylate cyclase.  相似文献   

6.
Adenylate cyclase (EC 4.6.1.1) activity in mouse liver plasma membranes is increased fivefold when animals are pretreated with cholera toxin. The increase in activity is detectable within 20 min of an intravenous injection of the toxin. The response of the control and cholera-toxin-activated adenylate cyclase to hormones, GTP, and NaF is complex. GTP causes the same fold stimulation of control and toxin-activated cyclase, but glucagon and NaF remain the most potent activators of liver adenylate cyclase irrespective of whether the enzyme is activated by cholera toxin. Determination of kinetic parameters of adenylate cyclase indicates that cholera toxin, hormones, and NaF do not change the affinity of the enzyme for ATP-Mg nor do they alter the Ka for free Mg2+. High concentrations of Mg2+ inhibit adenylate cyclase that is stimulated by either cholera toxin, glucagon, or NaF. These same Mg2+ concentrations have no effect on the basal activity of the enzyme or its activity in the presence of GTP.  相似文献   

7.
Adenylate cyclase inhibition by hormones. The Mg2+ hypothesis   总被引:1,自引:0,他引:1  
In washed anterior pituitary membranes, there is enough GTP to occupy Ns and therefore to obtain activation of adenylate cyclase by vasointestinal peptide. GTP concentrations needed to obtain adenylate cyclase inhibition by dopamine (above 5 X 10- M) stimulate the adenylate cyclase. The dopamine effect is a blockade of this stimulation. We propose that at least in this system, Ni does not inhibit but stimulates the adenylate cyclase and that inhibitory hormones block this stimulation. We also demonstrate in several adenylate cyclase systems that hormones produced adenylate cyclase inhibition by lowering their Mg affinity A general model for adenylate cyclase activation and inhibition is proposed.  相似文献   

8.
A novel site of action of a high affinity A1 adenosine receptor antagonist   总被引:4,自引:0,他引:4  
XAC, a high affinity antagonist of the A1 adenosine receptor, enhances adenylate cyclase activity by 1.3-2 fold with an EC50 of approximately 47 nM in adipocyte membranes pretreated with adenosine deaminase to eliminate adenosine and in the presence of total phosphodiesterase inhibition by 100 microM papaverine. This effect of XAC is observed only at concentrations of GTP sufficient to activate Gi (approximately 5 x 10(-6) M GTP) and is not evident in the absence or presence of lower GTP concentrations. ADP ribosylation of Gi by pertussis toxin treatment also abolishes this stimulatory action of XAC. Furthermore, in the presence of GTP activation of inhibitory prostaglandin E1 receptors diminishes the stimulatory effect of XAC on adenylate cyclase. In addition, XAC interferes with GTP-mediated inhibition of forskolin-stimulated adenylate cyclase activity in a noncompetitive manner. Finally, XAC is only a weak inhibitor of the low Km cyclic AMP phosphodiesterase, producing approximately 40% inhibition of phosphodiesterase activity at a concentration of 100 microM. These data suggest that XAC increases adenylate cyclase activity in absence of endogenous adenosine by inhibiting tonic Gi activity in a reversible manner.  相似文献   

9.
Modulation of adenylate cyclase in human keratinocytes by protein kinase C   总被引:3,自引:0,他引:3  
Adenylate cyclase (ATP-pyrophosphate lyase (cyclizing); EC 4.6.1.1) in the human keratinocyte cell line SCC 12F was potentiated by 12-O-tetradecanoyl-phorbol-13-acetate (TPA), phorbol-12,13-diacetate, and 1,2-dioctanoylglycerol. Keratinocytes exposed to TPA showed a 2-fold enhancement of adenylate cyclase activity when assayed in the presence of isoproterenol or GTP. The half-maximal effective concentration (EC50) for both isoproterenol and GTP were unaltered by TPA treatment of the cells. Basal adenylate cyclase activity in membranes from TPA-treated cultures was also increased 2-fold relative to activity in control membranes. Potentiation of adenylate cyclase activity was dependent on the concentration of TPA to which the keratinocytes were exposed (EC50 for TPA = 3 nM). TPA actions on adenylate cyclase were maximal after 15 min of incubation of the cells with the compound, correlating well with the time course of translocation of protein kinase C (Ca2+/phospholipid-dependent enzyme) from cytosol to membrane. The action of cholera toxin on adenylate cyclase was additive with TPA. In contrast, pertussis toxin actions on adenylate cyclase were not additive with TPA. Treatment of control cells with pertussis toxin activated adenylate cyclase 1.5-fold, whereas cells exposed to pertussis toxin for 6 h followed by TPA for 15 min showed the same 2-fold increase in adenylate cyclase activity as observed in membranes from cells exposed to TPA without prior exposure to pertussis toxin. Pertussis toxin catalyzed ADP-ribosylation was increased 2-fold in membranes from SCC 12F cells exposed to TPA, indicating an increase in the alpha beta gamma form of Gi. These data suggest that exposure of human keratinocytes to phorbol esters increases adenylate cyclase activity by a protein kinase C-mediated increase in the heterotrimeric alpha beta gamma form of Gi resulting in decreased inhibition of basal adenylate cyclase activity.  相似文献   

10.
Abstract: 4β-Phorbol 12-myristate 13-acetate (PMA), added to a lysed mitochondrial fraction of rat striatum, stimulates adenylate cyclase activity with an apparent time lag of ~30 s. Half-maximal and maximal enzyme stimulations are obtained with 8 and 200 nM PMA, respectively. The PMA stimulation is GTP dependent, reaching a maximum of ~60% at 50 μ.M GTP, and is associated with disappearance of the enzyme inhibition induced by micromolar concentrations of GTP. Enhancement of enzyme activity by cholera toxin and 3,4-dihydroxyphenylethylamine is amplified by PMA only at micromolar concentrations of GTP. PMA does not affect the enzyme stimulation by forskolin but reverses the inhibition of forskolin-stimulated enzyme by GTP. When guanyl-5′-yl-imidodiphosphate is substituted for GTP, PMA does not modify adenylate cyclase activity. Enzyme inhibition by acetylcholine, Leu-enkephalin, and R(-)N6-(2-phenylisopropyl)adenosine is magnified by PMA. Stimulation of adenylate cyclase by PMA is markedly reduced following EGTA treatment, is not observed when adenyl-5′-yl-imidodiphosphate is substituted for ATP as substrate for adenylate cyclase, and is enhanced by l-α-phosphatidyl-l-serine. Like PMA, 4β-phorbol 12,13-dibutyrate and 1-oleoyl-2-acetylglycerol stimulate striatal adenylate cyclase, whereas 4β-phorbol and 4β-phorbol 13-acetate are ineffective. The results indicate that phorbol esters increase striatal adenylate cyclase activity by reducing the GTP-induced inhibition of the enzyme, presumably as a result of protein kinase C activation.  相似文献   

11.
The inhibitory GTP-binding protein (Gi) is known to mediate the effects of a number of hormones that act through specific receptors to inhibit adenylate cyclase. In this study we examined the mechanism whereby Gi modulates the response of adenylate cyclase to a stimulatory hormone and its role in desensitization. In membranes prepared from the cultured renal epithelial cell line LLCPK1, adenylate cyclase activity was stimulated 16-fold by 1-2 microM lysine vasopressin. Addition of GTP (1-100 microM) resulted in stimulation of basal activity but inhibition of hormone-stimulated activity (approximately 40% inhibition at 100 microM GTP). This contrasts with the usual effect of GTP to support or augment activation by stimulatory receptors. The inhibitory effect was abolished by pertussis toxin, which had little effect on basal activity in the absence or presence of added GTP or on vasopressin-stimulated activity in the absence of added GTP. GTP-mediated inhibition was vasopressin concentration dependent. At concentrations of vasopressin below the K1/2 for enzyme activation (approximately 0.6 nM), GTP was stimulatory, and at higher concentrations, GTP was inhibitory. The inhibitory effect of GTP was also observed for a V2-receptor agonist and was not abolished by a V1-receptor antagonist, indicating that a distinct V1 receptor did not mediate inhibition of adenylate cyclase. Using the known subunit structure of adenylate cyclase, we developed the minimal mechanism that would incorporate a modulatory role for Gi in determining net activation of adenylate cyclase by a stimulatory hormone. The predicted enzyme activities for basal and maximal hormone stimulation in the presence and absence of GTP were generated, and model parameters were chosen to match the experimental observations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The influence of the diterpene, forskolin, was studied on adenylate cyclase activity in membranes of rat basophilic leukemia cells. Forskolin increased basal adenylate cyclase activity maximally 2-fold at 100 microM. However, adenylate cyclase activity stimulated via the stimulatory guanine nucleotide-binding protein, Ns, by fluoride and the stable GTP analog, guanosine 5'-O-(3-thiotriphosphate), was inhibited by forskolin. Half-maximal and maximal inhibition occurred at about 1 and 10 microM forskolin, respectively. The inhibition occurred without an apparent lag phase, whereas the enzyme stimulation by forskolin was preceded by a considerable lag period. The inhibition was not affected by treating intact cells or membranes with pertussis toxin and proteolytic enzymes, respectively, which have been shown in other cell types to prevent adenylate cyclase inhibition mediated by the guanine nucleotide-binding regulatory component, Ni. The forskolin inhibition of the stable GTP analog-activated adenylate cyclase was impaired by increasing the Mg2+ concentration and was reversed into a stimulation by Mn2+. Under optimal inhibitory conditions, forskolin even decreased basal adenylate cyclase activity. Finally, forskolin largely reduced the apparent affinity of the rat basophilic leukemia cell adenylate cyclase for its substrate, MgATP, which reduction resulted in an apparent inhibition at low MgATP concentrations and a loss of the inhibition at higher MgATP concentrations. The data indicate that forskolin can cause both stimulation and inhibition of adenylate cyclase and, furthermore, they suggest that the inhibition may not be mediated by the Ni protein, but may be caused by a direct action of forskolin at the adenylate cyclase catalytic moiety.  相似文献   

13.
Substance P was incubated in an adenylate cyclase assay of a particulate fraction of caudate-putamen tissue of the rat in order to examine the effect of the peptide on D-1 receptor coupled adenylate cyclase in vitro. Substance P did not influence basal adenylate cyclase activity or the stimulation of the enzyme by dopamine. No influence of substance P was seen on the effects of calcium and magnesium chloride as a cofactor of adenylate cyclase. Also the inhibition of adenylate cyclase activity by the dopamine antagonist fluphenazine was not influenced by substance P. However, substance P was able to enhance cyclic AMP formation in the presence of guanosine-imidodiphosphate (Gpp(NH)p), whereas the stimulatory effect of guanosine-triphosphate (GTP) was inhibited by substance P. In our study we suggest that substance P interacts with the guanine nucleotide regulatory subunit without directly affecting D-1 dopamine receptors in the caudate-putamen of the rat.  相似文献   

14.
Inhibition of a Low Km GTPase Activity in Rat Striatum by Calmodulin   总被引:1,自引:0,他引:1  
In rat striatum, the activation of adenylate cyclase by the endogenous Ca2+-binding protein, calmodulin, is additive with that of GTP but is not additive with that of the nonhydrolyzable GTP analog, guanosine-5'-(beta, gamma-imido)triphosphate (GppNHp). One possible mechanism for this difference could be an effect of calmodulin on GTPase activity which has been demonstrated to "turn-off" adenylate cyclase activity. We examined the effects of Ca2+ and calmodulin on GTPase activity in EGTA-washed rat striatal particulate fractions depleted of Ca2+ and calmodulin. Calmodulin inhibited GTP hydrolysis at concentrations of 10(-9)-10(-6) M but had no effect on the hydrolysis of 10(-5) and 10(-6) M GTP, suggesting that calmodulin inhibited a low Km GTPase activity. The inhibition of GTPase activity by calmodulin was Ca2+-dependent and was maximal at 0.12 microM free Ca2+. Maximal inhibition by calmodulin was 40% in the presence of 10(-7) M GTP. The IC50 for calmodulin was 100 nM. In five tissues tested, calmodulin inhibited GTP hydrolysis only in those tissues where it could also activate adenylate cyclase. Calmodulin could affect the activation of adenylate cyclase by GTP in the presence of 3,4-dihydroxyphenylethylamine (DA, dopamine). Calmodulin decreased by nearly 10-fold the concentration of GTP required to provide maximal stimulation of adenylate cyclase activity by DA in the striatal membranes. The characteristics of the effect of calmodulin on GTPase activity with respect to Ca2+ and calmodulin dependence and tissue specificity parallel those of the activation of adenylate cyclase by calmodulin, suggesting that the two activities are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Pertussis toxin selectively modifies the function of Ni, the inhibitory guanine nucleotide binding protein of the adenylate cyclase complex. In chick heart membranes, guanine nucleotide activation of Ni resulted in a decrease in the apparent affinity of the muscarinic receptor for the agonist oxotremorine, inhibition of basal adenylate cyclase activity, and the attenuation of adenylate cyclase by oxotremorine. Treatment of chicks with pertussis toxin caused the covalent modification of 80-85% of cardiac Ni. After this treatment Gpp(NH)p had no effect on muscarinic receptor affinity and GTP stimulated basal adenylate cyclase activity. In contrast, the GTP-dependent attenuation of adenylate cyclase caused by muscarinic receptors was unaffected.  相似文献   

16.
Epinephrine inhibits human platelet adenylate cyclase by an alpha 2-adrenoceptor-mediated and GTP-dependent process. The turn-off reaction for this epinephrine-inhibited enzyme was studied by measuring the rate of cyclic AMP formation upon addition of the alpha2-adrenoceptor antagonist, yohimbine, or upon addition of an excess of the stable GDP analog, guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which competitively inhibited the action of GTP in the epinephrine-induced inhibition. The decay of the inhibited state of the adenylate cyclase was used to calculate the rate constant of the turn-off reaction. With both methods, almost identical koff values of 0.6-0.7 min-1 at 25 degrees C were obtained for the epinephrine-inhibited platelet enzyme. Cholera toxin, which does not inhibit the epinephrine-induced GTPase stimulation in platelet membranes, did not affect this turn-off reaction. In contrast, the turn-off rate of the prostaglandin-E1-stimulated human platelet adenylate cyclase, measured with GDP beta S, was reduced from about 9 min-1 to 2 min-1 at 25 degrees C by pretreatment of the membranes with cholera toxin, which inhibits the prostaglandin-E1-stimulated GTPase activity. The data strongly suggest that the guanine nucleotide regulatory site, mediating epinephrine-induced adenylate cyclase inhibition, is activated and inactivated by similar mechanisms as is the site mediating adenylate cyclase stimulation, and that cholera toxin affects only the stimulatory site. The findings furthermore suggest that the activity states of these two regulatory sites control the activity of the adenylate cyclase.  相似文献   

17.
In membranes of rat striatum, phorbol 12-myristate 13-acetate (PMA), a potent activator of Ca2+/phospholipid-dependent protein kinase, enhanced adenylate cyclase activity by counteracting the inhibition elicited by GTP. Exposure to pertussis toxin caused a similar alteration of the GTP-regulation of the enzyme activity and largely prevented the PMA effects. PMA treatment increased by threefold the GTP requirement of acetylcholine-induced inhibition of adenylate cyclase activity but did not affect the GTP-dependence of the enzyme stimulation by dopamine. The hydrolysis of GTP by membrane-bound high affinity GTPase was significantly inhibited by PMA (IC 50 10 nM) in a Ca2+-dependent manner. Like PMA, phorbol 12, 13-dibutyrate inhibited the GTPase activity, whereas the biologically inactive 4- phorbol 13-acetate and 4- phorbol were without effect. These results suggest that activation of Ca2+/phospholipid-dependent protein kinase by PMA stimulates adenylate cyclase activity by impairing the activity of the GTP-dependent inhibitory protein, possibly through a reduction of the GTP-GDP exchange.  相似文献   

18.
Despite their opposite effects on prolactin secretion, both dopamine and angiotensin II inhibit adenylate cyclase activity in homogenates of anterior pituitary cells in primary culture. Dopamine and angiotensin II inhibition of adenylate cyclase was not additive, suggesting that both neurohormones inhibit the adenylate cyclase of the lactotroph cells. Pretreatment with Bordetella pertussis toxin (islet activator protein) completely suppressed the dopamine-induced inhibition of both adenylate cyclase and prolactin secretion. The islet activator protein also reversed the angiotensin II-induced inhibition of the adenylate cyclase activity. In contrast, angiotensin II stimulation of prolactin release was not affected by the toxin. Angiotensin II also induced a dose-dependent stimulation of inositol phosphates (250%) with an EC50 of 0.1 nM, close to that observed for prolactin secretion. Islet activator protein pretreatment did not block the stimulation of inositol phosphate production. Dopamine inhibited the angiotensin II-stimulated prolactin release and the production of inositol phosphates induced by angiotensin II. It is concluded that angiotensin II and dopamine receptors of lactotroph cells are able to modulate both cAMP and inositol phosphate production. The dopamine receptor of lactotrophs appears to be the first example of a receptor which is negatively coupled to the production of inositol phosphates.  相似文献   

19.
In adipocyte membranes, cholera toxin may ADP-ribosylate the islet-activating protein (IAP) substrate, under certain conditions. Covalent modification is maximal in the absence of a guanosine triphosphate; in the presence of 5'-guanylylimidodiphosphate, incorporation of [32P]ADP-ribose is markedly reduced. ADP-ribosylation by cholera toxin has similar functional consequences as does IAP-mediated modification, i.e. the biphasic response of isoproterenol-stimulated adenylate cyclase to GTP and the inhibition by N6-phenylisopropyladenosine is abolished, and only the stimulatory phase remains. In contrast, membranes treated with cholera toxin in the presence of GTP display both the stimulatory and inhibitory responses to GTP. The binding of the adenosine analog [3H]N6-phenylisopropyladenosine is increased in the presence of GTP. Treatment of the membranes with IAP, but not with cholera toxin in the absence of GTP, reverses this GTP effect on [3H]N6-phenylisopropyladenosine binding. However, [3H]N6-phenylisopropyladenosine binding is still sensitive to GTP in membranes treated with cholera toxin in the presence of GTP. In adipocyte and cerebral cortical membranes, the IAP substrate appears as a 39,000/41,000-Da doublet which does not appear to reflect protease activity. On two-dimensional polyacrylamide gels, these two proteins migrate with approximate pI values 6.0 and 5.6, respectively. Although both behave similarly under all conditions explored in this study, it is unknown whether both, or only one, are involved in inhibition of adenylate cyclase activity. These results extend the already striking homology between the adenylate cyclase complex and the visual system. Ni, as well as transducin, may be ADP-ribosylated by cholera toxin and by IAP, and, in all cases, there are functional consequences.  相似文献   

20.
Rats receiving injections of specific antagonists of dopamine receptors (SCH 23390 for D1, haloperidol for D2, and haloperidol+SCH 23390) once daily for 21 days develop a selective supersensitivity of the blocked receptors. To study the molecular correlates of these adaptive changes, we evaluated the involvement of GTP-binding proteins in the development of supersensitivity of dopamine receptors. By means of adenylate cyclase studies, we tested whether any of the treatments modified the functional response to GTP in striata dissected from control and treated rats. Our data show that the chronic blockade of D1 and/or D2 receptors potentiates both basal and dopamine receptor-stimulated adenylate cyclase activity in response to GTP. D1 receptor up-regulation correlates with an increased adenylate cyclase response to GTP, whereas D2 receptor up-regulation is accompanied by an enhanced GTP-induced inhibition of enzyme activity, in both basal and receptor-activated conditions. This potentiation does not seem to match the changes in mRNA content of Gs and Gi alpha subunits. Unexpectedly, however, a significant increase in Gi alpha subunit mRNA was found after the chronic blockade of D1 receptors; this result could be explained by cross-regulation between GTP-binding protein-mediated pathways. This cross-regulation could serve as a protective mechanism whereby cells exposing up-regulated receptors protect themselves from a condition of hyperactivity of the adenylate cyclase enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号