首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmid-encoded regulation of colicin E1 gene expression.   总被引:3,自引:1,他引:2       下载免费PDF全文
A plasmid-encoded factor that regulates the expression of the colicin E1 gene was found in molecular cloning experiments. The 2,294-base-pair AvaII fragment of the colicin E1 plasmid (ColE1) carrying the colicin E1 structural gene and the promoter-operator region had the same information with respect to the repressibility and inducibility of colicin E1 synthesis as the original ColE1 plasmid. An operon fusion was constructed between the 204-bp fragment containing the colicin E1 promoter-operator and xylE, the structural gene for catechol 2,3-dioxygenase encoded on the TOL plasmid of Pseudomonas putida. The synthesis of the dioxygenase from the resulting plasmid occurred in recA+, but not in recA- cells and was derepressed in the recA lexA(Def) double mutant. These results indicate that the ColE1 plasmid has no repressor gene for colicin E1 synthesis and that the lexA protein functions as a repressor. Colicin E1 gene expression was adenosine 3',5'-phosphate (cAMP) dependent. Upon the removal of two PvuII fragments (2,000 bp in length) from the ColE1 plasmid, the induced synthesis of colicin E1 occurred in the adenylate-cyclase mutant even without cAMP. The 3,100-bp Tth111I fragment of the ColE1 plasmid cloned on pACYC177 restored the cAMP dependency of the deleted ColE1 plasmid. Since the deleted fragments correspond to the mobility region of ColE1, the cAMP dependency of the gene expression should be somehow related to the plasmid mobilization function.  相似文献   

2.
Cells colicinogenic for the colicin plasmids E1 or E2 (Col E1 and Col E2, respectively) were selected for a loss of colicin production after infection with bacteriophage Mu. Extrachromosomal deoxyribonucleic acid that was larger than the original colicin plasmids was found in such cells. A small insertion mutant in Col E1 deoxyribonucleic acid affecting active colicin production without affecting either expression of colicin immunity or Col E1 deoxyribonucleic acid replication was found. Cells carrying this Col E1 plasmid mutant do not exhibit the lethal event associated with colicin E1 induction, suggesting that synthesis of active colicin is required for killing during induction. The altered Col E2 plasmid, containing an insertion at least as large as phage Mu, was maintained unstably in the mutants examined.  相似文献   

3.
4.
Summary A mutant of a derivative of the colicin E1 plasmid has been isolated that does not confer immunity to colicin E1 on its host (imm-) although it is still capable of producing colicin (col+). Cells carrying the col+, imm- plasmid are capable of forming colonies and grow best in liquid culture in the presence of trypsin. The induction of colicin synthesis by ultraviolet light has been analysed using this mutant plasmid. The results suggest that a) the expression of the col+ gene may be delayed for many generations after the inducing stimulus, b) although induced cells are usually killed they can reproduce and c) the capacity to produce colicin can be propagated and segregated into the progeny of an induced cell.  相似文献   

5.
Summary After transfer from a mutagenized host, twenty one ColE2 plasmid mutants were isolated after screening 10,000 clones for abnormal colicin production. Analysis by SDS polyacrylamide slab gel electrophoresis of proteins synthesized after mitomycin C-induction of mutant cultures, indicates that all but two of the mutations are in the structural gene for colicin E2. Of these, nine produce fragments of colicin in both whole cells and minicells and some are suppressed by nonsense suppressors.Studies with a nonsense mutant producing only a small colicin E2 fragment (ColE2-421) suggest that colicin E2 is not involved in plasmid DNA replication, in the control of its own synthesis, or required for cell death when cells become committed to colicin production. The two plasmid mutants outside the colicin gene segregate plasmid-free cells at 33°, 37° and 43°. One segregates fairly rapidly (about 4% per generation) though the colicin-producing cells make normal amounts of colicin, whilst the other segregates more slowly and the colicin-producing cells make much reduced amounts of colicin.  相似文献   

6.
The primary target of colicin E7 in sensitive bacteria are their DNA molecules. In agarose gel electrophoresis of lysates of cells treated with colicin E7, both chromosomal and plasmid DNA bands disappear, in direct relation to E7 concentration and to the duration of treatment. DNA degradation is followed by a cessation of DNA synthesis. In E7-immune bacteria, no damage to DNA due to colicin E7 occurs. The mode of action of colicin E7 thus appears to be equal to that of colicin E2. Also, colicin E8 causes a distinct damage to chromosomal and plasmid DNA in sensitive, but not in immune bacteria. None of the colicins E1, E3, E4, E5, E6 or E9 has any influence on bacterial DNA.  相似文献   

7.
8.
A phage-plasmid hybrid was constructed for use as a recombinant DNA vector, allowing the propagation of cloned EcoRI restriction endonuclease fragments of about 2 X 10(6) to 11 X 10(6) daltons. The colicin E1 plasmid replicon was fused to the left arm of a lambdagt generalized transducing phage with a thermolabile repressor, yielding a genome which could be replicated either by phage lambda functions or via the colicin E1 plasmid replicon. At the nonpermissive temperature, phage functions were derepressed and phage growth occurred lytically. Alternatively, at the permissive temperature, lambda functions were repressed and the vector replicated as a covalently closed circular plasmid. The phage-plasmid hybrid vector could be maintained at a copy number determined by the colicin E1 plasmid replicon and was also sensitive to amplification after chloramphenicol treatment. An EcoRI fragment of Escherichia coli DNA encoding genes of the arabinose operon also was inserted into the central portion of the vector.  相似文献   

9.
A derivative of bacteriophage lambda containing a colicin E1 plasmid replicon was constructed by recombinant DNA techniques. This phage, lambdacol100, has two functional modes of DNA replication; it can replicate via either plasmid or phage replication systems. lambdacol100 has been used to introduce the colicin E1 plasmid replicon into Escherichia coli previously treated with chloramphenicol to block protein synthesis. Under these conditions, lambdacol100 DNA is replicated normally as a colicin E1 plasmid. This suggests that colicin E1 plasmid replication in vivo does not require any plasmid-encoded proteins.  相似文献   

10.
Summary The plasmid ColIb-P9 introduced into Escherichia coli K12 umuC mutant cells suppresses the deficiencies in mutagenesis and repair of mutants after UV-irradiation. These data suggest that ColIb-P9 encodes a product with a function similar to that of the chromosomal gene umuC. Tn5 insertion mutants of ColIb-P9 were isolated with an altered ability to restore UV-mutagenesis in the umuC mutant. The same plasmid mutations were shown to eliminate the effects of ColIb-P9 on UV-mutagenesis, survival after UV and mitomycin C treatment, reactivation of UV-irradiated in unirradiated cells, Weigle-reactivation, induction of colicin E1 synthesis. The ColIb-P9 genes responsible for the enhancement of UV-mutagenesis were cloned within a 14 Md SalI fragment. Their location was established by restriction analysis of the mutant plasmid ColIb 6-13::Tn5.While the action of the plasmids ColIb-P9 and pKM101 is similar, these plasmids were shown to have opposite effects on cell survival and colicin E1 synthesis after mitomycin C treatment. A study of the mutant plasmids ColIb::Tn5 and pGW12 (muc - mutant of pKM101) has shown the difference in the effects of ColIb-P9 and pKM101 to be associated with the plasmid genes responsible for the protective and mutagenesis-enhancing effects of these plasmids in UV-irradiated cells.Abbreviations MC mitomycin C - ICS induction of colicin synthesis  相似文献   

11.
12.
Plasmid ColE3 specifies a lysis protein.   总被引:15,自引:6,他引:9       下载免费PDF全文
Tn5 insertion mutations in plasmid ColE3 were isolated and characterized. Several of the mutants synthesized normal amounts of active colicin E3 but, unlike wild-type colicinogenic cells, did not release measurable amounts of colicin into the culture medium. Cells bearing the mutant plasmids were immune to exogenous colicin E3 at about the same level as wild-type colicinogenic cells. All of these lysis mutants mapped near, but outside of, the structural genes for colicin E3 and immunity protein. Cells carrying the insertion mutations which did not release colicin E3 into the medium were not killed by UV exposure at levels that killed cells bearing wild-type plasmids. The protein specified by the lysis gene was identified in minicells and in mitomycin C-induced cells. A small protein, with a molecular weight between 6,000 and 7,000, was found in cells which released colicin into the medium, but not in mutant cells that did not release colicin. Two mutants with insertions within the structural gene for colicin E3 were also characterized. They produced no colicin activity, but both synthesized a peptide consistent with their map position near the middle of the colicin gene. These two insertion mutants were also phenotypically lysis mutants--they were not killed by UV doses lethal to wild-type colicinogenic cells and they did not synthesize the small putative lysis protein. Therefore, the lysis gene is probably in the same operon as the structural gene for colicin E3.  相似文献   

13.
We show here that expression of the colicin gene of the ColE1 plasmid is greatly derepressed in Escherichia coli K-12 strain DM1187 spr tif sfi, which is a constitutive tif mutant, altered in the lexA gene, and which shows constitutive expression of various pathways of the recA-dependent, lexA-blocked (SOS) repair system. In this strain colicin E1 synthesis is at least 100-fold greater than that observed in uninduced control strains (spr+ tif sfi and spr+ tif+ sfi). This result confirms the regulatory role of the lexA product in colicin E1 synthesis. Colicin yields by the uninduced strain DM1187 are as high as the maximum yields from mitomycin-induced control strains and often are several-fold higher. When the nonconstitutive tif sfi strain GC467 is raised to 43 degrees C to induce the SOS system, a low level of colicin synthesis is observed which is less than one-tenth of the yield obtained by induction with mitomycin C. Addition of adenine at the time of shift-up can increase the colicin yield of tif sfi to about one-third of the yield obtained with mitomycin C. We have also found that colicin overproduction can be detected by altered colony appearance in an overlay assay with colicin-sensitive bacteria. In addition, the lethality of the process of colicin synthesis is observed here without the use of bacteriostatic inducing agents.  相似文献   

14.
Colicin synthesis and cell death.   总被引:6,自引:6,他引:0       下载免费PDF全文
Colicin E1 is a small plasmid, containing the cea gene for colicin, the most prominent product of the plasmid. Colicin is a 56-kilodalton bacteriocin which is especially toxic to Escherichia coli cells that do not contain the plasmid. Under normal growth conditions very low levels of the plasmid are produced as a result of cea gene repression by the host LexA protein. Conditions that lower the concentration of LexA protein result in elevated levels of colicin synthesis. The LexA protein concentration can be lowered by exposing the cells to DNA-damaging reagents such as UV light or mitomycin C. This is because DNA damage signals the host SOS response; the response leads to activation of the RecA protease which degrades the LexA protein. DNA-damaging reagents result in very high levels of colicin synthesis and subsequent death of plasmid-bearing cells. Elevated levels of colicin are also produced in mutants of E. coli that are deficient in LexA protein. We found that comparably high levels of colicin can be produced in such mutants in the absence of cell death. In lexA strains carrying a defective LexA repressor, colicin synthesis shows a strong temperature dependence. Ten to twenty times more colicin is synthesized at 42 degrees C. This sharp dependence of synthesis on temperature suggests that there are factors other than the LexA protein which regulate colicin synthesis.  相似文献   

15.
ColE1 derivatives carrying cohesive end sites of lambda phage genome (= cos lambda) can be packaged within lambda phage particles. The DNA structure of the prototype ColE1-cos lambda derivative named pKY2257 was studied because of its potential usefulness in various fields in molecular biology. pKY2257, which carries an intact galactose operon of E. coli, is a convenient replicon to detect Tn3 translocation. It was found that one of the PK2257::Tn3 derivatives, pKY2113, generated various small plasmids in E. coli. The molecular structures of some of these deletion mutants were compared with each other and with those of parental plasmid DNAs by heteroduplex analysis and restriction enzyme digestion. A possible mechanism, which seems to be unique to this kind of deletions, is discussed on the basis of the present results.  相似文献   

16.
17.
Summary The mechanism of anaerobic regulation of synthesis of colicins E1, E2, E3, K and D was studied. It was found that anaerobiosis significantly increases expression of the genes for colicins E1, E2, E3, K, and D. Experiments with novobiocin (a DNA gyrase inhibitor) showed that colicin synthesis in minicells and derepressed colicin synthesis in cells are dramatically reduced by relaxation of DNA supercoiling. A good correlation was observed between the levels of colicin synthesis and plasmid DNA supercoiling and the degree of aeration of the cultures. Thus, the regulation of colicin gene expression in response to a change in aeration appears to be mediated by environmentally induced variations in DNA supercoiling.  相似文献   

18.
Escherichia coli strain CL137, a K-12 derivative made E colicinogenic by contact with Fredericq's strain K317, was unaffected by colicin E2-P9, but K-12 carrying ColE2-P9 was sensitive to the E colicin made by strains CL137 and K317. This colicin we named E7-K317 because by the test of colicinogenic immunity it differed from colicins E1-K30, E2-P9, and E3-CA38 and from recently recognized colicins termed E4Horak, E5, and E6. Strain K317 as conjugational donor transmitted E7 colicinogeny; about half the E7-colicinogenic transconjugants were immune to colicin E2-P9. A spontaneous variant of CL137 retained E7 colicinogeny but was sensitive to E2 colicins. We attribute the E2 immunity of strain CL137 and some E7-coliconogeic transconjugants to a "colicin-immunity plasmid," ColE2imm-K317, from strain K317. Tra+ E7-colicinogenic transconjugants restricted phage BF23 in the same way as strains carrying ColIb-P9. We attribute Tra+ and restricting ability to a plasmid, pRES-K317, acquired from strain K317, and related to the ColI plasmids.  相似文献   

19.
Factors necessary for the export process of colicin E1 across the cytoplasmic membrane of Escherichia coli were investigated. beta-Galactosidase activities from gene fusions between the colicin E1 and lacZ genes were recovered in the inner membrane fraction of E. coli when the region containing the internal signal-like sequence of colicin E1 [M. Yamada et al. (1982) Proc. Natl Acad. Sci. USA 79, 2827-2831] was present, but were found in the soluble fraction when the region was eliminated. The colicin E1 export was reduced upon insertion mutation in a gene that is located downstream from the colicin E1 gene in the same operon and responsible for mitomycin-C-induced killing of the host cell. A frame shift mutation of the colicin E1 plasmid was constructed to direct the protein which had lost the COOH-terminal 13 residues of original colicin E1 and was altered in 6 residues of the new COOH-terminal portion. The aberrant colicin E1 that was inducibly synthesized remained inside the cells. These results indicate that colicin E1 is exported with the aid of a product of the downstream gene and that the COOH-terminal portion is necessary for the export. The binding of colicin E1 to the cytoplasmic membrane through the internal signal-like sequence may be a step in the protein export process.  相似文献   

20.
A composite plasmid has been constructed in vitro from colicin E1 factor (mass of 4.2 megadaltons [Md]) and nontransmissible resistance factor RSF 1010 (mass, 5.5. Md) deoxyribonucleic acids (DNAs) by the sequential action of Escherichia coli endonuclease (RI (Eco RI) and T4 phage DNA ligase on the covalently closed circular forms of the constituents. The composite plasmid was selected and amplified in vivo by sequential transformation of E. coli C600 with the ligated mixture and selection of transformants in medium containing streptomycin plus colicin E1, followed by amplification in the presence of chloramphenicol and purification of the extracted plasmid by dye-buoyant density gradient centrifugation in ethidium bromide-cesium chloride solution. Treatment of the composite plasmid with Eco RI yielded two fragments with mobilities corresponding to the linear forms of the parental plasmids, whereas Serratia marscesens endonuclease R (SmaR), which introduces a single scission in the colicin E1 factor but not in RSF 1010, convErted the composite plasmid to a single linear molecule (mass, 9.7 Md). Sequential degradation of colicin E1 factor with Sma R and Eco RI produced two fragments with masses of 3.5 and 0.7 Md; sequential degradation of RSF 1010 produced only one fragment (due to the cleavage with Eco RI), and sequential degradation of the composite plasmid produced the expected three fragments--an RSF 1010 Eco RI linear and the two expected products from the colicin E1 factor moiety. The composite plasmid conferred on the host cell resistance to streptomycin, sulfonamides, and colicin E1, but colicin E1 itself was not synthesized. In contrast, colicin E1 was synthesized by cells containing simultaneously both colicin E1 factor and RSF 1010 as separate entities. In the presence of chloramphenicol, the composite plasmid continued to replicate for 6 h. whereas replication of RSF 1010 and chromosomal DNA stopped within 2 h. Continued replication in the presence of chloramphenicol suggests that the replicator of the colicin E1 factor is functional in the composite plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号